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In the second-neighbor tight-binding framework and using the well-known k-space
Green's-function approach, we have calculated the energies of deep highly localized elec-

tronic states due to isolated vacancies and simple point defects in III-V compound semi-

conductors, Using existing pseudopotential data for the band structures, we are able to
calculate 21 (out of 23) interaction integrals with the help of the least-squares-fitting tech-

nique. The Green's functions in the a» (s-type) and t2 (p-type) symmetries have been nu-

merically evaluated by using the eigenfunctions and eigenvalues of the host systems. The
calculated results are discussed and compared with the existing theoretical and experimen-

tal data. The pinning energies of the anion vacancy levels of t2 symmetry are found to be

almost the same for Ga-In pnictides while they are different for the Ga-Al and In-Al

compounds. No such correlation of pinning energies due to cation vacancies has been no-

ticed. These results provide justification to the recent experimental speculations that the

anion vacancies near the surface are responsible for determining the position of the Fermi

level. This also lends support to the speculation that, similar to Ga» ln„As(P) ternaries,

the Fermi-level variation for the GaSb-InSb system should be independent of the compo-

sition factor.

I. INTRODUCTION

The study of unoccupied deep impurity states in

the critical band gap of elemental and compound
semiconductors provides information for various

technologically important properties in solid-state
devices. ' The experimental data for such impuri-

ty states are either incomplete or contradictory. '

Deep-level transient spectroscopy (DLTS) and the
methods which measure absorption or emission

provide information for the energy of the defect
state while the impurity which causes such state is
not completely identified. From the variation of
some of the physical properties with the impurity
concentration, most of the observations of the deep
levels can be correlated with the isolated defects. '

This 1s, however, not always a very conv1nc1ng

identification as the dopant may generate intrinsic
lattice defects and can form various complexes. It
is therefore essential to identify the defects which
cause deep traps before measures can be devised to
control their concentration in the technology of
electron transfer devices (e,g., light-emitting diodes
etc.). Since the existing experimental data is either
insufficient or sparse, theoretical calculations are
also equally important. Despite the numerous
theoretical investigations of solving the Hamiltoni-

an representing an impurity potential using various
approximations, the electronic structure of deep de-

fect states in semiconductors is still an unsolved

problem. However, the use of the pseudoimpurity
and the self-consistent model potential calculations
in recent years have provided means for consider-
able progress to understand the subject by perform-
ing realistic calculations. An excellent critical sur-

vey of the methods presently available to the theor-
ists on the subject has been provided by Pantelides
and more recently by Jaros.

Two types of important calculations have em-

erged with the same basic idea in common:
(a) The molecular-cluster approach, which offers

a relatively faster and less complicated scheme, has
been applied to the electronic states of isolated va-

cancies and substitutional impurities. In this
method the impurity atom is considered to be sur-

rounded by a limited number of host-lattice atoms
and the remaining solid enters the problem via the-

boundary conditions on the cluster wave functions.
The method, within its own limitations, has been
claimed to provide promising results. However, it
has been pointed out by Messmer eI, al. that the
size of the cluster and the choice of the boundary
conditions can affect the existence of the localized
states. Moreover, the calculations do not always
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provide a reliable starting point both for the per-
fect and the imperfect clusters especially for
many-valley direct-gap materials (e.g., GaAs and
ZnSe). In Sec. III we will show that the results
based on a cluster of seventeen atomss for vacancy
levels in GaAs are at variance with the most recent
self-consistent, ' as well as semiempirical calcula-
tions.

(b) The second category of methods for localized
pcrturbatlons that has gained moIQcntum %'ith thc
advent of high-speed computers, involved with the
detailed electronic structure of the host sys-
tems. ' ' The well known Green's-function
method in the Wannier representation, proposed
long ago by Koster and Slatcr, 2 was first numeri-
'cally implemented by Callaway" and co-workers
for an isolated vacancy and divacancy in Si. In
this representation, although the elements of the
Green's-function matrix have rather simplified
forms, there arises complexities and ambiguities in
defining the perturbation (as the size of matrix
depends both on thc number of bands and the
number of sites over which thc impurity potential
extends). Starting from the band structure of Si
and considering thc impurity potcntlal to be nega-
tive of the atomic pseudopotential for an isolated
vacancy, Calla%ay and Hughes have made ex-
tremely difficult calculations in the Wannier repre-
sentation. By lncludlng cvcn thc IQaxlmuID Dum-

ber of bands and sites in the numerical calcula-
tions, it is worth mentioning that no bound state in
the gap has been obtained for Si vacancy. Howev-
er, if the vacancy potential is made stronger by a
factor of 1.1 (than the negative atomic potential) a
vacancy state of Q~ symmetry appears ln thc band
gap. This result is rather difficult to interpret on
the basis of physical arguments primarily because
a 1 level (being spherically symmetric) can not ac-
count for the observed Jahn-Teller distortion in Si.
Secondly, a larger lcpulslvc potcntlal should have
extracted first a t2 level rather than ui from the
top of thc valence band which has a strong tq
charactcI'.

While analyzing the calculations of Callaway
cr Ql* foi' a givc11 vacancy potelitial, Pantehdcs
has realized that their results are Qot convergent.
Morcovcr, a draIDatlc change occurs ln tllc bound"
state energies if additional bands and sites are in-
cluded. Although the Si vacancy levels are not
well determined experimentally, they are believed
to be deep (few tenths of an eV) in the forbidden
gap. . Again from the clcctlon parRIDagnctlc
resonance (EPR) measurements, it has been found

that both the singly positive (V+) and negative
(V ) charged states of Si vacancy undergo a struc-
tural reconstruction. Although the work of Calla-
way and co-workers, "did not provide conclusive
answers to the observed experimental facts, it
nevertheless represented the first major achieve-
ment in the application of the Koster-Slater
method to real solids.

A significant contribution to generalize the
Slatcr-Koster method in terms of a localized basis
set, rather than Wannier functions as a basis, was
provided by Lannoo and Lenglart. 23 Starting from
a simplified model in the nearest-neighbor approxi-
mation with s and p orbitals on each atom and us-

ing linear combination of atomic orbitals (LCAO),
Lannoo and Lenglart performed band-structure
calculations for neutral vacancy is diamond. The
Hamiltonian matrix elements are treated as free
parameters to obtain the approximate representa-
tion of the band structure. The unrelaxed vacancy
is defmed by removing an atom (i.e., removing all
the interactions with the neighboring atoms of
various orders) from a lattice site and considering
the positions of all other atoms to be unchanged.
In this picture the vacancy exhibits Rn extreme
case of infinite defect potential (se: Ref. 14 for a
complete discussion). In the Green's-function
framework, it is straightforward to show that thc
impurity states of @i (or s) and tq (or p) symmetry
can be obtained by (s

~

Go(E)
~
s )=0 and

&p ~

GD(E)
~ p & =0, respectively. Sernholc and Pan-

telides'4 have calculated the Green's function and
thereby the vacancy levels in Si, Ge, and GaAs by
incorporating thc Slater-Koster parametrization of
Pandey and Phillips. For neutral Si vacancy, the
simplified semiempirical calculation has provided a
bound state of tt symmetry (0.27 eV above the
valence-band edge). Self-consistent calculations per-
formed in recent years have also confirmed the oc-
currence of a tq state but the position of the bound
level above the valence band is found to be at
0.76,' 0.7, or 0.5 CV. ' The discrepancy, in the
scmiempirical calculation, ' has been speculated'
as being due to the poor description of the conduc-
tion bands in the second-neighbor parameterization
of Pandey and Phillips.

