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The electronic density-of-states and the partial-density-of-states functions for the 14

primary bands of the ABO3 cubic d-band perovskites are derived as simple, closed form,
analytical formulas with the use of an empirical linear-combinations-of-atomic-orbitals

model. Comparisons of the model density functions with those derived from more accu-

rate energy-band calculations presented for SrTi03, KTa03, and NaWO3 are shown to be

in good agreement.

I. INTRODUCTION

The DOS (density of states) and PDOS (partial
density of states) functions are of fundamental im-

portance in characterizing the electronic properties
of solids and for qualitatively analyzing optical,
photoelectron, transport, and other types of experi-
mental data. The purpose of this paper is to pro-
vide simple, but reasonably accurate, analytical ex-

pressions for both the DOS and PDOS functions
of the large class of cubic transition-metal oxides
known as the "d-band perovskites. "

The structure of the cubic perovskites is illus-

trated in Fig. 1. The formula unit is ABO3, where
B represents a 3d, 4d, or 5d transition-metal ion, 0
is an oxygen ion, and 3 is a group IA, IL4, or IIB
metal ion. Well-known perovskites include insula-

tors such as SrTi03, BaTi03, and KTa03, as well

as metals such as KMo03, NaWO3, and ReO3.
Investigations of the electronic, ' optical, ' "

and photoelectron" ' properties of the perov-
skites have been discussed recently and there is a
considerable amount of interest in developing
theoretical models to interpret experimental data
on the perovskites. The density functions includ-

ing the DOS, JDOS (joint density of states), and
PDOS are of fundamental importance in the in-

terpretation of experimental data in terms of the
energy bands of these solids. More complete dis-
cussions of the general properties of the perovskites
can be found in Refs. 1, 2, and 18 and no attempt
will be made here to review this information in de-
tail.

The nonmagnetic perovskites appear to be prop-
erly described by convential one-electron energy-
band theory even though polaron and correlation

effects are undoubtedly very important. ' In this

paper we are concerned with the development of
approximate analytical expressions for the density
functions and we shall limit our considerations to
perovskites for which energy-band theory is ap-
propriate.

We employ the simple LCAO (linear combina-
tion of atomic orbitals) model that we have previ-

ously developed and that has been shown to cor-
rectly describe the 14 primary valence and conduc-
tion bands of the perovskites. ' The LCAO model

ABO

FIG. 1. Lattice structure of the ABO3 cubic perov-
skite. The open circles represent oxygen ions, the solid
circles indicate the transition-metal B ions and the shad-
ed circles indicate the A ions. The lattice parameter is
2a where a is the B-O ion internuclear distance.
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may be viewed as an interpolation scheme for
describing the energy bands, as originally suggested

by SlatcI Rnd Kostcr, oI' Rs Rn cnc1gy-bRnd
scheme for calculating the electronic properties
qualitatively. The appropriate point of view

depends upon whether one treats the parameters as
adjustable or calculates them.

In Sec. II we briefly review the LCAO model re-
sults for the energy bands of the d-band perov-
skites. Section III is devoted to the details of the
calculation of the DOS and PDOS functions. Re-
sults are obtained as simple analytical expressions
that CRn cRs1ly bc applied to Rn Rfb1tra1y d-band
PCI'OVSk1tC.

Some of the results for the DOS functions have
been briefly described in previous ' papers. Here
we give a more complete discussion of the density
functions Rnd treat 8 soIQcwhat IQore gcnclal
model wh. 1ch 1nclUdcs thc dispersion of thc non-

bonding oxygen valence bands.
Section IV presents comparisons of the analyti-

cal results derived here with numerical results ob-
tained by other authors from their energy band cal-
culat1ons. A brief sUHllTlary 1s glvcn 1n Scc. V.

I X M R

FIG. 2. BUlk energy bands for KTa03 Using the
I.CLQ model. The parameters employed are E =0.0,
E,=3.5 (pd~)=1.68, (@de.)=0.23, E = —2.05, E,
=7.35, (@do)= —2.95, (pro) =—0.3 (a11 in eV). The
parameters were determined by fitting the numerica1 re-
sults for the DOS and KTa03 of Ref. 7.

4 k (r) = g g g cjq exp(i k R~J )t/rq( r —R~J ),

In scvc1'81 prcvlous works ' %'c developed 8
simple model for the energy bands of the cubic
perovskites using the I.CAO approach. In this sec-
tion we bricAy review the results of the model.

The unit cell for the cubic 3863 perovskites is
shown in Fig. 1. The 8 site is occupied by a
tranSitiOn-metal ion SuCh aS Ti, V, M, MO, W, Or

Re; and the A site contains another (nonitransitlon

metal) cation such as an alkali-metal ion or Ca, Sr,
Ba, or La. The energy bands of importance are the
condUct1on Rnd valcncc bands associated w1th the
8 and 0 ions. These bands, referred toas the pri-
Qlary cncrgy bands, Rfc lllUstI'Rtcd 1n Fig. 2. The
bands associated with the outer valence orbitals of
the A ions occur at higher energies and will be
omitted in our discussions.

Considering only the 803 part of the A8()3 unit
cell there are 14 basis orbitals to consider; the five
nd orbitals of the 8 ions and three 2p orbitals of
each of the three oxygen ions. Thus there wi. ll be
I4 pri01ary cncI'gy bands.

The wave functions are assumed to be of the
foII

where cd
' is the amplitude of the orbital Pq(r

—R J) (q=2p, or nd) that is localized at the lattice
pos1t1on R~J- =R~ —t J fo1 thc state whose wavc-

vector and band index are k and v„respectively.
The vector R~ is the position of the mth unit cell
and t J locates the jth ion within the mth unit cell.
Instead of atomic orbitals wc choose the locallzcd
functions tPq to be Lowdin orbitals (orthogonal-
ized atomic orbitals) so that the overlap matrix is
diagonal~

I P (r —R ')*P (r —R )dr=5 '6 5

(2a)

The eigenvectors and eigenvalues are easily calm-
latcd 1f thc tlansfer lntcgI'als,

I Pq (r R; )*Hfq(r R—)d rJ. , —

are known (where H is the effective one-electron
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Hamiltonian).
Previous studies' ' ' have shown that an excel-

lent representation of the perovskite energy bands

is obtained by retaining only the nearest-neighbor

cation-anion interactions. In what follows, we con-

sider both the first- (cation-anion) and second-

(anion-anion) neighbor interactions.

