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D. M. Wood~ and N. W. Ashcroft
Laboratory of Atomic and Solid State Physics, Cornell Uniuersity, Ithaca, ¹wFork 14853

(Received 26 June 1981)

A variational wave function proposed by Abrikosov is used to express the (spin-

restricted) Hartree-Fock energy as reciprocal-lattice sums for static-lattice fcc monatomic

hydrogen and diatomic Pa3 molecular hydrogen. In the rnonatornic phase the hydrogenic

orbital range is found to closely parallel the inverse Thomas-Fermi wave vector; the

corresponding energy E has a minimum of —0.929 Ry/electron at r, =1.67. For the dia-

tomic phase E(r, ) is similar, but the constituent energies, screening, and bond length all

reflect a qualitative. change in the nature of the solid at r, =2.8. This change is interpret-

ed in terms of a transition from protons as structural units (at high density) to weakly in-

teracting molecules (at low density). Insensitivity of the total energy to a rapid fall in the

bond length suggests association with the rotational transition, where the rigid molecular

orientations characteristic of high pressures disappear and the molecules rotate freely at
low pressure. The importance of phonons (neglected here) in a correct treatment of the

total energy is emphasized, and the possible connection between the rotational transition

and metallization of the diatomic phase is discussed. It is concluded that methods which

sphericalize the %'igner-Seitz cell may overlook important structural properties (to which

the total energy is relatively insensitive) for the diatomic phase.

I. INTRODUCTION

Hydrogen continues to attract attention among
condensed matter physicists because it has the po-
tential to be the simplest of all possible physically
realizable metals. Because of its low nuclear mass

and the metallic nature of the high-density con-

densed phase, metallic hydrogen is expected to ex-

hibit interesting electronic ordered states, for exam-

ple, high-temperature superconductivity. ' Indeed,

precisely because dense hydrogen is a quantum

system —one whose zero-point energy is significant
in comparison to the binding energy of the con-

densed phase itself—it may not be a solid at all,
but rather a metallic liquid ' (and if complete dis-

sociation persists, possibly the first known liquid
superconductor ), with associated interesting two-

component Fermi-liquid effxts at low tempera-

tures. For our purposes we will assume the mona-

tomic phase to be crystalline, in fact, face-
centered-cubic (in accordance with the work of
Straus and Ashcroft ). This assumption is reason-

able since solid-phase binding energies are exceed-

ingly small compared with the structural energies

that we shall encounter.
tures and pressures exhibits interesting properties
of its own, again associated with the low mass of
the hydrogen atom. At low pressures the remark-

able sphericity of para-hydrogen molecules and
their small moment of inertia (a consequence of
the compactness of a molecule) permits them to ro-

tate freely. For para-hydrogen at higher pressures,
where the enhanced electric quadrupole-quadrupole
interaction between molecules locks them into
orientational order, there are elementary excitations
in the form of librons, i.e., quantum-mechanical
"'zero-point motion" associated with the (not al-

ways) small-amplitude orientational oscillations of
the hydrogen dumbbells about their crystalline
orientations. (The characteristic temperature scale
for these excitations is somewhat lower for ortho-
hydrogen. ) In what follows we shall assume that
the structure of ortho-hydrogen at low tempera-
tures and pressures (the space group Pa3) is ap-

propriate for both ortho- and para-hydrogen at
high pressures.

The process of metallization of hydrogen may
occur in two distinct ways: (i) As in the case of
iodine, ' another covalently bonded diatomic solid,
the application of pressure may continuously
reduce the overall gap between valence and con-

duction bands to the extent that, without change in

structure, band overlap occurs, thereby giving rise

to conduction. The basic diatomic order remains.

(ii) The hydrogen molecules may be directly
pressure-ionized and dissociated, the corresponding
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change in structure giving rise to a monatomic me-

tallic phase. Part of the work to be described here
is directed toward an understanding of the manner
in which this dissociation occurs.

Many past estimates of the equations of state
and the transition pressure from diatomic to mona-
tomic hydrogen have relied on different calcula-
tional techniques for the two phases. Often, for
example, the energy of the molecular phase has
been taken from a superposition of pair potentials,
while most recent treatments of metallic hydrogen
have used perturbation theory about the uniform
interacting electron gas." There are, however, fun-
damental reasons for believing that a pair-potential
approach will lose validity at high pressures (when

the energy of molecular interaction becomes com-
parable to the lattice binding energy), ' ' requiring
a scheme better suited to the delocalized nature of
the resulting electron wave functions.

We shall adopt below an "exact exchange"
Hartree-Fock description of the condensed phases
of hydrogen. There are, of course, more realistic
formalisms which are on a firmer footing as re-

gards the incorporation of many-body (i.e., correla-
tion) effects, chief among these the density-
functional scheme. ' As usually implemented,
these procedures include in an approximate local
exchange-correlation potential the physical effects
of electron indistinguishability. All such local ap-
proximations are enormously simpler computation-
ally than the corresponding Hartree-Fock calcula-
tions, with their characteristic nonlocal exchange
terms.