Quite recently Krieger and Laufer have exam-
ined the dependence of the vacancy states on the
choice of the localized basis functions in the tight-
binding method. They believe that if Wannier
functions are employed as a basis, no ideal vacancy
gap state will exist—a result which has already
been discussed in length by Callaway. " On the
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other hand, if the atomic orbitals are taken as a
basis» no vRcaIlcy state w111 Rppcaf In thc 11mlt

when the number of orbitals on the atom to be re-

moved approaches infinity. In the finite band

model, however, there exists the possibility of the
occurrence of gap states.

Here, it is fair to mention that the Green's-
function method in the localized-basis (sp ) repre-
sentation is not completely inadequate and it at
least provides qualitative information which is of
course, complementary to (and cannot replace) the
most sophisticated calculations aimed for the accu-
rate determination of flic dccp lcvcls 111 scII11eoli-

ductors, ' Despite the problems to precisely
account for the perturbation, the substantial advan-

tage of this technique over other methods is that in

terms of realistic Hamiltonians one can address not

only the change in the bulk properties induced by
thc p01Qt dcfccts, but, 1Q principle, can cxtcQd It to
understand the properties of surfaces, interfaces in

the hetrojunction overlayers, and super lattices (see
Ref. 26 for further discussions).

In R subsequent study, Jaros' has also realized
the significance of localized-basis instead of Wan-

mer functions but using the energy spectrum from
pseudopoteniial method. Although the energy
spectrum and the wave functions of an unper-

tufbcd crystal can Rdcquatcly bc fcpI'cscntcd Us1ng

the empirical pseudopotential, the method suffers
from a number of shortcomings with respect to its

implementation to the impurity problem—
especially with the distribution of the electron den-

sity near the defect, the effective charges of the
atoms, the spin-density distribution, and the hyper-
fine fields at the nuclei. Again, the type of calcu-

lat10Ils which Jar'os has pIcscntcd fequifc cons1d-

crablc amount of coIIlpUtat10QRl wofk Rnd thcIc
still remains an ambiguity with respect to the

selection of the model potential parameters see

Jaros and Srivastva in Ref. 12(b) and Srivastva in

Ref. 12 (c).
Thc purpose of thc pIcscnt woIk is thc show

thRt RI1 ortllogonal 11Rsls of tlgllt" billdlllg pRraIIlc-

trization obtained for III-V compounds when in-

corporated in the Green's-function framework

might bc UscfU1 fol UndcIstandIng thc vacaIlcy

states and can be helpful for predicting the posi-

tions of the substitutional impurity levels. Unlike

thc cxlstIng tight-b1Qdlng calcUla41ons, wc w111

show that the Slater-Koster Hamiltonians with in-

teraction integrals Up to and including second

neighbors„obtained from the least-squares fitting

mctilod» not only pfovldc good fit to thc pscudopo-

tcnt1al band structures but also pIoducc fa111y

RccuIatcly thc band gap Rs well Rs thc conduct10Q
bands. An elaborate representation of the band
structures with interactions beyond the second
neighbors will not be useful at this time owing to
the insufficient pseudopotential data (cf. appendix).
For neutral vacancy levels in GaAs and GaP, our
results are in very good agreement with the roost
recent self-consistent calculations. ' ' ' SIm1lar cal-
culations have been performed for other III-V
compounds.

Th1s wofk Is Rlso IQotIvatcd by cffofts Inadc 1Q

I'cccnt ycRfs to UndcI'stand the bas1c mechanisms
that control the formation Rnd the operation of the
Schottky-bafrie1 behav10f observed for a lafge
range of metals on elean III-V semiconduc-
tors."-"Chyc et a/. "have proposed a model
where the Fermi level at the interface is considered
to bc pIQQcd by dcfccts sUch Rs vRcanc1cs Rnd va-

caQcy clustcls Rnd this has I'ccc1vcd coQs1dclablc
support by various experiments on vacuum-cleaved
surfaces of III-V semiconductors. More re-

cently, the variation of the surface Fermi level in
mixed [Gal „In„As(P) and Gal „AI„Ast systems
ll.as Rlso been I'cpoftcd Rs R function of alloy com-
poslt10n. ' Fof Ga-In pniCt1dc, the Fcfm1-level
position is found to be independent of the composi-
tloll, wllilc fol' ternary Rlloys lllvolvillg R1111111illuID,

it varies linearly with the Al'content. Theoretically,
the highest occupied level in the netural anion va-

cancy on the (110) surface has been very well

correlated with the observed Fermi-level varia-
tion. Moreover, it has been speculated by Keuch
and McCaldin that similar to Gal „In„As(P)
systems, the Fermi-level pinning in Ga& ~IQ~Sb
system should also be independent of the concen-
tfat10Q. S1ncc thc same tfcnd Is cxh1b1tcd f01 thc
highest occup1ed neutral-anion-vacancy level on the
(110) surface' and in the bulk, our results for the
Isolated RQ10Q Rnd cation vacanclcs may bc useful
to understand the experiments and to provide some
clues in favor of the proposed model for correlat-

ing the effect of anion vacancies with the Fermi-
level pinning (cf. Sec. III).

Thc pRpcf 1s ofgRQ1zcd 1nto four sections. To
understand thc electronic properties of point de-

fects, especially the isolated vacancies, we have
outlined the Green's-function method in the tight-
binding framework in Sec. II. The calculated re-

sults for the isolated vacancies Rnd deep impurity
levels have been discussed and compared (in Sec. III)
with the existing experimental and theoretical data.
Thc concluding remarks are presented in Scc. Ip.
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II. THEORETICAL CONSIDERATIONS b7(r)= gexpfi[k (RJ+r„)]I

A. Tight-binding or LCAO method
for the band structure Xp J(r —~„) .

The method of solving the Schrodinger equation
for a multiatomic system by expanding the eigen-

functions of the effective one-electron Hamiltonian
in a sum of atomic orbitals is called the linear
combination of atomic orbitals (I.CAO). The tech-
nique traditionally developed for molecular systems
in quantum chemistry has been applied for a
variety of electronic properties of tetrahedral semi-

conductors. In this method the one-electron wave
functions f„(r ) of the polyatomic system, are ex-

panded in atomic like basis functions P (r ) cen-
tered on atomic positions Rj as

p„(r)=+A "Jp (r RJ), —
aj

(la)

or equivalently,

f„(r)=+A';P, (r) . (lb)

US1ng vaflatlonal method, thc cncrgy CRn bc
minimized by varying the coefficients of A's and
this provides the equation:

Q [H~~ (Rj —RJ )
a'j'

E„S«(—RJ RJ )]A~J'—=0,
where H is the one-electron Hamiltonian of the
system,

H', (R,.—R,, )=(y., ~Ho~y. ,, },

S«(RJ —RJ )=(p J ~ pgJ ) .
The solution of the multicenter nature of the

problem requires several approximations. In the
Hiickel method, for example, H«(RJ —Ri ) is as-
sumed to be proportional to S«(RJ —Ri ) for
jQj'. For small values of the overlap integrals,
the above approximation is justified and we refer
to the work of Fischer-Hjalmars for further dis-
cussion.