The wave functions for the a (and n*) bands are

composed of only 2p (nd) orbitals at I'. The ad-

mixture of nd and 2p orbitals increases away from

I becoming a maximum at R, the corner of the
zone.

B. m. nonbonding bands

A. m. valence and conduction bands

There are three sets of symmetry-equivalent con-

duction and valence bands denoted by m(aP) and

(aP)"., respectively, where aP=xy, xz, or yz. The

energy-band dispersion is given by:

There are three equivalent nonbonding bands

whose wave functions are composed entirely of ox-

ygen 2p orbitals. For the nearest-neighbor approxi-
mation these bands are "flat"; that is, without

dispersion. The energy and wave-function ampli-

tudes are the following:

1

Ek~ P)=2(E +E~)

—[ [ 2(E —E))]'

+4(pdm. ) (S +Sp) )'i (4)

k e (ap)

k mo(aP)
Oc~p

k n' (aP) S /(S2 +S2 ))/2
C+ p p

(12)

(13)

(14)

1

k~ P)*= ~( +

+[ [—« —E~)l'

+4(pdm) (S +Sp) I' (5)

If the second-neighbor (oxygen-oxygen) interac-

tions are added to the model then to an excellent

approximation the only significant change in the

energy bands is to replace the m (aP) band energy
of Eq. (11) by

where S =sin(k a) and 2a is the lattice parameter.
The energies E and E„the valence- and conduc-
tion-band-edge energies, are shown in Fig. 2. The
quantity (pdn) is the n-type transfer integral'9 be-

tween an oxygen 2p orbital and a t2s(xy) nd orbi-

tal.
The corresponding wave functions have the am-

plitudes:

(pd~)/D (6)
.p. .p.
k w(aP) (E E )/Dm(aP)

Cap k m(ap)

c " ' ~' =2iS (pdm)/D"' ~' (g)
.p. .p.

—(E E ) /D ~(&P) (9)ap k m(ap)*

(7)

Dr=[(E k„E~)—
+4(pdn. ) (S +Sp)]'~, (10)

y=m. (aP) or m.(aP)' .

In Eq. (6), c "pr is the amplitude of the t2s(ap) or-
bital and c k & is the amplitude of the oxygen 2p (a)
orbital for the band state (k, y).

The Brillouin zone for the perovskite structure is
shown in the inset of Fig. 2 where the high-sym-

metry points labeled I, X, M, and R are indicated.

E-„,, &,
E 4(ppm——)C,C—~.
+2[(pp cr ) (PP )r ) ]SS—~, (15)

where (ppm) and (ppo) are the oxygen m and o in-

tegrals between Zp orbitals ' and C~ =cos(k~a).
The energy given in Eq. (15) is exact at I, X, M,
and R and is an excellent interpolation formula for
all k in the Brillouin zone. The effect of the

oxygen-oxygen interactions on the a and m* bands

is very minor and can be neglected.

C. 0. valence and conduction bands

For the simple, nearest-neighbor interaction
model, there is no coupling between the m. and 0.

bands and they may be considered independently.
The nearest-neighbor model gives an excellent rep-
resentation of the p-d conduction and valence
bands of the perovskites, but leads to flat (i.e.,
without dispersion) nonbonding oxygen valence
bands. ' The addition of second-neighbor interac-
tions (the oxygen-oxygen interactions) produces the
energy-band dispersion of the nonbonding bands.
For this second-neighbor model it is found that the
effect of the oxygen-oxygen interactions on the p-d
valence and conduction bands is very minor be-
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cause of the smallness of the LCAO oxygen-

oxygen transfer integrals compared to the p-d in-

tegrals and the fact that only off-diagonal matrix
elements are involved. Consequently, the very
weak coupling between the m and 0. bands that is
introduced when second-neighbor interactions are
included can be ignored without significantly alter-

ing any important features of the perovskite bands.
In the work reported here we include the effects of
the oxygen-oxygen interactions on the dispersion of
the nonbonding bands but neglect such effects on
the p-d conduction and valence bands.

For the 0-type bands there are two inequivalent
valence bands and two inequivalent conduction
bands denoted by o(+ ) and cr"(+ ), respectively.
The cncI'glcs alc glvcn by

+ I [—(E E )]2

+2(pdcr) (S„+Sr+S,+S ) I'i

——(E+E )

—
I [—,(E,—E )]

+2(pdo) (S„+Sy+S,+S ) ['~

(S =sink~) . (Ig)

(E E~ )2

g k v {Xv)2 " +S2+S2+4S2
(pdo }

(E E~ )
+3(S„—Sr ) +6

(pdo)

[{E~ Eq—„)(E, Eq—„) 3(pd—o ) (S»+Sy }]
(pdo}

(24)

D. o nonbonding band

For the nearest-neighbor interaction model there
is a flat nonbonding band denoted by 0. . The
wave functions consist entirely of 2p orbitals. The
energy and wave-function amplitudes are given by

v= o {+) or o*(+) .

The amplitudes c 2
' and c &' are for the

d(3z r) and —d(x —y ) orbitals, respectively, on
the 8 ion. The amplitudes c "" (a =x, y, or z)

refer to the 2p oxygen orbital which is located a
distance a along the ath coordinate axis from the

8 1On.

It can easily be shown that at I the o*(+) wave
functions have only es type (3z ror x ——y ) or-
bitals with nonzero amplitudes. Similarly, at I
and o(+) wave functions have only 2p-orbital am-

plitudes. Mixing of the nd and 2p orbitals in the
wave functions increase as k moves away from I
and is maximum at R in the Brillouin zone. The
0. and 0' bands are illustrated in Fig. 2.

In Eqs. (16) and {17)the parameter (pdo) is the
transfer integral' between an es(3z r) nd orbita—l
and a 2p(z) oxygen orbital. The parameters E~
and E, are the band-edge energies for the cr and 0.

bands at I ln the Brillouln zone 1cspcctlvcly. An
illustration of these o bands is shown in Fig. 2.