However, as yet no density-functional calcula-
tion has been applied to solid hydrogen of full
three-dimensional crystalline symmetry, i.e., it has
been customary to replace the Wigner-Seitz cell of
the crystal with a sphere of equal volume, and the
periodic boundary conditions of the crystal with
the Wigner-Seitz boundary condition. ' Although
in terms of total energy this procedure typically
gives rise to proportional shifts expected to be of
the order of the difference between Madelung ener-
gies of different cubic structures [0(10 )], a great
deal of structural information is relinquished in
such a description. This is of relatively little
consequence for monatomic phases, but for molec-
ular hydrogen at high pressures, as has been dis-
cussed by Chakravarty et a/. ,

' phonon energies
are quite comparable both to the static energy
differences between different crystal structures and
to the solid binding energy per electron itself. It is
therefore of interest to examine calculational

schemes in which such small structural differences
are retained. While we shall completely neglect the
effect of lattice vibrations below, we will retain a
complete description of the diatomic crystalline
structure, with the intent of understanding the
behavior of the structural and screening properties
of the diatomic phase at high pressures.

Hartree-Fock (HF) theory for solids, as men-

tioned above, has been comparatively rarely imple-
mented. ' ' It is useful to keep in mind a number
of limitations of the Hartree-Fock approach. (i)
The correlation energy (by definition) is omitted.
Insofar as we shall be concerned with structural
details, and the density dependence of the correla-
tion energy is believed to be weak, we shall not be
concerned about this problem. (ii) Hartree-Fock
calculations for the band structures of metals typi-
cally give rise to bandwidths (i.e., the energy differ-
ence between the bottom of the valence band and
the Fermi level) excessively large in comparison to
either competing calculational methods or to exper-
iment. For a total structural energy calculation,
such as we perform below, however, the energy per
electron generally is not unsatisfactory. (iii) Spin-
restricted Hartree-Pock, in which each electron lev-
el has twofold spin degeneracy, leads to physical
curiosities in the extreme low-density limit of a
crystal. Instead of reproducing properties of an
isolated atom, spin-restricted HF typically gives
rise to neutral or even partially charged pseudoa-
toms which, even if neutral, attract each other at
long distances. ' As noted by Stanton, ' this is
essentially because the entity associated with a
pseudoatom is a fraction of an electron pair, not a
single electron. It is not surprising that the high
on-site correlation energy {the repulsive energy as-
sociated with an electron pair on a pseudoatom)
makes the binding energy of a pseudoatom
anomalously small. We shall return to this point
below in a discussion of the results for metallic
monatomic hydrogen.

II. ABRIKOSOV VARIATIONAL
%'AVE FUNCTION

We will adopt a wave function proposed by
Abrikosov' as a reasonable choice for a unified
description of both molecular and metallic hydro-
gen at high pressure. It is

Q+qr)=e'"' g P(r"—R—b)
Rb

with



iI)(r) =()(,'/~)'~ exp( —)(,r),
where we have chosen a (lattice plus basis) descrip-
tion of the crystal structure of interest, with IRI
the underlying Bravais lattice and [b I the set of
basis vectors within a conventional unit cell. The
subscript k is intended to indicate the delocalized
nature of this wave function: it is explicitly of
Bloch form. By the use of a variational parameter
A, , we have allowed for the possibility that in a
condensed environment the shape of a hydrogen
wave function may differ from that of an isolated
atom. In the molecular phase the protons are
grouped in pairs centered at the sites of the Bra-
vais lattice, and both A, and the molecular interpro-
ton spacing 2D (which enters straightforwardly in

the specification of the I'a3 lattice} will be such
variational parameters.

A few remarks about the form of (1) are ap-

propriate. In the standard tight-binding method20

one constructs the wave function by superposing
linear combinations of localized atomic wave func-

tions, i.e.,

q-(r) = g e'"'"+"((}-(r—R —b)
Rb

molecule, i.e., there is relatively little of the "anti-
bonding" orbital mixed in, and (1}should be satis-
factory for a variational calculation.

In particular, it should be noted that since

~

()'i+k r)
~

is independent of the Bloch wave vector

k, we are restricted to the description of a system
with a spherical Fermi surface. It 1s known from
the structural expansion method, for example, that
effects originating from departures from sphericity
of the Fermi surface first occur in fourth order in
perturbation theory about the homogeneous in-

teracting electron gas, the perturbation being the
electron-ion interaction. " This therefore suggests
that, at least at high pressures, the assumed ab-
sence of a dependence of the energy on the direc-
tion of k will also be a satisfactory approximation.
For possible cubic phases of (monatomic) metallic
hydrogen this assumption is quite well justi-
fied. ' 3 For the insulating molecular phase,
where one might imagine proceeding via a tight-
binding calculation, this approximation is probably
pool at quite ION density.