In the above-mentioned molecular picture, the
I.CAO method can be applied to real solids as
well. For the perfect tetrahedral semiconductors,
the periodicity allows to introduce a wave vector k
and one can construct noo Bloch functions centered
on the tNo atoms in the un1t cell. For zinc-
blende-type crystals we define the Bloch sums:

Here, the atomic orbitals P (r —R;) [or P,J(r)]
are considered to be centered at the anion site [sup-

posed to be at the origin] and the orbitals

[P .(r —r„)] centered at the cation site are sup-

posed to be displaced by 7„=[I/4a (111)]from
the anion. The term a is the edge length of the
elementary cube of the face-centered cubic lattice
and the label cK corresponds to s~ p~~ py~ and pg
character of the atoniic orbitals:

The Bloch functions are then expanded as Eq.
(1):

f„k(r)=+A~„(k)h7(r) . (4)

In terms of the orthogonal atomic orbitals, the di-
agonalization of the secular matrix H (k) with ele-
ments (b +z

~

H
~

b -„" }at each k will provide us

with the eigen values E„k and the corresponding
eigenvectors A ~„(k). In the tight-binding frame-
work, the elements (P~~„~ H

~ P~ J „)which are
considered to construct (b7

~

H
~

b -„"" ) are treat-
ed as free parameters.

In the LCAO method the basic problem is to
find the Hamiltonian matrix elements between the
various basis states. In the notations of Slater and
Koster and following Dresselhaus and Dressel-
haus ' the matrix elements can be written between
basis functions (sp) considering various possible
interactions. In the nearest-neighbor approxima-
tion, Chadi and Cohen have reported the (8 X 8)
secular determinant for zinc-blende-type crystals.
In the appendix, we have constructed a nonzero
symmetrized (8 X 8) Hamiltonian matrix with
twenty-three two-center second-neighbor-
interaction integrals, and have suggested the
method for their numerical evaluation. For all the
perfect III-V compounds studied here, our tight-
binding parameters provide fairly accurately the
valence bands, band gaps Rnd reasonable conduc-
tion bands (cf. Sec. III).

B. Green's functions

In order to calculate the electronic properties of
semiconductors with a localized defect potential we
have to solve the Schrodinger equation
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for energy E and wave function P of an effective
Hamiltonian H (=H +P). The above equation
can be recast in terms of Green's function as

P=G (E)PP,

2 ImD (E)

Re D(E)
dE S=So

(15)

or explicitly

[I—6'(E)P]y=O . (7)

The nontrivial solution of the above equation re-

quires g to be expanded in terms of a complete set
of functions P~'s and expressing 6 (E) and P in

the same basis. This gives

D(E)= 5~~ Q—G~~ (E)P~- =0, (8)

where the elements of the Green's-function matrix
are

G~~ =(a iE Hi a')—.

The condition of Eq. (8) determines the energy of
the bound state while a general solution with ener-

gy E degenerates with the perfect crystal
(H g„z E„kP„p——)is provided by the well-known

Lippmann-Schwinger equation:

y=y'+6'(E)Pq . (10)

The solution of Eq. (10) allows examination of
the effect of P upon the states in the valence and
the conduction bands. To by pass the singularity
at E =E„k, the definition of E and 6 must be

extended to include complex values. Thus,

6 (E)= lim (E H+ ie)—
Rewriting Eq. (10) in the form

[I G(E)P]p„q ———Q„k, (12)

ImD (E)yE = —tan
ReD (E)

This suggests that whenever ReD(E) =0 the quan-

tity y(E) will be an odd multiple of n /2. An ex-

pansion around such an energy E0 gives

r
tany(E) =—

it can be noted that the determinant D (E)
[—=

~
~I Go(E)P~ ~] is no—t vanishing as 6 (E) is

nonzero within the band continua. Thus, the solu-

tions may exist at all energies within the energy
bands of the crystal. Following Pantelides, the
phase shift y'(E) (involving real and imaginary
determinants) can be defined as

The solution for which I & 0, one has a reso-
nance or a peak in the change in density of states
with half-width I . On the other hand, if I &0 the
solution will provide an antiresonance, i.e., a nega-
tive peak in the change in density of states with
half-width I .

III. NUMERICAL COMPUTATIONS
AND RESULTS

A. Band structure and Green's functions

Following the method described in the Appen-
dix, we have numerically evaluated the involved set
of twenty-one tight-binding-interaction integrals to
fit the existing pseudopotential data ' for the
perfect energy-band structures. Explicit calcula-
tions have been made for GaP, GaAs, Gasb, InP,
InAs, InSb, and AlAs with the parameter values of
Table I. The comparison of our band-structure
calculation with the existing theoretical (nearest
and next-nearest neighbor) and experimental data is
given in Table II (see Figs. 1 —7 also). It can be
noted that our results provide fairly accurately the
valence bands, band gaps, and relatively better con-
duction bands. In Figs. 8 —14 we have displayed
the calculated density of states that also agree well
with the published theoretical and experimental x-
ray photoelectron spectroscopy (XPS) data.

The mat6. x elements of the involved Green's
functions can be evaluated numerically by incor-
porating the band structures (eigenvalues, E„z and

eigenvectors
~

n k )) of the host systems. Rewriting
ing Eq. (9) in the generalized form

60 (E) l. y (u
~
nk)(nk

~

a')
0+ - E —E -+i@nk nk

and using the identity

1 1
i m5(X), — .

X—l~

where' is the Cauchy principal value, one can
write Eq. (16) in the form

(18)
5 E'

6 (E)=, dE' irr5(E H) . — —
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TABLE I. Tight-binding parameters (in eV) for III-V compounds of zinc-blende-type structure. The energy levels at
critical points obtained from this set of parameters are compared with the pseudopotential data in Table II.

No. of interaction integrals'

P) ——E~(000)0
P2 ——E (000)1
P3 ——E (000)0
P4 ——E~(000)1
P5 ——4E~(0.5,0.5,0.5)

P6 ——4E~(0.5,0.5,0.5)01
P7 ——4E (0.5,0.5,0.5)10
P, =4E (0.5,0.5,0.5)

P9——4E~(0.5,0.5,0.5)