The wave-function amplitudes are the following:

0 SpSy

(S2 +S2 +S2
)

i /2 (26)

where a, p, or y=x, y, or z with aQpQy.
If the oxygen-oxygen interactions are included,

then first-order perturbation theory give the energy

(E Eq,)X'—
C 2 (pdo}6""

(19) E —12[(ppo ) (ppm ) ]S„S~S, —
k gy (S2S2+S2S2+S2S2)

(S„—Sy )
c ","= 3(E Ep„)— —

(pdo)i} "'
iS„X"+3(S» Sy)—

gkm

i' X" 3(S» Sy )— —
c gkv

(21)

(23)

The results of Eqs. (4)—(15) and (16)—(27) pro-
vide a complete analytical description of the 14 en-

ergy bands and the corresponding wave functions,
from which all of the density functions can be
computed. The energy bands of KTa03, shown in

Fig. 2, are typical of those found for any of the cu-
bic 8-band pcrovskltcs.
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III. DOS AND PDOS FUNCTIONS

A. Definitions

The DOS function Nr(E) for the yth energy
band specifies the number of states in the energy
interval between E and E+dE per unit cell and is
given by

Nr(E)=2(a/m. ) f dk 5(E —E-„) . (28)

n & 2k a & —m-, a =x, y, or z,
where 2a is the lattice parameter. The prefactor of
2 in Eq. (28) accounts for the two spin states.

Equation (28) may also be written as

The integration is over the wave vectors in the first
Brillouin zone,

5(g(E)—g(E»)) .ag(E)
(30)

Thus,

Nr(E) =2(a/m) f d k 5(g(E)
(jE

where 0+ is real, positive, and infinitesimal.
It is often convenient to work with a function of

E k rather than with E k itself. Suppose that

g (E-„„)is a single-valued function of E-„ in

some energy range. Then, in this energy range we

have

Nr(E) = (a/m)

x Im f 1k (E Ek +—i 0+ )
L

(29)

—g(E-kr)), (3l)

Nr(E)= (a/n) Im f dk [g(E) g(E- )+—t'0+] —'
gE ky (32)

The PDOS function Pjq(E) for the yth band specifies the number of states in the energy interval between
E and E+dE per unit cell weighted by the square of the amplitude of the jqth orbital. That is, it is the
spectral density of the jq-orbital component.

The PDOS is defined by

Pjq(E)=2(a/n) f dk ~cjq r~ 5(E Ek)= (a/—m') Im f dk ~cjq r~ (E—Ek +i0+)

=2(a/m. ) f dk
~

c.""~25(g(E) —g(E-kr))
- ag(E)

(a/m) Im f dk [cjoy r~ [g(E)—g(Ek r)+t0+1
l

(33)

From Eq. (2b), it follows that

Nr(E) = g P,', (E) .
jq

(34)

A large number of intermediate DOS and PDOS
functions can be defined. For example, the total
DOS functions associated with the various bands
are given by

N,'(E)= g Nr(E),
(y=I type)

P,"(E)= g g P,', (E),
(y=I'type) (jq =ox)

Pd (E)= g Q P~q(E) .
(y=I type) (jq =d)

(35a)

(35b)

(35c)

In Eqs. (35a)—(35c) g~ r,„~ indicates a sum
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only over the I -type bands. The notation +~1
indicates a sum over the jq corresponding to
oxygen-ion orbitals and g~. + indicates a sum

over the jq corresponding to the various d orbitals.
It is clear that the total DOS arising from all of

the a bands, S, is given by

N (E)=N,"(E)+N, (E)+N, (E) . (36)

and the total DOS for all of the bands, both m and

0, 1S

N(E)=N (E)+N (E) .

Similar definitions can be introduced for the
PDOS functions and we shall introduce such func-
tions as the need arises.

B. Van Hove singularities

In a subsequent section we shall see that the
density-of-states functions have sharp features at
special energies, called critical points. These sharp

features, known as Van Hove singularities, arise

from points in k space where the V k E k

=0. The nature of the Van Hove singularity

depends upon the analytical character of the

energy-band dispersion in the region of k space
near k, where the gradient of the energy vanishes.

The classification of the singularities has been dis-

cussed in detail by Van Hove ' and by Phillips. 2

We simply state some of the results here.

Let Eo ——E
k 0 be the energy at k for which the

gradient vanishes. Near to Eo the dispersion curve

has an expansion of the form

L
E-„=Ep+ g a;(k; —A:; )

where k; is the ith component of k in an orthogo-
nal system of coordinates and 1.=1, 2, or 3 for
one-, two-, or three-dimensional energy bands. For
three-dimensional bands the singularities are la-

beled as Mo, Mi, M2, M3, where the subscript
denotes the number of a s that are negative. The
singularities are characterized as follows.

(i) Mp point: The dispersion curve has a mini-

mum at E . For E&Eo and near Eo the DOS
function behaves as

Similarly, the total DOS associated with the 0.

bands, X, is given by

N (E)=N, '+'(E)+N,' '(E)+N, '(E), (37)

const(E E—p)'i, E & Ep

where const is a constant.
(ii) M& point: The dispersion curve has a (type

I) saddle point at Ep. Near Ep the DOS function
behaves as

(40)

const —(Ep —E)'i, E &Ep

const —(E —Ep), E)Ep . (41)

(iii) M2 point: The dispersion curve has a (type
II) saddle point. Near Ep the DOS functions

behave as in Eq. (41) with Ep and E interchanged.

(iv) M3 point: The dispersion curve has a max-

imum at Eo. For E near to Eo the DOS functions
behave as

const(Ep —E)'i . E &Ep . (42)

The m bands of the perovskites are two dimen-
sional since, as can be seen from Eqs. (4) and (5),
each of the energy bands depends only on two of
the three components of the wave vector. For
these bands the value of l. appearing in Eq. (24) is

2. The Van Hove singularities of two-dimensional
bands are denoted as Po, Pi, and P2, where again
the subscript denotes the number of negative coef-
ficients. The notation is given in what follows.

(v) Pp point: The dispersion curve has a mini-

mum at Eo. Near Eo the DOS function has a
jump discontinuiety of the form

constln(E, —E), E &E,

const ln(E —Ep), E & Ep .
(44)

(vii) P2 points: The dispersion curve has a max-

um at Eo. Near Eo for E &Eo the DOS func-
tion behaves as

const 8(Ep —E) 'i

The PDOS function will display the same critical
behavior as the DOS function unless the ampli-

tude, t."q~ vanishes for k near k .

C. Calculation of the PDOS
and DOS for the ~ bands

The PDOS functions for the m. bands are

Prp(E)=2(a/~) 1 dk ic pr
i

5(E E-„), —

(46)

const8(E —Ep), E)Ep
where 8(x)= 1 for x & 0 and 0 otherwise.