(4)

and the f„(r ) satisfy the Schrodinger equation for
an isolated atom. One hopes that relatively few n

are needed in (4). Our choice (1) differs from (3)
in that (i) we are using only one atomic orbital,
and (ii) the choice of phase is site-independent.
This will mean important simplifications later in

the evaluation of, for example, the kinetic energy.
Point (i) is not a serious approximation if one is

specifically interested in the electronic ground
state. The choice of phase [point (ii)] allows for
delocalization of conduction electrons while

preserving the essential atomiclike nature of the
wave functions near the proton sites. We will see
that this choice will mean that free-electron
behavior will emerge naturally in the limit of large
densities. In connection with the choice of phase it
is also useful to observe that for the molecular
solid the scale of significant variation of the wave

function (1) is set by the molecular interproton

spacing 2D, while the scale of k is such that
k &k~, where kz is the Fermi wave vector. For
low pressures 2k+a-0. 15 ~& 1 so that the chosen
variational function will tend to preferentially
deposit charge between the protons in the same

As noted, in what follows we shall neglect the
kinetic energy of the ions (i.e., phonons) within the
framework of the Born-Oppenheimer (adiabatic)

approxlm ation.
For our purposes a description in momentum

space is convenient. With Z =1 and wave func-

tions (1) our Hartree-Pock states are specified by
the Bloch wave vector k and the spin. For a cry-
stal of N cells and volume Q the wave function be-
comes

g ei( k+ G ).ry(G)&e (G)
Q 6

and the crystal potential (pure Coulomb for hydro-

gen) is

y(~) 2 ~ g 4~ io r g(G)
Q 62

where n~ is the number of sites in the basis, and
for reciprocal-lattice vector G, s is the normalized

basis structure factor

(0) y iG b

nI, b

The constituent Hartree-Pock energies are kinet-

ic ((Ek;„}),electron-proton (( V, ~ ) ), electron-
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electron ( {E,, ) ), and exchange ( {E,„)). Per elec-
tron these are, respectively,

2@i

Th&s function was first evaluated by Abrikosov.
The total energy also includes the Madelung en-

ergy EM~d, l.c., thc cncIgy of a lattice of point po-
sitive ions (embedded in a uniform background of
compensating negative charge) interacting via the
Coulomb potential. The total energy per electron
(neglecting phonons) may thus be written

{V, p) = —— e g 2s*(G)N o,&P g 62
3 9m

5 4

2/3
3 9m

I2 2m 4

' 1f2
1

~2 Pf.

6 +0
(lO) +E.i«AO)+EM. d

{E,„)= —— - g i
N o i

fg(G/kp), (11)
e kp 2

where in the above

g P'(6+6')P(6')s (6+6')s'(6')

g /

P(6')
f

'
/

s (6')
/

'

(12)

ls thc noITIlallzcd 6th FoUricr component of thc
electron density, ez is the Fermi energy and k+ the
Fermi wave vector, and X;o„=/nb. Here

k~
fq (G/k~) =

s I d k I d qSm'Q (2~)' (k+ q+6)

with both integrations extending over a spherical
FcITDi sUrfacc. Expllcltly

I'

2 22 xx n

where E~~(6+0), tlM electronic energy, is thc sum
of terms (7)—(11) except that we have rewritten
the G=O contributions to the kinetic and exchange
energies in terms of the familiar dimensionless den-
sity parameter r, defined by

4m 3 1
fg =

na0

where n is the electron number density and ao is
the Bohr radius, We then recognize the terms in
brackets above as the kinetic and exchange energies
of a uniform interacting electron gas. The 6=0
Hartree-Fock energy could be supplemented by an
estimate of the correlation energy, e.g. , the
Nozicres-Pines interpolation formula. ' No 6=0
terms appear in the electrostatic energies because
the system as a whole is neutral.

For purposes of computation lt ls convcnlcnt to
back-transform into real space the simple k-space
sUIIls appearing ln thc klnctlc cncrgy. This ls ex-
pected to be beneficial since our orbital P( r ) de-
cays exponentially for large distance, so the real-
space sums we generate should converge well, at
least at low dcnsltlcs where thc system ls most
nonuniform. We find

g e- (1+X+X'/3)
R~b b'

2

(«o)'D i /D2
ao
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&o = g, , », ,» s*(G')s(G+G'),
+nor o [z +(g+g') ] (& +g' )

where the normalizing constant is

(2n )' 2n Dz Aa Ga
&4r 2' 2K

Note that for G=2n/a(i j. ,k), g =(ij,k) Ta.ken together the total energy for hydrogen is

«Ot =EMad+ [~ci«=o)l+ [Ed«40)]

(18)

3 2 3= cd�/r + l /r — g/r
5

'
2m

+ (Lao) D)/D2 —————P g s (G)No2 3 1 l

26 rg o ~o g

1/3 1/3

(21)

I

simply described as a simple cubic conventional.
cell (of side a) with an eight-point basis with ions

at the points

We have used the general form of the Madelung

energy

(22)

In the spirit of the structural expansion men-

tioned above, we may now identify the "band-

structure energy. " It is that portion of the total

energy due to nonuniformity of the electronic sys-

tem. To all orders in the electron-ion interaction

in this model, it is the term in large parentheses

above.