Pip ——4E~(0,1,1)0
P) ) ——4E (0,1,1)1

P)2 ——4E„y(1,1,0)0
Pl3 ——4E„y(1,1,0)1
PI4 ——4E (1,1,0)0
Pi 5

——4E (1,1,0)1
P)6 ——4E (1,1,0)0
P» ——4E (1,1,0)1
P„=4E„(1,1,0)0
P)9 ——4E (1,1,0)1
P2p ——4E (0,1,1)0
P2) ——4E (0,1,1)1

P2p ——4E„y(0,1,1)0
P23 ——4E„y(0,1,1)1

GaP

—6.28478
—2.789 20

1.09428
2.38200

—7.75000
5.26000
4.87000
2.44000
5.56000

—1.13763
—1.186 10

0.76000
1.33000
0.85447
1.18920
0.02400
0.083 20

—0.16727
—0.18140

1.18000
—0.08000

—6.72357
—3.978 33

0.64095
2.87407

—6.90000
5.24000
4.32100
2.00000
5.50000

—0.33905
—1.756 33

0.60000
0.96000
0.44445
1.12077
0.045 20
0.09640

—0.047 38
—0.06533

0.78000
—0.08000

0
0

—6.09277
—3.885 60

0.81005
2.34775

—6.35000
5.10000
4.11000
1.60000
5.50000

—0.92005
—2.012 15

0.76000
1.33000
0.59940
1.00780
0.04200
0.06000

—0.162 77
—0.22440

0.75000
—0.24000

—6.15167
—1.992 17

1.21070
2.33175

—7.16000
5.25200
4.05000
2.00800
4.85000

—1.12060
—1.16695

0.76000
1.33000
0.552 20
1.10535
0.04000
0.07300

—0.025 57
—0.07647

0.54000
—0.12000

Inp

—6.29408
—3.428 65

1.842 85
2.608 85

—6.30000
4.80000
4.08000
2.28000
5.30000

—0.72005
—1.338 15

0.52000
0.91000
0.384 15
0.739 10
0.08700
0.10200

—0.031 58
—0.034 15

0.90000
—0.00600

InAs

—7.17930
—4.48677

1.66000
2.335 62

—6.40000
5.40000
4.00000
2.00000
5.46000

—0.824 10
—1.20247

0.55000
0.88000
0.227 35
0.983 13
0.05600
0.08600

—0.092 40
—0.125 58

0.84000
—0.08000

0
0

—6.83922
—3.91458

0.81000
2.662 10

—5.80000
4.57000
3.85000
1.50000
5.29000

—0.670 80
—2.007 10

0.60000
0.96000
0.472 20
0.71070
0.081 00
0.09400

—0.11563
—0.11977

0.78000
—0.04000

0
0

'In the notations of Slater and Koster, Ref. 22.

Again, the spectral density function, 5(E H), —
in the above equation depends on the eigenvalues

E„g and eigenvectors
~

nk),

5(E —H')=y
l
nk)5{E—E„-„)(nk~,

with the elements

&a ~5(E-H') ~a ) =y (.l.k)

X5(E —E„-„)&nk
~

a') .

I ~ ~ ~ & I I

-80- ~
GOP

X K r
( I I )

I

~is.

I Ij

(20)
Once the spectral density of states is obtained,

the real and imaginary parts of the Green's func-
tions (a

~

G (E)
l
a') (with a=s or p) can be easily

obtained by carrying out the principal-value in-

L r X K
I l I ( I

0-
Xp

X)

-120

050403 020.1 0 0.2 0.4 0.6 0.8 10 0.8 0.6 0.4 0.2 0
WAVE VECTOR k

FIG. 1. Calculated band structure for GaP with the
second-neighbor tight-binding parameters of Table I.
For comparison with the energy values at critical points
with the pseudopotential data of Chelikowsky and
Cohen (Ref. 31) and other existing tight-binding calcula-
tions we have also included our results in Table II.

-4.0
C9
CL
UJ

-8.0 ~ GOAs

-120

I

t

I
I
l
I

I I 1 I t i I 1 I I I

Q504030.2 O, l 0 Q2 0.4 0.6 0.8 1.0 0.8 0.6 04 Q2 00
WAVE VECTOR k

FIG. 2. Same key as Fig. 1, but for GaAs.
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4.0

0.0)
(g -4.0
K
LLIz
LLI

3

0

(3
X
La/ -4,0

-I2,0
Fi Fi

I I I I I I I I I I I

0.5 040302 0, 1 0 0.2 0.4 0.6 0.8 I.O 0.8 0.6 0.4 0.2 0
WAVE VECTOR k
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FIG. 4. Same key as Fig. 1, but for InP.

tegrals [Eq. (18)j using Simpson's rule.
The zeros of the diagonal matrix elements of the

Green's functions [(a
~

G (E)
~

a), with a =s or p]
within the band gap (if it exists) are identified as
the bound states. The calculated results due to ca-
tion or anion vacancies in several III-V compounds
are contained in Table III and compared with the
existing theoretical and experimental data.

B. Neutral vacancy states
in III-V compounds

For the last few years, the electronic states of
point defects in III-V compounds have been exten-

sively studied either by photoluminescence (PL),
deep-level transient spectroscopy (DLTS), or by
electron-paramagnetic-resonance (EPR) measure-

TABLE II. Energy levels of GaP, GaAs, and GaSb (in eV) at I, X, and L critical points. The results of our calcu-

lations obtained using parameters of Table I are compared with the existing theoretical and experimental data. The

zero of the energy is-considered at the -top- of the valence band.

Critical
point Level

Calc.

GaP

Ref. 31 Ref. 27(b) Ours Ref. 52

Calc.

Ref. 31 Ref. 28 Ref. 30' ~urs

pU

pC

—12.99
0.0
2.88
5.24

—13.19
0.0
2.88
5.06

—13.00 —13.2+0.4
0.0
2.88
5.24

—12.55
0.0
1.51
4.55

—12.89
0.0
1.53
3.91

—11.99 —12.55 —12.9+0.5
0.0 0.0
1.51 1.51
4.64 4.55

X X)
X"
X5
Xi
X

—9.46
—7.07

2.16
2.71

—9.694
—6.89
—3.78

5.46
5.93

—9.46
—7.07
—2.70

2.16
2.71

—9.6+0.3
—6.9+0.3
—2.7+0.2

—9.83
—6.88
—2.99

2.03
2.38

—9.96
—6.08
—2.94

2.07
2.88

—10.79
—6. .I. 8
—2.48

2.03
2.63

—9.83
—6.88
—2.99

2.03
2.38

—10.0+0.2
—6.9+0.2

I U

L2
L U

L C

LC

—10.60
—6.84

—10.91
—6.62
—1.89

3.27
6.93

—10.76
—7.03
—1.32

2.71
5.30

—1.2+0.3

—10.60
—6.83
—1.42

1.82
5.47

—10.42
—7.19
—1.28

1.89
6.42

—10.75
—6.40
—1.23

1.83
6.11

—10.59
—7.20
—1.43

1.81
5.67

—12.0+0.5

—1.4+0.3
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ments. ' Unfortunately, the identification of the
defects and their respective properties have not
been accurately predicted because of the inherent
difficulties of using standard experimental tech-
niques and also by the lack of reliable theoretical
calculations. Very good progress in resolving the
experimental uncertainties for detecting the EPR
signals from defects has been made in recent
years. In GaP, the defects which have been
identified by EPR method are Po, (antisite}, Vo,
(vacancy at Ga), and an antisite impurity (Po, —I)

pair. A PL study of native defects [Vp Vi P&.

(interstitial), Vp —Vi„, or Vp —P;] in InP has also
been made by Temkin et al.~

From theoretical stand point, an ideal vacancy
with Td symmetry (by simply removing either an
anion or cation atom from an otherwise perfect lat-
tice) in III-V compounds induces twofold- and
sixfold degenerat-e levels (including spin) with ai(s)
and t2(p} symmetry, respectively. For the neutral
anion (cation) vacancy there will be three (five)
electrons associated with the bound levels. The a i

TABLE II. (Continued. )

GaSb
Calc.

Inp
Critical
point Level

Expt. Calc. Expt.