(vi) P& point: The dispersion curve has a saddle

point. Near Eo the DOS function has a logarithm-
ic infinity of the form
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Pr(E)=2(a/m) f dk
~

c~r
~

5(E E—p ),

y=~(aP) or m.(aP}*,

where Prtt(E) is the PDOS for the nd (aP) orbital

and P~~(E) is the PDOS for the 2p(a) orbital.

Referring to Eq. (7), we see that the nd-orbital

amplitude is

[(E E )~ (
—E )&]

2+@ (E)=
2(pdn)

(55)

Nr(E) =2pr(E) [y=~(aP) or ~'(aI3)] . (54)

To find the PDOS and DOS functions we need

to evaluate the integral pr(E). To do this we de-

fine the dimensionless variable e (E) by the rela-

tion

(E-„E)—
[(E-„r E)'+—4(Pd ~)'(S' +Sp) ]

(48)

where Eg„ is the energy of the band gap between

the m and m.* bands at I; Eg ——E, —E . The
energy-dispersion curves for the m bands may be
written in a simplified form in terms of e (E z ).
The dispersion curves are given by:

E~

4(pdm) (S~+Stt)~(E E, )(E E— ), —

and obtain

(49)

In the integrand of Eq. (46) we may place ~c "ttr~

by the value it takes on when the 5 function is sa-

tisfied. From Eqs. (4) and (5) we see that we may
make the replacements

e„(E-„)= —(Cp~+Cptt),

C& ——cos(2k~a ) .
(56)

According to Eq. (31) the integral pr(E) can be
written as

« —EM )
pr(E) = (a/~)'

(pd~)

(E E)—
P~rtt(E) = 2(a/m. ) f dk 5(E —E-„)

2 E EM~—
x f d k 5( e +Cq +Catt ) . (57)

(E E )

(E EM —)
pr E (50)

1

where EM , (E, + E )——is—the energy at the

midgap between the m and m* bands and we have
introduced pr(E) to represent the integral

(a/m) f dk5(E —Eq ) . (51)

X5(E —E-„r) (5')

Using Eqs. (6) and making the replacements indi-

cated in Eq. (49) gives the result that

(E E,)—
P;(E)=2 pr(E) . (53)

Adding P~~(E) to P~~tt(E) gives, according fo Eq.
(28), the DOS function for the y=n(~P) or
y=m(aP)* band. It follows that

Next we consider the PDOS functions for the 2p
orbitals. It is useful to work with the sum of the
2p-orbitals PDOS functions. In the case of the m.

bands the total 2p PDOS is

Pp"(E)=Pr (E)+Ptrt(E)

=2(a/1r) f dk( ~c""~ + ~ctt ~
)

N ' ~'=p (E)B(EM E), —

N"' ~' =p (E)B(E EM ), —
(58)

where B(x}is the unit step function and p (E) is
equal to the rhs of Eq. (57) for all E. A super-
script for the band index is not necessary for p„(E)
and hence is omitted.

To evaluate p (E) we perform the k, integration
and introduce the variables t=Cz and s=C&p.
We then obtain the result

(a/m) f dk„ f de f dk, 5(e„+Cp~+Cgtt)

5(e +s+t)
ds dt

[(1—t )(1—s )]'~

dt B(1 (e it)')—
m' f-~

I (1—t')[1—(e +t)'] I'" (59)

It should be noted that after performing the in-

tegration the right-hand side (rhs) of Eq. 57 is in-

dependent of the band index y and thus both p
' ~'

and p
' ~' are represented by the same function.

In fact, the rhs of Eq. (57} represents p
' ~' for

EgE~~ and p
' ' for E&E~~. To be more pre-

cise we should write in place of Eq. (57) the equa-
tions
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X Ib [(a r)(b —r)(r—c)(r——d)]' '

where a )b )c )d with a =1, b = 1 + e, c= —1,
and d=e —1 for —2(a~ &0 and for 0& e (2,
a=1+e, b=1, c=e —1, and d= —1. The in-

tegral in Eq. (60} is well known. The final result

1S

p„(E)= E(w)8(w ),
(pd~)

w =1—(e /2)
(61)

where E is the complete elliptic integral of the first
kind,

It is seen from the rhs of Eq. (59) that the integral
vanishes for ~e

~

& 2. For ~e
~

&2 we may write
I

(E —EM }
p (E)=

W(pdm. )

where

W'„=[(—,Es ) +8(pdm) ]'~

It is easily verified that these two ranges corre-
spond to ~e

~

(2 or w &0. Hence, the density-of-
states functions of Eqs. (63) and (64) vanish out-

side of the range of the m. energy bands as, of
course, they must.

It is worth noting that N ' ~)(E) is the mirror

reflection of N ' ~' (E), about the line at E=EM,
that is p (E) is symmetric about E=E~ . This
feature is a direct consequence of the reflection
symmetry of the conduction and valence m bands

[Eqs. (4) and (5)].
There are three equivalent n (and m*) bands

corresponding to y=xy, xz, and yz and also two
possible spin states. Therefore the tota/ DOS and
PDOS functions are

(67)

e/2
E(x)=

0 (1— 'x is'n)r'"
(62) (E E )

Pg (E)= 3 —p„(E),

X lt (w)8(w')8(EM —E), (63)

Nwi(aP) (E)
2(E EM )—

vr (pdm)

XK(w)8(w')8(E E~ ) . (64)—

For the PDOS functions we have

(E E)—
Pr13(E) = Nr(E),

(E E)
Pr(E)=, Nr(E),

y =vr(ap) or ~(ap)' .

Tabulations of E(x) vs x are available. The
DOS functions are then given by the expressions

Nn(aP)(E)
2(E EM )—

vr (pdm. )

(E E)
P~(E)=3 — —

p (E) . (69)

The shapes of the functions N, and I'~ are illus-
trated in Figs. 3(a) and 3(b). It is clear that N, (E)
possesses the I'0, I'~, and I'2 Van Hove singulari-
ties that are characteristic of two-dimensional
bands. However, we also see that the I'2 peak is
absent from I'~ at E . This results because the
nd-orbital amplitude vanishes at E . The function

Pz is the reflection of P~ through the line E~„so
that it vanishes at E, . This is in accordance with
the fact that the 2p-orbital amplitude vanishes at
E,. A comparison of N(E) with the augmented-

plane-wave (APW} results of Mattheiss for SrTi03
is shown in Fig. 4. As can be seen, the agreement
is excellent.