IV. COMPUTATIONAL DETAILS

b) 2
——+ar,

134——a [(0,—,, —, )+r(1,—1,1)],
b„=a [(—,',0, —,

' )+r {1,1, —1)],
17 s

——a [( , , , ,0)—+r—(—1, 1,1)],

(23}

where & =D/(&3a) and 2D is the "bond length"
of a given molecule. (The structure is fcc with

molecules at each site, each oriented along a dif-

ferent body diagonal. ) This is a highly unsym-

metrical structure; its normalized basis-structure
factor for a simple cubic reciprocal-lattice vector
6 =2m/a (ij,k) is.

Equation (20) is the basis for a Hartree-Fock
calculation of the zero-temperature equation of
state of both monatomic and molecular (diatomic)

hydrogen, results of which are presented below.
Inspection of Eqs. (20) and (18) indicate that the
inhomogeneous (0+0) contributions to the energy

involve a sixfold summation over the reciprocal-
lattice indices (ij,k) and (i',j ', k'} lt is thu. s im-

perative to exploit such symmetries as may be
present to facilitate evaluation of the sums. Furth-

er details are given in Appendix A.
A unit cell of the Pa3 structure, bdieved to be

appropriate to solid diatomic hydrogen at low tem-

peratures and high pressures for both the ortho
and para phases, ' is shown in Flg. 1. It is most

Threefold
SyNfYl8fry Ox(S

Pa3 Molecular Hydrogen

FIG. 1. The a-N2 or I'a3 structure assumed for the
calculation of diatomically ordered dense hydrogen.
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S(ij,k)=2[cosa(i+j+k)+( —1)'+Jcosa( —i +j +k +( +"cosa(i —j+k)+( —1)'+"cosa(i+j —k)],
(24)

where a=2nD/v 3a. For D/a =v 3/4 the ions are equally spaced along the body diagonals and the struc-
ture becomes simple cubic with a lattice constant a/2. The Madelung energy per electron for this structure

may be computed using the usual Ervald expression

e2 Z2/3

2a0 Tg
I

(G)
I

-g i g. I:(P/2) I
X I]

s+Og "b Rbb
3 I'

R+b —b'

Mrs
(25)

where P is the free parameter resulting from the
Ewald process (i.e., EM should be numerically in-

dependent of P for P of order 1), erfc is the com-
plementary error function, g =Grws, res is the
Wigner-Seitz radius ( =r,o&Z' ), and the prime
indicates omission of the R=O, b =b' term, i.e.,

X '=X X+X X+sX
R b b' R+0 b+b' R =0 blab' R+0

The Madelung constant al for the Pa3 struc-
ture as a function of the parameter D/a is
displayed in Fig. 2. Also shown for comparison is
the Madelung constant for a "rotationally averaged
I'a3" structure, discussed in Appendix B. The
latter, denoted {Pa3),results from taking the
orientation of the molecules on the underlying fcc

t

sites to be random. The remarkable insensitivity of
the Madelung energy (indeed, the total energy) to
the orientation of the molecules for small values of
D/a will be discussed below. Further details are
given in Appendix A.

V. METALLIC HYDROGEN

The total static Hartree-Pock energy in
Ry/electron for fcc monatomic hydrogen using the
Abrikosov wave function is shown as a function of
the electron density parameter r, in Fig. 3. Also
displayed in this figure are the constituent
energies —the nonuniform parts of the kinetic,
electron-proton, electron-electron, and exchange en-

ergies. For comparison a curve showing the homo-
geneous interacting electron-gas Hartree-Fock
terms and the %igner-Seitz sphere electron-proton
energy (i.e., the analog of the Madelung energy) is
also displayed. Perhaps the most striking feature
of the HF curve is how little it departs from this

~ -0.6-
C
O

C
& -0.8-
Ql
C
a) -l.o-
a

0.20
D/0

Pa5+

0.30 ~ Q,4

Q

. 0

C9
-0.2

K
Ld

-0.4

or) -0.6 '

-0.8

- I.O-

2.0

. 2.RI 0.9I6 I.8
~f r r

tot
EAbrikosov

5.0 Q 4.0
Edaoh@+0]

~" Ir&&
Q$g = Eodymptotic

FIG. 2. The Madelung constant as a function of in-
terproton spacing (2D) (as a fraction of conventional
cubic-cell dimension a). Full hne: I'a3 structure. Dot-
ted line: rotationally averaged I'a3 (see text).

FIG. 3. The total static Hartree-Fock energy (per
electron) for monatomic hydrogen obtained with the
Abrikosov trial state (l) (lower curve). The component
parts of the energy are discussed in the text.
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simple estimate: the value of r, at the minimuIQ is
essentially unchanged by inclusion of the nonuni-
form terms (the "band-structure energy"). It is
also noteworthy thRt thc two terms 1n pfinc1plc
hRfdcst to compute —thc clcctfon-clcctfon 8nd ex-
change energies —are very small (and their sum
even more so) over most of the region of interest.
An identical calculation using the Abrikosov wave
function for fcc monatomic hydrogen was per-
formed, but over a limited range of r, by Ross and
McMahan. We will be interested, however, in R

discussion of screening over a large density range.
At very low density (large r, ) we find