Ref. 31 Ref. 27(b) Ref. 30' Ours Ref. 52 Ref. 31 Ref. 27(b) Our Ref. 52

I v

I &5

I c

I &5

—12.00
0.0
0.86
3.44

—11.61
0.0
0.86
3.33

—12.00
0.0
0.86
3.60

—12.00
0.0
0.86
3.44

—11.6+0.3 —11.42
0.0
1.50
4.64

—11.16
0.0
1.42
4.78

11.42 —11.0+0.4
0.0
1.50
4.64

Xi
X
X
X
X

X —9.33
—6.76
—2.61

1.72
1.79

—9.33
—6.76
—2.61

1.72
1.79

—9.40
—6.91
—3.44

3.66
5.19

—10.74
—5.34
—2.60

1.72
1.79

—9.4+0.2
—6.9+0.3
—2.7+0.2

—8.91
—6.01
—2.09

2.44
2.97

—8.90
—5.90
—2.65

4.95
5.04

—8.91
—6.01
—2.09

2.44
2.97

—8.9+0.3
—5.9+0.2
—2.0+0.2

—10.17
—6.25
—1.45

1.22
4.43

Llt

L2
Lv
Lc
Lc

—10.17
—6.25
—1.45

1.22
4.43

—10.16
—6.51
—1.96

2.11
4.88

—10.77
—5.50
—1.34

1.06
5.26

—9.67
—5.84
—1.09

2.19
5.58

—9.66
—5.47
—1.35

2.76
6.13

—9.79
—6.19
—0.90 —1.0+0.3

2.11
5.73

—1.3+0.2

TIGHT-BINDING CALCULATIONS FOR THE ELECTRONIC. . .
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(or s) state, occupied by two electrons, occurs at

lower energy than the partially occupied [by

one (three) j t2 state.
In connection with the depth and the role of va-

cancy levels in elemental and compound semicon-

ductors, various theoretical methods have provided

FIG. 7. Calculated band structure for AlAs with the
second-neighbor tight-binding parameters of Table I.
For comparison with the energy values at critical points

with the pseudopotential data of Bess et al. (Ref. 32),

Stukel et al. (Ref. 33), and the existing tight-binding cal-
culations of Osbourn and Smith (Ref. 28 and quoted by
Ref. 29), we have also included our results in Table II.

FIG. 8. Calculated electronic density of states for
GaP with the second-neighbor tight-binding parameters
of Table I compared with the XPS data of Ley et al. ,
Ref. 52.

different results. " ' Comparing the neutral va-

cancy levels in GaAs for example, our calculations

for the bound state of tz symmetry for Ga vacancy

agree reasonably well with those of Bernholc and

Pantelides. ' However, for the As vacancy we find

only bound state of t2 symmetry with energy 0.95

eV above the valence-band edge, where as the au-

thors of Ref. 14 have obtained both levels of a i

and t2 type symmetries (with energies 0.71 and

1.47 eV). The most recent self-consistent calcula-

tions of Bachelet et al. ' have provided justifica-
tion to our semiempirical calculations. This also

suggests that the results of Jaros and Brand' based

on the pseudopotential framework and that of Faz-

TABLE II. (Continued. )

InAs
Critical Calc.

Ref. 31 Ref. 27(b) Ref. 30' Ours

InSb
Calc.Expt.

Ref. 52 Ref. 31 Ref. 27{b) Ref. 30' Ours

Expt.

Ref. 52

pV

I is
pC

I is

—12.69 —12.30 —12.76
0.0 0.0 0.0
0.37 0.36 0.30
4.39 4.25 4.35

—12.69 —12.3+0.4 —11.71
0.0 0.0
0.37 0.25
4.39 3.16

—11.70 —12.26
0.0 0.0
0.25 0.24
3.24 3.40

—11.71 —11.7+0.3
0.0
0.25
3.16

Xi
x
XVs

x
x

—10.20
—6.64
—2.47

2.28
2.66

—10.20
—6.30
—2.82

4.04
4.90

—10.09
—6.89
—2.31

2.20
2.59

—10.20
—6.64
—2.47

2.28
2.66

—9.8+0.3
—6.3+0.2
—2.4+0.3

—9.20
—6.43
—2.45

1.71
1.83

—9.50
—6.41
—2.75

3.84
3.91

—9.56
—6.08
—2.05

1.70
1.83

—9.20 —9.0+0.3
—6.43 —6.4+0.2
—2.45 —2.4+OA

1.71
1.83

LV

L2
LV

LC
LC

—10.92
—6.23
—1.26

1.53
5.42

—10.S8
—5.86
—1.57

1.98
5.6S

—10.99
—6.15
—1.13

1.47
5.56

—10.99
—6.87
—1.05

1.50
5.84

—0.9+0.3

—9.95
—5.92
—1.44

1.03
4.30

—10.23
—5.94
—1.81

1.67
4.70

—10.41
—5.32
—1.03

1.00
5.10

—10.03
—6.81
—1.06 —1.05+0.3

0.99
5.46
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FIG. 10. Same key as Fig. 8 but for GaSb.
FIG. 9. Same key as Fig. 8 but for GaAs.

zio et al. based on the cluster-model formalisms
are at variance not only with ours, but with

Bachelet et al. ' as well. Following Pantelides, we

have displayed in Fig. 15 and Fig. 16 the results of
our calculations for the changes in the density of
states for Ga and As vacancy (in GaAs), respec-

tively. Except for small discrepancies in the posi-
tions and structures, the overall agreement with the
semiempirical and self-consistent' calculations is
satisfactory.

Similar to GaAs and Si, our results for the neu-

tral anion or cation vacancies in GaP, GaSb, and

A1As suggest that the states of a
&

symmetry are of
resonance in character while the r2 states will be of
localized in nature (cf. Table III and Figs. 17 and
1&). There are also differences exhibited in the
pseudopotential results' for the anion vacancies in
GaP and InP and the semiempirical calculations'
for anion and cation vacancies in GaSb and InAs,
respectively. Again, it is worth mentioning that
except for a small difference (a few tenths of an
eV) in the energy value for neutral Ga vacancy in
GaP, our results are in corroboration with the
most recent self-consistent pseudopotential calcula-

TABLE II. (Continued. )

Critical
. point Level

Ref. 33 Ref. 32

AlAs

Calc.

Ref. 28 Our

r",
I is
pC

I is

—11.48
0.0
2.50
4.57

—11.66
0.0
3.21
4.57

—12.06
0.0
2.82
4.19

—11.66
0.0
3.21
4.57

X)
X3
X
X)
X3

—9.61
—5.20
—2.01

2.38
2.86

—9.42
—5.55
—1.97

2.25
2.62

—9.46
—5.02
—1.72

2.30
3.01

—9.42
—5.54
—1.97

2.25
2.61

Lj
L2
LP
Lc
Lc

—10.14
—5.22
—0.80

2.57
5.25

—10.07
—5.52
—0.70

2.76
5.15

—9.94
—5.85
—0.48

2.64
4.81

—10.21
—5.87
—0.71

2.73
4.58

'We have set the positions of the energy levels considering zero as the top of the valence
band in the calculations of Ref. 30 to compare it with our results.
There are some discrepanciesiin the quoted and plotted energy levels for InSb.
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FIG. 13. Same key as Fig. 8 but for InSb.

tion of Scheffler et al. '

In Fig. 19 we have displayed results for the cal-
culated position of the highest occupied levels for
anion and cation vacancies in III-V compounds as
a function of the ionicity scale of Phillips. %ith
respect to the valence-band maximum (considered
at zero energy), the positions of these levels are
found to decrease approximately with the increase
of the covalency (or decrease of the ionicity).
Again, one can note that for Ga-In pnictides (i.e.,
GaAs-InAs, GaP-InP, and GaSb-InSb) the pinning
energies of the anion vacancy levels of t2 symme-
try are almost the same while they are different for
Ga-Al and In-Al compounds (i.e., GaAs-A1As and
InAs-A1As, see Table III). On the other hand, we
find no such correlation of pinning energies with
the cation vacancy levels.