The values of the jump discontinuities are easily
determined. The value of e~ is +2 at the a or m*

band edges and hence at these points w=0. The
value of i00) is 2 rr and hence the discontinuities

are
From Eqs. (4) and (5) it follows that the vr(ap)

band covers the range of energy,

E —8' (E&E
while for the m.(aP)* band the range is

E, (E(E,+8'

p (E)~ Eg~ (E~E„orE, ),
4~(pdsr)

3Eg~
N, (E)~ (E~E or E, ),

2m(pdm )

Pg(E)~0 (E~E ),

(70)



25 DENSITY-OF-STATES AND PARTIAL-DENSITY-OF-STATES. . . 2705

E t

/
E

M

(a)

E
I

M
xi

(b) Pd(E)~ (E~E,),3Eg

2~(pdm. )'

3EgPp(E)~, (E~E ),
2rr(pdrr )

Pp(E)~0 (E~E, ) .

(72b)

(72c)

E

(c)

N (E)
pl

From Eqs. (70)—(72) it can be seen that the
height of the jump is proportional to the energy

gap and inversely proportional to the square of the
interaction parameter (pdrr). The energy gap Eg
is a measure of the ionic character and (pdm) is a
measure of the covalent bonding between the
transition-metal ion and oxygen ions. Thus, our
results predict that the height of the jump will be
largest for the most ionic perovskite.

The jump discontinuity in the DOS function can

easily be seen in x-ray photoelectron spectroscopy
(XPS}data that has been reported for NaWO3

(Refs. 17 and 24). The joint density of states will

also show a rapid increase associated with the
band-edge behavior and such an effect can be seen
in optical data for SrTi03 (Refs. 7 and 10).

tIO—

UJI—
I—
cn 20

CD

I—
LU

LU

NiATTHE ISS-

HEARY

FIG. 3. Schematic illustrations of some of the den-

sity-of-states functions. (a) N,"(E), (b) Pd"(E), and (c) the
DOS function N (E) including the contributions from
the m, m. , and m. bands. The structure and peak nearest
to E arises from the ~ nonbonding bands. The
lowest-energy peak and lowest discontinuity comes from
the ~ bands. Both the m and m bands contribute to the
discontinuity at E . The structure above E~ is due to
the n. bands.

D. Calculation of the DOS
for the m. nonbondins bands

For the nearest-neighbor interaction model the
energy of the vr bands is constant, E

k p(aP}=E,
and therefore the DOS function is just 5(E E~). —
Also, since the wave functions contain only oxygen

2p orbitals the PDOS function is the same as the
DOS.

%hen the oxygen-oxygen ion interactions are in-

cluded in the linear combinations of Lowdin orbi-
tals (LCLO) model the m. bands have nonconstant
energy as described in Sec. III B, Eq. (15}. In this
section we calculate the effect of this dispersion on
the DOS function.

The calculation is facilitated by introducing the
dimensionless variable e p(E), defined by

[ E E f .b (ppn—)] i-——.
1+e p(E)=-

[ —,b+(ppm) j
(73)

RELET I VE ENERGY

FIG. 4. Quantitative comparison of the total DOS
associated with the m.* bands with the histogram of
Mattheiss (Ref. 1) based on his augmented-plane-wave
calculations for SrTi03. The parameters used in the
theoretical calculation are Eg =3.25 eV and (@de)=1.34
eV.

b =(pptr) —(pp~) .

The m energy is then given by

ep(E-„p( pI)= —(Cp~+~2p+1)+yc2~czp i

I

, b (pprr)——
V

, b +(ppn )— (74)
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The bandwidth 8' 0 of the m band depends

upon y,

2b, iyf &1

2[b +2(ppm)],
/ y [

& 1 .

For the perovskites ~(ppo)
~

& ~(pp~)
~

with (ppo) & 0
and (ppm. }& 0. Consequently, y is usually greater
than 1. For SrTi03 the value of y ranges between
1.3 and 1.8 depending upon the calculational
model. In what follows we shall assume that yp 1.
The method employed in the calculations can,

however, be used for any value of y'.

The DOS function is

X"')"(Z)=2
~ ,'b—+(pp~)

~

'p"-"I"(e,),
(76)

p
' ~'(e, )= I dk5(e p e+—(E-„&~ &,

)) .

The DOS is obviously independent of aP and
therefore to simplify the notation we shall omit the
(uP) descriptor whenever possible. Using Eqs. (73)
and (76) we obtain

1 p~ dx p~

g Jp (yC 1) Jpp(&)=
e,+C„+1

5

It is easily verified that the 8 function in the integrand of Eq. (77) vanishes for E outside of the m energy-

band range; that is, for ~e» 1+y. The 8 function also has the effect of limiting the integration on r to

ranges of r for which the factors in the square root are both positive. The evaluation of the integral in Eq.
(77) is straightforward but tedious. The results are

1/2',
2n (a —b)(c —d)

p Eo=
[(y 1.)(a —c)(b —d—}]'~ (a c)(b —d)— 8((1+y)' —e'„0),

The constants n, a, b, c, and d depend on the range
of 6~.

For —(1+y) &e, & —(1+y)/y:
a =(2+a~)/(y —1),

b=1,
c = —E,/(y+1),

b = —e o/(1+y),

c =(2+e o)/(y —1),

For —(1+.y)/y & e, & (y —3):

A schematic of p vs e 0 is shown in Fig. 5.
The functions have jump discontinuities at e,
= —(1+y), (y —3), and (y+1) and a logarithmic
singularity at e o ———(1+y)/y. The magnitudes of
the jump discontinuities are given in the caption of
Fig. 5. Since there are three equivalent m. bands
the total a DOS (including a factor of 2 for the

spin states) is

b =(2+e 0)/(y —1),

c = —e~/(1+ y),

N, (E)=6p (E) .