lim E,"1'= [(Lao) —2iao j
co

+(—,——„)A,ao Ry/electron,

where the terms are, respectively, the kinetic,
electron-proton, electron-dectror, and exchange en-

ergies. The minimum, for Aao ——27/32, gives a
HaftfCc-Pock Cncl gy

hm E ;"„=—(» ) = —0.7119 Ry/electron
ao

(27)

to which the total energy 1n Fig. 3 ~ends asymptot-
ically (and rather quickly). As mentioned above,
the fact that this value is not that of an isolated
hydrogen atom reflects the restricted Hartree-Fock
substitution of a pseudoatom (an equal mixture of
spin-up and spin-down states) for the genuine

spin-polarized atom, and the total absence of corre-
lat1on energy. As 1s typical of var1at1onal calcula-
t1ons, thc cneI'gy RppI'oachcs 1ts asymptotic varia-
tional minimum faster than do its variational

parameters~ hcfc only A,Qo.

The inclusion of the correlation energy in the
electron-gas portion of the energy via, for example,
the Nozieres-Pines interpolation formula, will

barely bind fcc metallic hydrogen; the Hartrec-
Fock minimum energy, at r, =1.67 and kao ——1,24„
is —0.929 Ry/electron: the inclusion of this corre-
lation estimate brings the total energy to —1.028
Ry/electron. The HF energy thus compares very
well with other recent HF calculations for metallic
hydrogen, for example, that of Tua and

Mallall, Who follnd (Uslllg a 8111111Rl' 11RSls Of fllllc-

tions but with three variational parameters) a HF
energy of —0.9327 Ry/electron. In addition,
Harris et al. l found a minimizing value of
—0.931 Ry/electron with lao =1.25, using a niore
complicated wave function. Ross and McMahan
naturally found results identical to ours in the den-

sity range where comparison can be made.
Of considerable 1nterest 1s the density depen-

dence of the wave-function decay parameter A,,
shown in Fig. 4, The original result of Abriko-
sov and thc Thomas-Fermi pfcdict1on

' 1/3=12 1
krpao ——

are also displayed for comparison. We may inter-
pI'ct th, ls fliguI'c as an 1ndlcat1on of thc IQctall1c na-
ture of the monatomic solid as follows. If we con-
sider the response of the electrons in metallic hy-
drogen to tllc flclds of tllc pl'0'tolls, tllcll ln tllc
Thomas-Fermi model of metallic screening (valid
as r, ~0) we would expect the induced electron-
charge density to be, for charge Q,

OkTF k
(29

4~I

On the other hand, around an isolated hydrogen
atom the charge density is

(30)

with A, = I/ao. In a condensed metallic phase we

woUld cxpcct A, Rlld kTF to scale sllllllRI'ly Rs R

function of thc dcnslty fg. What 18 remarkable~

however, is the range of density over which the HF
Rnd Thomas-Fermi scI'ccnlng parameters actuRlly

do track one another. The charge density in this
model of Inonatomic hydrogen bears little resem-

&ec h}ETA LLlC
HYDROGEN

Abrikasav's
small z-~

2.0 3,0
rs

FIG. 4. Density dependence of the variational
orbital-range parameter A, in the Abrikosov state (I) for
fcc monatomic hydrogen (solid curve). The dashed line
is the corresponding range in Thomas-Fermi linear
scrccn1ng model. Thc dotted curve 1s Abrikosov's on'g1-

nal calculation. The numerical details are found in Ap-
pendix A.
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blance to that of an isolated atom, and we con-
clude that the system is genuinely metallic. In this
context Abrikosov s original calculation is inap-
propriate for densities of physical interest.

Pa3 MOLECULAR HYDROGEN
+= Quad Run
~ = Normal Run

Fermi

»»g. 5 are shown the curves for Ptt3 molecu-
lar hydrogen analogous to those in Fig. 3 for the
monatomic phase. Here, once again, we display a
comparison curve consisting of the interacting
electron-gas energy and the minimize Madelung
energy for the (Ptt3) structure, Eq. (85). While
there is a superficial resemblance to their metallic
counterparts, all the constituent energies show a re-
markable transition at r, =2.8, although the total
energy is qmte insensitive to these rather precipi-
tous changes. The density dependence of Lao (Fig.
6) again closely follows the Thomas-Fermi wave
vector, as expected for the spherical Fermi surface
resulting from the use of wave function (l).
Changes in A,ao near r, =2.8 are relatively slight,
but a marked flattening out of A,(r, ) beyond

r, =2.8 is to be noted.
The density dependence of the interproton spac-

ing (here D/a, i.e., the ratio of half the molecular
bond length to the lattice constant of the conven-
tional simple cubic cell) is shown in Fig. 7, and it
is clear that the abrupt drop in D/a for

l, o

0 I I I I I i I i

I.O 2,0 5.0 4.0
rs

FIG. 6. Density dependence of the variational
orbital-range parameter A, for diatomic hydrogen (solid
line). Again the dashed line gives the linear-screening
result in the Thomas-Fermi approximation (sce Fig. 4).