In III-V compounds, it has been speculated that
impurities near the surface are responsible for
determining the position of the Fermi level (EF) re-
lative to the surface band edge. ' Although the
defects that pin EF are not well understood, but
there is ample experimental evidence which sug-

gests that simple vacancies are first formed that
later interact with the other lattice atoms to form
complexes (for an excellent survey of the experi-
mental data see Spicer et al. ). Quite recently,
Daw and Smith have reported mlculations for
the bound-state energy levels of ideal vacancies
near the (110) surface of InP and GaA1As. These
authors have found a strong correlation between
the calculated position of the highest-filled, ideal

2D

In As

anion vacancy level with the surface Fermi level
while no connection with the measured Fermi level
and the highest-occupied cation vamncy level has
been noticed. Another recent experimental obser-
vation that might be significant in correlating the
role of the anion vacancies in Fermi-level pinning
is that of Keuch and McCaldin in which the
variation of EI; as a function of the alloy composi-
tion in mixed compounds has been reported. For
In„Ga~ As(P) systems the variation of the Fermi
level is found to be independent of x while it in-
creases linearly with aluminum content in

Ga~, AI„As (Ref. 51) ternary. Since the same
trend is exhibited for the highest-occupied level in
the neutral anion vamncy in the bulk and on the
(110) surface in III-V compounds, we therefore be-

lieve that our results for the anion vacancy levels
for GaP-InP, GaAs-InAs, and GaAs-A1As are in
corroboration with the existing experimental
trends. This provides justification at least to some
extent that the anion vacancies near the surface are
responsible .or determining the position of the Fer-
mi level and also lends support to the speculation
of Keuch and McCaldin that similar to GaInAs(P)
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FIG. 12. Same key as Fig. 8 but for InAs.

FIG. 14. Calculated electronic density of states for
AlAs with the second-neighbor tight-binding parameters
of Table I.
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TABLE III. The positions of the energy levels found within the band gap of a~ and t2 symmetries due to neutral va-

cancies in III-V compounds. The values of the calculated energy gap for the host systems Eg are also reported. All the
energies are measured in eV considering zero as the top of the valence-band edge.

System
Others

AIAs:V
AIAs:V

2.25 0.54
1.60

GaP V
Gar"V

0.24
1.54

0.35 0.15

GaAs. V
GaAs:V

GaSb V
GaSb:V

1.5 0.05
0.95

0.08
0.61

0.71(0.86)

0.71

0.03(0.55)(-0.06)
1.47(1.33)(resonance)(1. 08)

-0.47
0.80-(0.42}

c,d,e,f

InP:V
InP:V

1.50 0.54
1.50 0.12

InAs:V
InAs V

0.37 0.38'
0.92'

0.20

InSb V
InSb:V

0.05
0.59'

'Resonance levels lying within the conduction bands.
"Reference 12.
'Reference 14.
Reference 8.

'Reference 12(c).
Reference 10.

gReference 16.
"Reference 21.
'Reference 8(b). (L. M. Brescamsin et al. )

ternaries, the Fermi-level variation for GaSb-InSb
systems should be independent of the composition
factor.

C. Deep traps associated
with short-range potentials

in III-V compounds

In order to have an adequate representation of
the effective impurity potential for defining the de-
fect to be a deep trap in a given host system, it re-
quires precise considerations of the effects like
Coulomb interactions, lattice relaxation, and
charge-state splitting, etc. Unfortunately, any uni-
fied theory where all the effects can be included to
predict the deep impurity level with accuracy does

not exist. However, for the isoelectronic impurities
(without Coulomb interactions) and neglecting the
effects of lattice relaxation, the Green's-function
method in the molecular picture might be the sim-
plest one at least to understand qualitatively and to
predict how a given impurity level will change
with the alteration of the host atom. Similar to
Hjalmarson et a/. ,

' if we restrict ourself to the
case where the impurity potential is confined to the
central cell alone, then the perturbation matrix will
depend on the change in the on-site energies as
well as on the change in the transfer matrix ele-
ments. Since the transfer matrix elements depend
approximately on the bond length, for the case
when the impurity and the host lattice atoms are
of the same size (or no relaxation), it is plausible to
consider the change in the transfer matrix elements
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FIG. 15. The contributions of a~ and t~ symmetries

to the change in the density of states caused by an iso-

lated Ga vacancy in GaAs:V. Calculations are made on

the lines of the method given in Ref. 14.

FI& 16. »me key as Fig. 15, but for Q~s:V.

(which will be negligible small) to be zero. In this

I'cspcct thc pcrtU1batlon IQatfix %ill bc d1agonal

and the calculated Green's functions can be Used to
predict the deep-trap energies associated vvith the

impurities occUpy1ng c1thcr anion o1 cat1on sltcs,
rcspcct1vcly.

In Figs. 20 and 21 we have displayed the results

of our calculations for III-V compounds that
predict the occurrence of deep traps of a i and t2

symmetry due to the shor&-range impurity potential
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FIG. 17. Ca,lculated positions of the localized states due to cation vacancies in the III-V compounds. The zero of
the energy is considered at the top of the valence band vvhere CB represents the lower part of the conduction band (see

Table III also).
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at the cation site. An u ~-type state, which is
pulled out of the conduction band can be a local-
ized one if the impurity potential is attractive and
also if it is greater than a critical value. On the

tO
COa a
C9 C9

I I 1

I

ANION VACANCY

tg STATE

other hand, one can obtain bound states of r2 sym-
metry, both for the attractive as well as for the
repulsive potentials. Again, one can note from
Fig. 21 that as the impurity potential tends to +in-
finity, the energy of the deep traps becomes pinned
to the energy equal to the t2 bound state of an
ideal cation vacancy (as given in Table III). Simi-
lar behavior will exhibit for the a~ and tz states
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FIG. 19. Variation of the highly occupied I;q states of
anion and cation vacancies in III-V compounds vs ioni-
city scale of Phillips.

FIG. 20. Predicted energies of the deep traps of a ~

symmetry in III-V compound semiconductors with
respect to the central-cell impurity potential at the ca-
tion site. The zero of the energy is considered at the top
of the valence band, whereas (+ ) signs designate the
lower part of the conduction band in each of the com-
pounds considered here.
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FIG. 21. Same key as Fig. 20 but for the deep traps of t2 symmetry.

due to a short-range impurity potential at the an-

ion site. Unfortunately, there is not sufficient ex-

perimental data for isoelectronic traps to be com-
pared with the present theoretical results, ho~ever,
we have noticed an increasing interest of antisite
defects in GaP and GaAs systems that can be use-
ful for approximately checking the reliability of
our calculations.

Quite recently, Wagner et al. have observed an
electron-spin-resonance (ESR) signal from a par-
tially filled symmetric state in GaAs which they
have attributed to an As antisite defect. Similar
experimental speculation for P antisite defect in
GaP has already been reported by Kaufman
et al. '. Assuming the potential due to an As im-

purity occupying the Ga site as the difference in
their respective atomic energies, one can approxi-
mately calculate the possible occurrence of the an-
tisite defect levels in GaAs and other III-V com-
pounds to check the qualitative significance of the
calculations. We have found a symmetric a

&

bound state close to the edge of the conduction
band (E„+1.4 eV) in GaAs while for P antisite de
feet in GaP the symmetric bound level occurs at
energy (E„+2.0 eV), respectively. On the other
hand, the graphical solution of t2 syn1metry for the
Rntlslte As Rnd P defects in GRAs Rnd GRP wI11

provide two hyperdeep resonance levels, one each in
the valence and the conduction bands, respectively.
Our results which provide support to the experi-
mental observations differ in energy by few tenths
of an eV from a recent theoretical semiempirical
calculations by Lin-Chung and Reinecke. How-
ever the basic trends for the a~ and t2 symmetry
levels are found to be very much similar. Again,
support to our results for an antisite Pt-, defect in

GaP from the most recent self-consistent calcula-
tion of SchefAer et a/. , is also worth mentioning.
Furthermore, except for the narrow gap semIcon-
ductors (e.g., GaSb, InAs, and InSb) we predict the
possibility of the symmetric bound. levels of an-
tisite P and As defects in InP and AlAs respective-
ly, to be detected by the future experiments.