E. Total DOS for all m. bands

(79)

For (y —3) &e, & (1+y):
The total DOS function for the m, m. , and m*

bands is just the sum of the corresponding DOS
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F. DOS for the o and o. bands

P

N,

&~o

FIG. 5. Schemtatic illustration of the function

(E). The jump discontinuity at ei ———(1+y) is

N ~
——(y —1) ' '. At e2 ———(1+y)/y there is a I'& loga-

rithmic infinity. At e3 —(y 3), N2 ——(y —1) ', and

X3—
2 Xp At 64, (1 + y)y E4 2 (y+ 1)

In this section we investigate the DOS functions
for the 0. and o.* bands. Because of the complexity
of the energy-band dispersion [Eqs. (6) and (7)] it
is not possible to obtain exact results for the DOS
functions. Fortunately, however, very simple and

highly accurate approximations can be obtained.
%e begin with a discussion of the symmetry

properties of the o.(+) and o.*(+)bands and show

that a knowledge of the DOS for any one of these
four bands is sufficient to determine all of the
DOS functions. Next, we determine the behavior
of the DOS functions at each of the critical points.
The critical-point information is then used to con-
struct approximate DOS functions which accurate-

ly represent the exact functions.

6. Symmetry properties of the o and e* bands

Using Eqs. (6) and (7) we find that the energy-

band dispersion curves for the a(+ ) and o*(+)

bands satisfy the relation

«.—E) ~,))(E —'E) ~,))

functions. Thus the DOS function for all the m

bands, N (E) is

=2(pda) (S„+Sy+S,+riS ),
q=+ or —,v=o. or o.* .

It is convenient to introduce the dimensionless
variable e (E) defined by

N (E)=N, (E)+N, (E) . (80)
e~(E)=(E, E)(E E)l(—pd o ) —3. —(84)

[N (E)]„=N (E)e(EM E), —

[N (E)],=N (E)e(E Esr ), —
(81a)

where U and e denote valence and conduction
bands, respectively. A schematic of the function
N (E) is shown in Fig. 3(c). We have that

I dEN (E)=18, (8

J dE[N (E)]„=12, (8

I dE [N (E)],=6 . (82c)

Figure 4 shows a comparison of [N (E)], with
the numerical results of Mattheiss' (based on an
augmented-plane-wave calculation) for SrTi03.
The quantitative agreement is seen to be excellent.
Similar agreement is found between [N (E)], and
XPS data for NaWO3 (Ref. 17).

The total valence-bands DOS and conduction-band
DOS functions are given by

The energy-band relation of Eq. (83) may then be
expressed as

e (E-„~„)) = —(C2„+C2y+C2, )+rIC,

C2 ——cos(2k )2),

C =«ex+ C2y+ Cz. —C2.C2y

—C2x C2i —Cay Czz )

It is easily verified that

(86)

for every choice of the vector k. The function e

maps both the o(g) and o*(g) bands into a com-
mon curve. This is possible becase E- ~ is the

k a*(q)
reflection of E k )„) through the line at the middle

of the gap between the o. and o.* bands at E~~
1= —,(E, +E ). As a consequence of this mapping

it is clear that the DOS, as a function of g, will be
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the same for both the cr(g) and o.*(q) bands.
In order to simplify the notation we shall

henceforth denote e (E ), &„)) by simply E k &„),
with g=+ or —and v=0 or o*. The two
branches, corresponding to g= + and —,are
shown in Fig. 2.

We define the function p "'(E~) by

p""'=(ale.) J dk(e —e-„&„))

Im (aivr)' dk(e~ —e-„~ )k v(~)

+io+) (87)

p"+)(~.)=p"-'( —e.), v=o or o'. (92)

Therefore, if one of the DOS functions is known
then the other is also known. The total density,

p (e ), including both the plus and minus
branches, will be given by

p ( )=p '+'( )+p ' '( )

pe( —)(~ )+pa( —)( ~ ) (93)

Equation (93) makes it obvious that p (e~) must be
symmetric about e =0. In summary, we have
shown that the total DOS function can be obtained
from a knowledge of either p '+'(e ) or p

' '(e ).

where 2a is the lattice parameter, the integration is
over the first Brillouin zone, and 0+ is a positive
infinitesimal. According to Eq. (31), the desired
DOS functions in E space, E""),can be obtained
from p""' through the relations

~a(vy)(E) I
EM.—E

I

2(pdo )

p""'(& (E)) (88)
(pdo )

The relationship expressed by Eq. (88) represents

N '"' for E&EM and N '"' for E&EM . The
precise statement is

H. Analytical behavior of the cr DOS function

Our next task in determining the DOS function
is to find the behavior of the function near the
critical points. The critical energies will be associ-
ated with the regions of k space where the gra-
dient of the energy vanishes; that is where

E- =0
k k o(vg)

A simple calculation using Eq. (85) shows that
the critical energies are those attained when the k
vector is near the I X or ME. lines, or the M, X, or
R points in the Brillouin zone. The critical ener-

gies correspond to the values of e-„( ) given

below'.

~a*(g)(E)

X2p '")(e (E))e(E —E), (89)

I
EMa

2(pdo )

(a) —3; k near the I X lines,

(b) —1; k near the M points,

(c) +3; k near the R points .

For e k (+ ) the critical energies correspond to

X2p ("'(e (E))8(E—E))r ),
(90)

where e(x) is the unit step function; 6(x)= 1 for
x g 0 and 0 otherwise.

There is a simple relationship between the two
branches expressed by

(91)k k R

where R is the vector (2a/m) (1,1,1). Equation (91)
states that the (+ ) branch may be converted to
the ( —) branch by adding the vector R to the k
vector and then inverting the resulting curve.
From this relation it follows that

(a') 3; k near the MR lines,

(b') —3; k near the X points,

(c') —3; k near the I points .

From the symmetry arguments presented previ-
ously it follows that the analytic behavior of
e

& ( )
near the critical points (a), (b), and (c) of

Eq. (94) is the same as that of e k (+) at (a'), (b'),
and (c') of Eq. (95), respectively.

We begin our analysis by slowing the p
' ' has a

Po critical behavior near e k ( )
———3 due to the

contributions form k space near a I X line. The
Po critical behavior is a jump discontinuity,
characteristic of an energy-dispersion curve which
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has a two-dimensional nature. If we consider a
cylinder in k space mhose axis is a I X line and
whose radius ro is very small, then e k [ ] has the

quadratic expansion

«'k~( —)= 3+"4)"
3 2 (96)

where r =(2k~a) + (2k') . The limiting form of
the DOS for p

' ' as e —~ —3+0+ is

P"0

lim [p
' )(«~)]= Im 1/(2n) I dP f rdr[(@~+3)—, r +—i0+]

e~~ —3+0+

I e(e +3) .3' (97)

We see from Eq. (97) that there is a jump discontinuity in p
' ' of the magnitude of 1/31r due to the flat

dispersion curve along the I"X line. Since there are three equivalent I X lines in the Brillouin zone the total
discontinuity will be 1/m. . Also, from symmetry considerations it must be that p

'+' has the same jump as
a~~3 —0+.