r, =2.6—3.0 is the origin of the pronounced
changes in the constituent energies in Fig. 5.
Shown in the same figure are (i) the curves expect-
ed if the molecular bond length is frozen at its
zero-pressure value, (ii) the results of the recent
density-functional calculation of Chakravarty
et al. , (iii) the results of Liberman, who used a
modified density-functional procedure with a
sphericalized potential, and (iv) the results of

~~ Quad Run
~ = Normal Run ;~0.269 = 0/c minimizing E&~

0
C3

i)
K

~ -02
LL
Ld

Ld

~ -0.4
I-

M -Qe'

C)
w -08

0.2

8

O

cs

0
O. l

C3

ar

'a I l i i I I I ~ ~ I i i

2.0 5.0 4.0

FIG. 5. The total static Hartree-Fock energy (per
electron) for diatomically ordered hydrogen, minimized
with respect to D/a and A, . The component parts of the
energy and their rapid changes near r, =2.8 are dis-
cussed in the text, Note that the total energy is relative-
ly featureless at r, -2.8.

FIG. 7. Minimizing values of B/a for the diatomi-
cally ordered phase of hydrogen (solid line and points).
Also shown is the curve expected if the interproton
spacing is held constant at its zero-pressure value
[D ={P=0) value], the results of Chakravarty et al.
(Ref. 14), Libcrman (Ref. 35), and Ramaker et al. (Rcf.
17).
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Ramaker, Kumar, and Harris for simple cubic
oriented molecular hydrogen.

The computed dependence of D/a on density
may be understood in terms of a qualitative change
in the nature of the solid molecular phase around

r, =2.8. For extremely high densities (small r, )

Fig. 2 shows that to minimize the Madelung ener-

gy, D!a should asymptotically approach a constant
value =0.27, as we observe in Fig. 7. At extreme-

ly low densities, on the other hand (r,~ oo ), one
should recover in an exact treatment a lattice of
noninteracting hydrogen molecules with fixed
2D/ao ——1.401. For I'a3 structure this would im-

ply D/a -0.217/r, .
The static Hartree-Fock calculation clearly does

rather poorly in giving the expected quantitative
behavior for low density. However, the rather sud-

den change in behavior does clearly reflect a transi-

tion from a solid whose essential structural units
are "locked into" the unit cell as a whole (so that
all intracellular distances scale together,
corresponding to D/a =const) to one whose struc-
tural units are the molecules themselves, with fixed
bond length (i.e., D/a =const/r, ). The roughly
flat dependence of A, on r, beyond r, =2.8 in Fig. 6
is also characteristic of weakly interacting mol-
ecules. This qualitative change is present in an at-
tenuated form (at a much smaller value of r, ) in

simple second-order structural expansion results.
The calculations of Liberman and Chakravarty

et al. use the signer-Seitz method of sphericaliz-

ing the crystalline cell containing one molecule
and, as such, discard detailed information about
the lattice to which the total energy is relatively in-

sensitive (though structural parameters like D/a
may depend sensitively on the approximation). For
this reason, neither of these calculations exhibits

any feature which may be identified as the qualita-
tive change we observe. The calculation of
Ramaker et al. does keep a crystalline cell and

predicts (at a much higher density) a rapid plunge
of D/a, but it is for a structure which has not
been observed for hydrogen.

It is reasonable to associate the "transition" at
r, =2.8 with the "rotational transition" marking
the onset of free rotation of the hydrogen mol-

ecules about their centers of mass (ignoring, as

usual, the distinction between para- and ortho-

hydrogen) from the hindered angular oscillation or
libration characteristic of higher pressures. It is
clear that the closer the two protons of a given
molecule approach the more nearly spherical is the
associated charge cloud, so the less important are

the configurations of other such molecules in the
same (or other) unit cells. Hence, merely on the
basis of energetics (the insensitivity of the total en-

ergy, Fig. 5, to variation in D/a beyond r, =2.8)
and proximity (the rapid reduction of the bond
length shown in Fig. 7 around r, =2.8), any ten-

dency toward free rotation will be markedly in-

creased beyond r, =2.8.
The scaling together of intracellular dimensions

below r, =2.8 is typical of metallic systems, where
it is the volume-dependent electron-gas contribu-
tions and the interactions of individual ions with
the electron gas which stabilize the system. In a
molecular insulating solid the essential entities (the
molecules) are neutral and it is fluctuating dipole
or higher multipolar interactions which stabilize
the solid. Simple arguments of Mott and oth-
ers ' indicate that for a system with long-range
Coulomb interactions a metal-insulator transition
will occur. The system will be metallic for an

average number density n if

n'"a =0 (31)

for which the transition density is r, =3.1. Using
the simple cubic monatomic hydrogen lattice as a
model for such a transition, Rose, Shore, and
Sander"' do indeed find a metal-insulator transition
(from a paramagnetic metal for higher density to a
ferromagnetic insulator at low density) at r, =2.84.
The precise relevance of results for the monatomic
phase to the diatomic phase is unclear, but it
should be remembered that both systems are
described by the same Hamiltonian, with an insta-
bility toward molecular pairing as a structural
symmetry breaking. It is believed that as a func-
tion of increasing pressure the diatomic phase will
first become conducting by (indirect) band over-

lap, and only at higher pressure will the dia-
tomic order disappear. Ramaker et al. also find a
tendency toward metallization as D/a drops. The
actual onset of free rotation in (para-) hydrogen
may also be assisted by a Peierls distortion.