IV. CONCLUSI()NS

The electronic properties of neutral vacancies
and substliutlonal ImpurItIes In III-V conlpoUnds
have been studied in the Green's-function frame-
work and using the tight-binding method. A total
of eight tight-binding wave functions per unit cell
were used in the band structure, giving an (8 X 8)
matrix to be diagonalized for the energy eigen-
values and eigenvectors. The eight wave functions
produced four valence bands and four conduction
bands. All possible interactions up to and includ-

ing second neighbors have been considered. Using
syn1metric arguments, the number of such parame-
ters in zinc-blende-type crystals are reduced to
twenty-three. In view of the existing pseudopoten-
tial data, we are able to calculate the twenty-
one interaction integrals in a systematic way using
least-square-flttlllg techmque (cf. Appendix) .
%hen compared with the existing tight-binding
calculations, our set of parameters provide much
better fit to the pseudopotential and/or the ex-
we have calculated the Green's functions (by gen-
erating the eigenvalues and eigenfunctions
throughout the Brillouin zone) and there by the
perimental (wherever known) energy levels. Hav-
ing determined the reliable set of bulk parameters,
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isolated anion-cation vacancy levels in III-V com-
pounds. The calculated results have been com-
pared and discussed with the existing theoretical
data.

Similar to GaAs and Si, our results for the ideal
cation and anion vacancies in GaP, GaSb, and
A1As suggest that the states of a ~ symmetry are of
resonance in character while the t2 states will be of
localized in nature (cf. Table III and Figs. 17 and
18). However, the situation for the anion vacancies
in InP and InAs is found to be different (cf. Fig.
18). It has been noticed that there exists a deep-
bound level of a

~ symmetry within the band gap
and their respective energies decrease approximate-
ly with the decrease of the ionicity. On the basis
of the calculated deep-level energies we find that
the anion vacancies are more important defects
rather than the cation vacancies. While comparing
the calculated energy levels with experiments, it is
to be mentioned that the lattice surrounding a va-

cancy will undergo Jahn-Teller distortions which
have been completely neglected here. The relaxa-
tion of the atoms surrounding the vacancy will

lower the energy of the ideal vacancy by few tenths
of an eV and it is expected that the anion vacancy
levels, would still be highly deep. The overall
trends between theory and the existing experimen-
tal data for the anion vacancies are generally very
encouraging.

For cation vacancies on the other hand, it has
been pointed out by Watkins that metal vacancy
in II-VI compounds exhibits large Jahn-Teller dis-
tortions. Although, the possibility of an E3 level
as being due to the isolated Ga vacancy in GaAs
was suggested by Lang et al. , but this specula-
tion has been ruled out quite recently by Wallis
et al. , on the basis of their detailed pressure-
dependent DLTS measurements. Again, the
method by which Kennedy and Wilsey attributed
the EPR signal to be the Vz, in electron-irradiated
GaP, has also been questioned by Scheffler et al. '

on the basis of their self-consistent pseudopotential
calculations. Our semiempirical results are in cor-
roboration with the findings of Ref. 21 (see Table
III). Since any partial occupation of the degen-
erate triplet (t2) level will be unstable to a distor-
tion to a lower symmetry, only the detailed calcula-
tions' of the charge states of the relaxed cation
vacancies would provide a reasonable comparison
to the experimental results. Again, as the position
of the partially occupied t2 cation vacancy states in
III-V compounds varies approximately with the in-
crease of the ionicity (see Fig. 19) one can there-

fore speculate that the cation vacancy states in II-
VI compounds will be highly deep' and may exhi-
bit large Jahn-Teller distortions (in concurrence
with the findings of Watkins ).

The occurrence of antisite defect levels [viz. ,
As(P)o, in GaAs(P)j has been also calculated ap-
proximately by assuming the potential due to As(P)
occupying a Ga site is the difference in their
respective atomic energies. Without accounting for
the relaxation and confining the impurity potential
to the central cell alone, it is plausible to assume
the small changes in the transfer matrix elements

in the perturbation to be zero. In this simplified
picture the calculated results for the antisite defect
levels in GaAs and GaP are found to be consistent
with the existing theoretical ' and experimental
data. Although, in the empirical tight-binding
calculations there might be some uncertainties in

the absolute values of the calculated impurity lev-

els, the basic trends in light of the recent sophisti-
cated self-consistent calculations are quite analo-

gous. Finally, the simplicity in the computational
work has provided the tight-binding method a po-
tential to treat qualitively not only the isolated im-

purities (vacancies) in semiconductors, but also in

principle, the incentive to extend it for the elec-
tronic structure of more complex defects (e.g., di-
vacancies, surfaces, and interfaces, etc.). These
problems are under consideration and the results
will be reported elsewhere.

Pote added. We find analogous calculations for
the isolated vacancies in III-V compounds reported
recently by S. Das Sarma and A. Madhukar [Phys.
Rev. B 24, 2651 (1981)]. However, the results of
deep levels are seen to be substantially different not
only with ours but with their own previous data
(Ref. 16) as well as the most recent self-consistent
calculations (Ref. 10 and Ref. 21). The discrepan-
cies in the calculations are likely to be due to their
arbitrary choice of tight-binding parameters for
describing the band structure. Our set of parame-
ters which have been obtained by the nonlinear
least-squares-fit method (see Table I and the Ap-
pendix) are significantly different from theirs.
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APPENDIX

In the notations of Slater and Koster, and following Dresselhaus and Dresselhaus, the elements of the
(8 X 8) secular determinant representing all possible interactions up to and including second neighbors in the
tight-binding framework with sp orbitals centered on each atom for the perfect zinc-blende-type crystals,
afe g1Uen bp

(s]] I s]] & =E»(000)P+4E»(110)P(C]C2+ C2C3+ C3C] ),
(s]]Is]& =4E (0.5,0.5,0.5)go,

(s]
I
s] & =Eg, (000)]+4Egg(110)](c]C2+ C2C3+C3C] ),

{s,
I p„,&

= —4E„(oii)os2S3+4iE (1 lo)os](C2+C3),

(s]
I p„]1}= —4E,„(0.5,0.5,0.5)]]g],

{p„oI p„o& =E (000)]]+4E (110)1]C](C2+C3)+4E (011)]]C2C3,

(so I pyo} =—4E,~(011)]]S]S3y4iE~(110)OS2(C3+ C]),
(s]

I pyo& =—4E~(0.5,0.5,0.5)1]g2,

( „ I
„&=—4E„(110)QS,S,—4E„(011)c,(s, —S,),

(Py, IPy, &=E (ooo),+4E (llo),c,(c, +c,)+4E (oil),c,c, ,

&s]1 I p, o &
=—4E„(oll)os]S3+4iE,„(1 lo)os3(c] +c,),

(s]
I pro& =—4E, (o.5,o.5,0.5),]g, ,

&p„o I p, o& = —4E„y(110)DS]S3—4iE„y(ol l)OC2(s] —s, ),
(pyo I p, o& = 4E,y(110)o—s2S3 4iE~(011—)]]c](S2—S3),