Now let us consider the behavior of p (+)(«) near e = —3+0+, which occurs for k vectors near to I".
%e have the expansion

« ~ (+)
———3+2( +2@ —3(xzyz+x2z +yzz2)]'i,

where x=k a, y=k~z, z=k, a, and (2=x'+ y2+ zz. In spherical coordinates we have

«k (+)—— 3+2( f(8,$—),
f(8,$)=1+[1—3 sin 8(sin (I) cos2$ sin (It+cos (t))]'/z,

(98)

where in Eq. (98) we have made the substitution
x=gsin cos(I), y=singsin8, and z=gcos8.

The energy expression of Eq. (98) is quadratic in
the three components of the wave vector k and the
coefficients (f(8,(t))) are all positive. Therefore as
described previously the crtical behavior is that of
an M() point and the behavior of the DOS is

p (+)(«) const(e +3)'".
From symmetry considerations it follows that

p
' 'has theM1 behavior for e near to 3,

p
' )(e )~const(3 —e )'~ .

The dlspers1on curves fof «k ~(+) and «k ~(

have saddle points near a~= 1 and e~= —1, respec-

tively. This may be seen considering the behavior
of «k ( )

for k vectors in a small sphere centered

on an X point in the Hrillouin zone. One has that

e1 (+)——1 (n —2k~a—) +(kya) +(kP) . (102)

The quadratic form contains one negative coeffi-
cient and as described previously the DOS function
will have an M] critical behavior,

const —(1—«)' as E ~1—0+
(+)(& ) (103)

const —(e —1) as s' -+1+0+ ~

Then from symmetry considerations it follows that
p~( ' must have an Mz-type behavior for «' near
—1 of the form:

const+(I+a ) as « ~—1—0+
0( —)(& )

~

const (1+a )—'~z as e ~—1+0+

Using the results deri~ed above the qualitative
behavior of the DOS functions p~( ), p~(+), and p~
can be understood. Figure 6 shows graphs of these
functions obtained by numerical calculations.

I. Amlytical formulas for the DOS Of the o and 0 bands

From the results of the preceding section we know the analytical behavior of p
' ' near the critical ener-

gies. Using this information we have developed an analytical approximation for p
' ' which differs from
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the exact function (calculated numerically) by less than 3% for any value of e . The approximate function
1S

1+ax + —,sgn(e ) 1 ——v'x(1 —x)——,&x(3—2x), 1( ~e
~

(2

irp ' '(e )= —,(1+a)——,(1—e )'» +—1 — sm '(e~), ~e~~ (1 (10S)

0, /e /)2

(106)

The total DOS for the o or cr* band, including a
factor of 2 for spin states,

with x= —,(3—
~

e ~) and a = —,(1—1/ir}. This
function possesses the correct analytical behavior

neat the critical energies and satisfies the normal&-

zation condition that
2f p' '(e )de =1.

X, E E=8.
Equation (110) shows that there are four elec-

tronic states per unit cell for either the 0. or 0
bands. The function X (E) corresponds to the
curve above E, in Fig. 7(c).

J. Analytic formulas for the DGS
of the o band

n (E)=2p (E)8(E EM ), — (107a)

n (E)=2p (E)8(E~ —E),

N, (E)=n (E)+n (E)=2p (E),

(107b)

p (E)=
2(@do}

(109)

X[p ' '(& (E))+p ' '{—e~(E))] .

For the nonbonding o. band we shall use the en-

ergy dispersion given by Eq. (27), which includes

the effects of the oxygen-oxygen interactions. We

neglect the very small mixing of the cation d orbi-

tals into the nonbonding band wave functions.

Thus the wave functions are assumed to be those

whose amplitudes are specified by Eq. (26).
The dispersion curve specified by Eq. (27) can be

expressed 1n terms of thc dimcnsionlcss var1ablc

eo(E) defined by:

The normalization conditions are

f p.(E)dE= f n (E)dE
g

= f n~(E)dE =4, (110)

&0(E)=(E E)/2b —1—

b =(ppo) —(@pm) .
(112)

%'ith this variable the energy dispersion may be ex-

pressed by:

(b)

eo(E- 0)= X g Z

k ~0 (g2g2+gzg2~g2S2)

The function p (e~) is

p (e )=(a/m) f 1k 5{co eo(E-„0—)) .

(114)

p{a)

FIG. 6. Numerical calculation of the DOS; (a}p '+',
(b) p

' ', and (c) p .

It is easily shown that the critical energies
correspond to eo ———1 and 1. The behavior of the
DOS for @0~1,arising from the region in k space
near I 1s



25 DENSITY-OF-STATES AND PARTIAL-DENSITY-OF-STATES. . . 2711

p (ep)~const(1+co) as ep~ —1+0 (115)

The region in k space near the R point produces

a square-root singularity (characteristic of a one-

dimensional dispersion relation) which is of the

form:

p (eo)~const(1 —eo) as & ~1 0 ~
~0 —1/2 + (116)

E
Mo

The DOS vanishes for Ie
I

& 1.
~0

An approximation for p (ep) which deviates

from the numerically calculated function by less

than 5/o at any point is

e(eo)
p (Ep) =( +~/2) ( —&o) +

1—ep

P (E) p slgAla(E)
P

XV'1+epe(1 —eo) . (117)
Ee

The function of Eq. (117) gives the correct analyti-

cal behavior as E'p~ —1 or + 1 and is normalized

so that
1 0I p' (ep)d ep ——1 .

E
Mcr (

The DOS in E space, N (E), including a factor
of 2 for the spin states, is given by

2p (E)=N (E)=2(»
I
b

I )p «o«»
and the normalization is

N slgm8(E)

FIG. 7. PDOS functions; (a) shows the p-orbital

PDOS, (b) shows the d-orbital PDOS, and (c) shows the

total DOS for the 0. bands.I, N (E)dE =2 .
o'

(120)

N (E)=[N (E)]„+[N (E)], ,

where

(121)

[N (E)],=n (E)+N (E), E&E (122)

[N (E)],=n (E), E&E, .