In this context it is important to note that for
molecular hydrogen the inclusion of lattice dynarn-
ics is crucial, though at present very difficult, to
obtain a quantitative understanding of the equation
of state for low pressures. This problem occurs for
the monatomic case as well, where the preference
of static structural-expansion calculations for an-

isotropic planar structures is no longer present
when a careful self-consistent phonon calculation is
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made. It may be understood qualitatively by ob-

serving that we expect phonon energies per electron
in the condensed phase to scale roughly as the ion-
ic plasma frequency

1 ion I/2 1
g ~phonon g ™plasma ( e /Mproton ) 3/Q

rs

(32)

in units of Ry, for m and M the electron and pro-
ton masses, respectively. This quantity ranges
from about 0.04 Ry at r, =1 to 0.005 Ry at r, =4.
For comparison, the zero-pressure binding energy
per electron for solid molecular hydrogen is only
about 0.0006 Ry. The importance of a unified
treatment of phonons together with the electronic
system has been stressed by Chakravarty et al.
For the molecular phase they used a Wigner-Seitz
approximation. Within the WS sphere around a
given molecule they sphericalized the ionic poten-
tial by smearing the protons out on a shell of ra-
dius D, reintroducing deviations from spherical
symmetry of the total potential within the spheri-
cal cell by perturbation theory. They found good
agreement for molecular hydrogen at low density
for the binding energy, interproton spacing, and
optic-mode ("stretch") frequency. The phonon
problem manifests itself, however, in the fact that
the computed equation of state E(r, ) showed an
overall shallow minimum at r, =2.1, even when an
estimate of the effects of phonons was included;
the experimental P =0 density for diatomic hydro-
gen corresponds to r, =3.10.

We may gain a qualitative feeling for the impor-
tance of phonons in the present calculations of the
molecular phase by examining Fig. 8, which shows
(for fixed overall density r, =2.8) the dependence
of the second-order structural expansion total ener-

gy for the Pa3 and rotationally averaged (Pa3)
structures (see Appendix B for a brief description
of the second-order structural expansion and the
rotationally averaged (Pa3) structure). Although
the detailed values of D/a and energy are not reli-
able, we note that (i) the Pa3 curve is extraordi-
narily flat over a very large range of D/a out to
the simple cubic value D/a =v 3/4 (using
Hubbard-Geldart-Vosko screening —see Appendix
B), and (ii) the rotationally averaged (Pa 3) curve
falls helot the Pa3 curve, indicating a possible
preference for a lattice of free rotators. Moreover,
both the splitting between the two curves and the
"flatness" of the Pa3 curve are of the order of a
typical phonon energy, indicating that only the in-
clusion of phonons can specify reliably the density

dependence of the molecular interproton spacing,
the onset of the putative rotational solid, and ulti-
mately the low-pressure molecular equation of
state.

VII. SUMMARY AND CONCLUSIONS

We reemphasize that the main concern here has
been with the Pa3 molecular hydrogen structure.
For this case screening is found to be quite metal-
lic below r, 2.8. For larger r, both the screening
parameter and the molecular "bond length" cease
to depend strongly on density, indicating a transi-
tion to a solid of weakly interacting molecules.
Complete understanding of this transition awaits a
(so far unavailable) fully self-consistent phonon
calculation for the coupled electron-phonon quan-
tum solid. Within the Hartree-Pock calculation
presented above, however, we interpret the molecu-
lar system as metallic (though diatomic) for densi-

ties higher than r, =2.8, and insulating below. A
drop in the bond length, to which the total energy
is quite insensitive, may be given preliminary iden-
tification as a tendency toward formation of a lat-
tice of free rotators for r, =2.8.

Our principal conclusion is that cellular methods
which discard information about the details of the
lattice may do very well when used to compute to-
tal energies, at the expense, however, of possibly
missing important structural changes to which the
total energy is relatively insensitive. We have con-
firmed once more that it is the difficulty of obtain-
ing a reliable first-principles molecular equation of
state which remains the primary obstacle to the
understanding of hydrogen at high pressure.
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APPENDIX A: COMPUTATIONAL DETAILS

In the fcc metallic phase (aM
= —1.7917472304) the only variational parameter
is the quantity A, characterizing the shape of the
hydrogen wave function. In practice for each
value of r, eight values of Aao straddling the
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minimum (as a function of &0) were sca»ed, a
polynomial was fit to the resulting energy values,
and the appropriate zero of the derivative was used
as the physically relevant value of A,ao. The ener-

gy was then evaluated using the curve fit.
The computational problem for the J'a3 molecu-

lar hydrogen phase is of a different order of mag-
nitude than for the monatomic phase. Not only
are there two variational parameters, but the lattice
itself is of a symmetry low enough that systematic
exploitation of symmetry is difficult. In order to
scan a reasonable range of k and B/a in permissi-
ble computer time for each value of r„ five values
of Lao and eight of B/a were selected to encom-
pass the energy minimum. The resulting table of
numbers (from k-space summations extending only
far out enough to reAect the essential dependence
on the variational parameters) was interpolated us-

ing a bicubic spline method, and the minimum
found by a two-dimensional Newton-type method.
The electronic energy was then reevaluated at the
corresponding values of A,a0 and D/a, summing
out as far as possible in k space to improve the ac-
curacy of the total energies.