(p,0 Ip 0}=E (000)]]+4E (110)1]C3(C]+C2)+4E (011)1]C]C2,

(so
I p„]&=4E (0.5,0.5,0.5)0]g],

(s] I p„]&=4E,„(011)]S]S2+4iE (110)S](C2+C3),

(p„o I p„]&=4E (0.5,0.5,0.5)go,

(p Ip„&=4E (0.5,0.5,0.5)g

(p, o I p» & =4E„y(0.5,0.5,0.5)g2,

&p» I p» & =E~(000)1+4E (110)]C](C2+C3)+4E (011)]C2C3

( I p„, & =4E (0.5,0.5,0.5),g
(s]

I py]}=4Esx(011)]s]S3+41Eg„(110)]S2(c]+C, ),
(p„]1I p 1& =4E„„(0.5,0.5,0.5)g3,

(pyo I p„]&=4E (0.5,0.5,0.5)go,

(p, ]] I py]& =4E,y(0.5,0.5,0.5)g],

&px] I py1}= —4E„y(110)]s]S2+4iE~(011)]C3(s]—S2),

(py] I py1& —E~(000)]+4E~(110)]C2(C3+c])+4E~(011)]c]C3

(, I p„&=4E„(o.5,o.5,o.5)„,,

(s] I P.]& =4Exy(011)]S]S2+4iE~(110)]S3(C]+C2),
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&p,o~p, ])=4E (0 5,.0 5,.0 5.)g2,

&p, o ~ p, ])=4E (0.5,0.5,0.5)g o,

&p~] ~ p. ] & =—4E~(110)]S]S3+4iEgy(011)]C2(S] S3),

&py] ~pg]) = 4E~—(110) ]S2S3+4iE~y( 011) ]C]( S2—S3),

&p. ] I p» ) =E~(000)]+4E~(110)]C3(C]+C2)+4E~(011}C]C2 .

with

C] cosn——k, S. ] ——sinn. k, ,

C2 ——cos]sky, S2 =sln7rky,

C3 =COS7Tkg, S3=Sin&kg,

gp =cos(mk, /2) cos(n ky &2] cos(mk, /2) i sin(—mk„ /2) sin(sky /2) sin(]rk, /2),

g] ———cos(mk, /2) sin(m ky /2) sin(n k, /2) +i sin(n k, /2) cos(m ky /2) cos(mk, /2),

g2 ———sin(nk, /2) cos(sky/2) sin(nk, /2)+i cos(nk /2) sin(sky/2) cos(nk, /2),

g3 ———sin(mk, /2) sin(sky/2) cos(nk, /2)+i cos(nk, /2) cos(sky/2) sin(nk, /2) .

The terms go, g ~, . . . are the complex conjugates
of go g] and E~(000)o~ E~(000)],. . . are the
twenty-three interaction integrals (P] —Pq3 given in
Table I). The atomic orbitals so, p„o, pyo, and p, o
are assumed to be centered on the anion while s~,

p„~,p~~, and p, q are supposed to be centered on the
cation in our notations.

Calculations of the interaction integrals In order.
to understand the transport properties of the
perfect-diamond-type crystals, Dresselhaus et al.
and Bortolani et al. have adjusted the involved
parameters in such a wky so as to reproduce the
effective masses and the optical transitions. How-

ever, a comparison with the photoemission experi-
ments or with the direct calculations of the band
structure shows large discrepancies in their energy
values (see Pandey and Phillips for detailed com-
parison). By incorporating the eigenvalues at criti-
cal points as an input, Pandey and Phillips were
successful in providing the correct shape of the
valence bands and relatively better results than
those of Chadi and Cohen. However, with their
simplified tight-binding scheme, the conduction
bands are not adequately represented and moreover
the values for the band gap are generally overes-

timatcd.
%ith interaction integrals up to and including

second neighbors, the electronic properties of the
super lattices [e.g., A1As-GaAs (001) and InAs-
GaSb (001}]have been reported recently in the
tight-binding approximation. Schulman and
McGill have incorporated the band-structure
parameterization of Osbourn and Smith s, while
Nucho and Madhukar have report& their own
sets of parameters for InAs, GaAs, InSb, and
GaSb. The magnitudes of our parameter values
and their signs are consistent with those reported
in Ref. 28, however, we have achieved a relatively
better fit for GaAs and AIAs than those of Os-
bourn and Smith (cf. Table II). Unlike Nucho and
Madhukar, we feel that the choice of the top of
upper valence band as a reference level (at zero en-

ergy} for all the elemental and compound semi-
conductors can provide us at least a consistent set
of tightbinding parameters which otherwise can
not be achieved. The results of their calculations
have also been included in Table II for comparis-
ons and contrasts with our calculations.

%e have numerically evaluated the involved set
of (twenty-one) interaction integrals by incorporat-
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ing the pseudopotential data of energy bands at
critical points as an input and using nonlinear
least-squares-fit method. The dependence of the
energies on the involved parameters can be ob-

tained in a closed form along high-symmetry direc-
tlolls al1d at, sonle crltlcal p0111ts. Us1ng Eqs. (Al)
the energy eigenvalues at the I critical point are

given by

E(I ),)= — +Ic

A —8 2 1/2

+P52

C+D '

2
C+B + 8

triply degenerate .
,
'1/2

+ I'8
2

Similarly at X critical point (with k„=1, k„=k,=0) we may get

E (Xs„)=
2

E(X),) =
2

(A3)

. doubly degenerate .. 1/2 i

The doubly degenerate energy values at the I. critical point are given by
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where

A =P1+3P18,

B =P2+3P19,

C =P3 +2P14+P10

P4 +2P15 +P11

F. =Pg —P19,

P3 2P14+P10 s

and

6 —P1 P18 ~

H =P4 —2P15+P11,

I =P3 —P10,

J =P4 —P11

E =P3+P12,

L =P4+P13 .

The above equations (A2), (A3), and (A4) will be
reduced to those reported by Chadi and Cohen if
only nearest neighbor interactions are considered.
Using Eqs. (A2), (A3), and (A4), with the involved

parameters, one can reproduce fairly accurately the

energy eigenvalues at I, X, and L (L3, and L3U

doubly degenerate only) critical points. The nonde-

generate energy values at L point (e.g. , L t„, L &„

L2„, etc.) can further be improved by a suitable

choice of P20 and P21, respectively. On the other
hand, P16 and P17, can be used to achieve a better
fit in the energy values at E critical point. As the
pseudopotential data is known for high-symmetry
directions only, we have therefore neglected Pz2
and P23 which are dependent on the energy values

along (k„kygg, 0).
The resulting bulk band structures with the

values of our parameters of Table I are shown in

Figs. 1 —6. Comparing the existing pseudopotential
results of Chelikowsky and Cohen one can find

good correspondence with our calculation not only

for the band gaps but also for the conduction
bands (see Figs. 7—12). Again, one can notice (cf,
Figs. 1 —6 and Table II) that our tight-binding

parameters provide a much better fit than the oth-

er second-neighbor calculations fitted to the same
pseudopotential data. It is also fair to mention
that with the present choice of model, it is rather
difficult to produce deep curvature in the conduc-
tion bands, however the general shapes are quite
similar with their existing pseudopotential counter-

parts. The use of the model with interactions in-

cluding third neighbors (as considered by Papacon-
stontopoulos and Economou' for Si) can definitely
improve the overhall band structure, especially the
conduction bands, provided the detailed energy-
band dispersions are known for directions other
than the three major ([100], [011],and [111])direc-
tions.
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