We also have the normalizations

(123)

We shall refer to the total DOS for all of the 0.

band (o, o*, and o ), as N (E). This function can

be written as a sum of a valence-band and con-

duction-band total density,

K. Partial-density-of-states functions
for the 0 bands

In this section we discuss the PDOS functions
associated with the 0. bands. The PDOS functions

give the number of electronic states per unit cell in

the energy range dE and E associated with a par-
ticular type of orbital. For the perovskites we need

to determine the PDOS functions assoicated with

the ez type of d orbitals of the 8 ions and the
PDOS for the oxygen 2p orbitals which have a o
type of overlap with the eg orbitals.

The PDOS functions are given by the expression

J [N (E)],dE =6, (124) Pqj. (E)=(a/vr) I dk
I

cq~j
I

(E —. Ek ) (126)

I [N (E)],dE =4 . (125)

These functions are shown in Fig. 7(c). The curve

above E, is [N (E)], and the curve below E is

[N (E)I„.

where P~~(E) is the PDOS function for the q-type
symmetry orbitals on the jth ion for the band
whose index is v.

For the 0. bands the total d-orbital PDOS, the
sum of the PDOS functions for the d(3z r) and-
d (x —y ) orbitals summed over the four bands, is



P (E) g Peg(E) 2 g ( y )3 f dk(
I

kv(g)
I

2+
I

kvltgl
I

2}5(E

where the factor of 2 accounts for the spin states and in Eq. (57); v=o or o' and g = + or —.
The total 2p-orbital PDQS, including the three oxygen ions per unit cell and the four bands is

Pp «}=2(«&}'X f d«
I

c'""'
I

'+
I

&y'""'
I

'+
I

&'""'
I

'@«—Ek~g) } ~

The PDOS functions given by Eqs. (127) and (128) may be expressed directly in terms of the DOS functions
for the rr bands. We make use of Eqs. (16) through (24) and the fact that the orbital amplitudes in the in-
tegrands of Eqs. (127}and (128}can be replaced by their values at Ek&~i E ——Aft.er a considerable amount
of algebra one finds that

(E E ) q (E E )Pf(E)=, [n (E)+rt (E)]=2, [p
' '(e (E))+p ' '( —e (E))].

—,(E E~~) — (Pd~)

A similar calculation gives

(E E,)-, (E —E, )
&p(E)=, [n (E)+n (E)]=2 —,[p ' '(~ (E))+p ' '( —E (E))].

, (E E—kr )— (pdtr)
(130)

The factors IE E
I

in P—~ and IE E, I
in Pz re--

Aect the fact that the states are pure p or d orbi-
tals, respectively, at the top of valence bands and
at the botton of the conduction bands.

The PDOS functions satisfy the normalization
conditions,

f" P;(E)dE= f" P,"(E)dE=4.

The o nonbonding band has wave functions
that are composed entirely of the oxygen 2p orbi-
tals and hence,

Pq (E)=X (E),

Pd (E)=0.
The total PDOS functions, including the cr, o.* and
o. band and spin are,

N, (E)=N (E)+N (E)

= 2p (E)+2p (E)+6p (E)+6p (E) .

(135)

Figure 8 show a comparison of the DOS for
KTa03 calculated from Eq. (135) (heavy curve)
with the histogram calculated by Mattheiss. The
overall agreemen~ is seen to be quite good. Some
riotable differences can be seen in the DOS of the
0 bands between —2 and —3 eV and in the o.*

bands above 12 eV. These differences are pre-
sumed to arise from the effects of orbital sym-

metries noi present in our model and from
distant-neighbor interactions. Comparable agree-
ment is found for SrTi03 and NaWO3 (Ref. 9).

The total d-orbital PDOS and the p-orbital
PBQS for the 14 bands of the perovskites is given

Pd (E)=Pg (E),

P~(E)=P~(E)+& (E),
(133)

KTa03

(134)
I'd E dE =4,

f Pq(E)dE=6.

The functions Pz and I'd ——Pd are illustrated in
Fig. 7.

e
V

5
CLe

~o)

e

0
-5

~LCLO Madel

Mattheias

Relative Energy E - E v (ey)

10

The total BQS for the 14 primary bands of the
pefovskltes is given by

FIG. 8. Quantitative comparison of the DOS with

the APW calculations of Mattheiss (Ref. 7) for KTa03.
The parameters used are those of Fi0;. 2.
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FIG. 9. Comparison of the model PBOS with the

numerical results of energy-band calculations of Kopp
et al. (Ref. 11) for Na%03. The LCLG parameters are
E =0.54, F.,= 1.15, (@du)= —0.18, (pro. ) =0.028,
E =0.59, E, =0.78, (pdm) =0.13, and (pp~) = —0.017,
all in Ry.

&d(E) =I'd (E)+I'd (E),

Np(E) =&p (E)+&p (E) . (137)

Figure 9 shows a comparison of Xd(E) and

X~(E) [calculated from Eqs. (136) and (137)] with
the numerical results of Kopp et ol. , for Na~03.
The overall agreement is again quite good. Some
significant differences can be seen in the region of
the o. band between 0.3 to 0.5 Ry in Xd. In previ-
ous works the DOS and PDOS functions described
here have been employed to analyze the optical
properties of SrTi03, the UPS (ultraviolet pho-
toelectron spectroscopy), and XPS spectrum of
SrTi03, (Ref. 17) and the XPS spectrum of
Wax WO3. '

and PDOS functions of the cubic d-band

perovskites in terms of a few electronic parameters.
The nine m bands are characterized by five param-
eters: E„E,(pdm), (ppm), and (pro). The five o
bands are characterized by three additional param-
eters: E„E,and (pro). Thus, the 14 primary

energy bands, their wave functions, DOS, and

PDOS are characterized completely in terms of
eight parameters. These parameters can be ob-

tained by direct calculation. For example, calcula-
tion of the band energies at 1,X, and R, or 1,I,
and R is sufficient to determine all electronic
parameters. The model may then be used as an in-

terpolation scheme for determining the energy

bands, and wave functions at any point in the Bril-
louin zone and the DOS and PDOS are immediate-

ly known.
A more qualitative approach can also be used.

The energies E„E„E,and E can be approxi-
mately determined from ionization potentials and

Madelung potentials. The 1nteractlons caQ be
caluclated approximately by using atomic or ionic
orbitals ' to calculate the transfer integrals.

An alternate use of the model is to use experi-

mental data to determine the parameters. ' This
approach allows an approximate determination of
the energy bands directly from experimental data.
The utility and validity of the results derived here
have been demonstrated here and in previous pa-
pers concerning the analysis of optical and pho-
toelectron data of the perovskites.
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