For several large values of r„where the total en-

ergy is a more rapidly varying function of the
parameters D/a and A,a0, computer runs with a
mesh about twlcc as f1nc %'c1c made to glvc IIloI'c

reliable values for the structural parameters. Even
though we feel the variational parameters to be ac-
curate (within the limitations of the model), the ab-

solute energies for the molecular phase still contain
small uncertainties that make comparison of the
equations of state of the molecular and metallic
hydrogen difficult, especially if the intent is to ex-

tract, for example, the transition pressure from one
phase to the other. Indeed, only the availability of
the Floating Point Systems Array Processor (and
its associated Cornell FoRTRAN compiler) made the
Pa3 calculation feasible at all in its present form.

Fluctuations evident in the computed points are
due to the sensitive dependence of the structural
energy on the parameter D/a, and associated un-

certainty in the output of the fitting and minimiza-
tion programs. For several values of large r,
finer-grid computer runs, indicated by triangles,
were made. As usual for variational calculations,
"noise" of order 6 in the variational parameters
emerges as noise in the energy of order 5 . The er-
ror bars in Fig. 6, for example, are indicative of
the worst variation in results from normal-length
computer runs straddling the minimum in parame-
ter space in different ways.

APPENDIX 8 THE STRUCTURAL EXPANSION
AND THE ROTATIONALLY AVERAGED

(Pa3 }STRUCTURE

(where p'- is the qth Fourier component of the ion

density), and the "second-order band-structure en-

cI'gy EBs 1s

1 &ion Z
Ess =—

2 Q

U, ;(q)

r

e(q)

(B3)

where u, ; is the electron-ion interaction potential
(or pseudopotential) with e(q) the dielectric func-
tion of the uniform interacting electron gas. For
our calculations we used the Hubbard dielectric
function as modif lcd by Gcldart and Vosko and
the bare Coulomb potential appropriate to hydro-

gen.
In both expressions above, the quantity of in-

terest is the combination p-p -. In the context
q —q'

of an fcc lattice of freely mtating hydrogen mol-

ecules it is useful to consider an fcc lattice for
which the molecular bond orientation is a random
function of position. One must distinguish be-
tween the contribution to p-p - from the two

q —q

protons associated with a given fcc site (which are
perfectly correlated in the molecule there) and
those associated with other (randomly oriented)

Within the structural-expansion formalism one
begins with a lattice of positive ions in the pres-
ence of a uniform compensating negative back-
ground and, in the same volume, a uniform in-

teracting electron gas of identical overall charge
density, together with its uniform compensating
positive background (so that each system is
separately neutral). One then introduces the
electron-ion interaction using perturbation theory.
To lowest ordcl 1n thc electron-ion lntcract1on onc
f1nds

E'to~ = Ee"«s)+~M.d(t R bi &s)

+Ens((R bj &s)+ (81)

where E(0) is the energy of the unifo~ interacting
electron gas at the appropr1ate dens1ty, EM,d 1s the
Madelung energy, given byZe;; 4m

~M.d=
2~ g (p-', p'

q
—&-)
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where the 6 are the reciprocal-lattice vectors for
the real-space fcc lattice. The expression above
readily divides into discrete reciprocal-lattice con-
tributions and a continuous part, which will give
rise to integrals in the Madelung and band-
structure energies. Here N is the number of fcc
sites.

Provided the "charged spherical shells" resulting
from the rotational averaging process do not over-

lap (for the fcc case this is valid for
0 &D/a & v 2/4) the Madelung energy can then be
written

—I.2—

FIG. 8. Second-order structural expansion energies
(at r, =2.8) for a Pa3 structure (solid line) and rotation-
ally averaged Pa3 structure (dashed line). Note the ex-
treme insensitivity to D/a (see text).

molecules. We find

2 22/3
Esr((Pa 3) ) = o r,

1
+fcc + 4

+z
4z

where a~„ is the Madelung constant of the fcc
structure and

(B5)

(p p -)=2N 1+ sin2kD
k —k 2kD

z
a

' 1/3
16m

3

+N(N5 1)
4sln'kD

k, G

The band-structure energy, to second order, be-
comes

2X e
Ess ((Pa 3) ) = —g ——10 2G~OG'

'2
sinGD z d k 4m 1+e

GD (2m) k e(k)
sin2kD 2 sin kD

k 2D2

(B6)

These expressions were used in the evaluation of the (Pa3) curves (Figs. 2 and 8).
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