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Inelastic scattering of rare-gas atoms from metal surfaces.
Excitation of electron-hole pairs
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%e have studied the inelastic scattering of rare-gas atoms from a metal surface due to
the excitation of electron-hole pairs. By comparing with a quantum-mechanical calcula-
tion we show that a classical trajectory treatment of the rare-gas atom should in general

be sufficient. From an ab initio calculation for He atoms scattered from a Cu surface, we

conclude that the electronic mechanism is of little importance for inelastic scattering of
rare-gas atoms.

I. INTRODUCTION

The inelastic scattering of atoms from surfaces
has recently attracted large interest, both experi-
mentally' and theoretically. ' A basic ques-
tion is how the atoms lose their energy. It has
been proposed that this occurs through the exrita-
tion of phonons or electron-hole pairs. There
have been a number of model calculations,
which have given information about general
features of these two mechanisms. However, it is
often hard to calculate the parameters in these
models, and for many systems there seems to be
little conclusive evidence about the relative impor-
tance of the two mechanisms.

The electron-hole pair mechanism is expected to
be particularly important if the incoming atom has

a level close to the Fermi energy. ' In most exper-
iments, however, the scattering of rare-gas atoms
has been studied. Since the levels of a rare-gas
atom are far from the Fermi energy, one may ex-
pect the phonon mechanism to dominate. Never-

theless, certain aspects of the experimental results
have given rise to speculations that the electronic
mechanism is important even for rare-gas atoms.
We have therefore performed a calculation for
scattering of He atoms from a Cu surface. The He
atom acts on the substrate electrons as an essential-

ly repulsive pseudopotential, and the simplicity of
this coupling makes a fairly realistic calculation
possible.

Normally the incoming atom is treated as a clas-
sical particle. ' ' In such a treatment it is assumed
that the atom moves along a classical trajectory

and that it simply acts as an external perturbation
on the substrate electrons. We have performed a
full quantum-mechanical calculation, and the re-
sults are compared with a classical treatment of
the rare-gas atom. The validity of the classical ap-
proximation is discussed.

In Sec. II we present the formalism and our
model. The quantum-mechanical and classical
treatment of the rare-gas atom are compared in

Sec. III. The numerical results are presented in

Sec. IV and the conclusions in Sec. V.

II. QUANTUM-MECHANICAL FORMULATION
AND MODEL

Although the scattered rare-gas atom moves

slowly, the Born-Oppenheimer approximation is
clearly not suffirient, since it would not allow for
inelastic scattering due to electron-hole pair excita-
tions. We are therefore interested in the nonadia-
batic corrections. A general treatment of this
problem has been given by Born and Huang' and
others. " This formalism was first used by Brivio
and Grimley to treat the interaction of an atom
with a surface.

Assuming that the ions of the substrate are rigid
we write the Hamiltonian as

II=+ — —V; + V(r, R)——7 R
fi

2m ' ' 2M

—:TE+ U+ T~,
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g(r, R)=gg (R)P (r,R) . (2)

where r; is the coordinate of electron i, R the
atomic coordinate, and r =(rl, rz, . . .). The elec-
tron and nuclear masses are given by m and M,
respectively. We expand the wave function X(r, R)
of the system in terms of the electronic eigenfunc-
tions P (r, R) and eigenvalues E (R) of TE+ U
for a given E as

with

g(E,Z,Z')= f(k,Z()g(k, Z) ),
k

where k =v'2ME /fi, Z( (Z) ) is the smaller
(larger) of Z and Z'. The function f (k,Z) is the
regular and g(k, Z) is an irregular solution (un-

bounded for Z~ —co) of

(9)

This leads to an equation' for 1( (R)

[T~+E„(R)—E]l(„(R)=+A„(R,V-„)f (R),

where
(3)

d
2M dZ

+ V(Z) E-P(Z) =-0,

with the boundary conditions

lim f (k,Z) =&2/m. sin(kZ+$1, ),Z~ 00

(10)

A„~(R,Va)= fd rP'„(r, R)

X[Vag~(r, R) —$~(r,R)Va] .

(4)

Introducing a Green's function which satisfies the
scattering boundary conditions defined below,

2M RV a +E„(R}—E G„(R,R',E)=5(R—R'),

The scattering experiments are usually performed
with particle energies in the meV range. Rare-gas
atoms can therefore only penetrate the outermost
tail of the electron density where the lateral inho-
mogeneity is very small. We therefore assume that
E„(R)only depends on the coordinate perpendicu-
lar to the surface, Z. Since we shall consider delo-
calized electronic excitations only, it is reasonable
to assume that all the curves E„(R) are parallel,
j..e.,

E„(R)= V(Z)+e„. (7)

Then a Green's function with outgoing scattered-
wave boundary conditions is given by

we find for the inelastic part

g„(R)=g fd3R'G„(R,R',E}A„(R')g (R') . (6)

lim g(k Z)= e
27r

for some value of $1, . The positive Z axis points
towards the vacuum side. This result follows from
standard techniques for calculating the Green's
function for a linear second-order differential equa-
tion, ' which simplifies to the form (9) if the
Wronskian is a constant.

We now assume that electron-electron interac-
tion effects are included in an effective exchange-
correlation potential. ' We write

V(r, R)=g[w(r;)+u(r; —R)], (12)

where w(r;) describes the effective potential in the
absence of the rare-gas atom and u (r; —E) is the
pseudopotential of the rare-gas atom. In analogy
with Eq. (7) we assume that w(r) only depends on
the Z coordinate. Equation (12) reduces the elec-
tronic problem to a one-body problem and the ex-
cited states are characterized by the occupied states
above the Fermi energy eF and the unoccupied
states below eF. The interaction between the heli-
um atom and the substrate electrons is not very
strong. For instance, the t matrix for a plane wave
with k =0, to, is only a factor 2 smaller than the
result in the Born approximation. ' We therefore
assume that lowest-order perturbation theory is
valid. Since the range of u(r) is fairly short, of the
order 2 —3ao, we can partly include higher-order
effects by making the replacement

G„(E,g', E)
(2n. )

hgk)(

J

(8)

fd x p&(x)u(x —R)p„(x)~p„'(R)p„(R)ro . (13}

This procedure is well-known in the theory of neu-
tron scattering, We need to know how the one-
particle functions P&(x,R) vary with R. To lowest
order we have
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where Pp(x ) and e„are calculated without the perturbation from the helium atom. From (14) we can easily
obtain A„~(R) which is inserted in Eq. (6). Since we are only interested in the lowest-order effect the sum-

mation over I is limited to m =0, which is the label of the elastic scattering function g, (R). We now con-
sider the limit when R is far outside the surface. In this limit we can perform partial integrations to obtain

lim 1(p„(R)=—
2 fd k~~e

" "e '
mp„(k(~),z m" (2g)

mp„(k~~) = f fd'g d'r ll )if(kfi, z)u(r —R)$„(r)*P„(r)$0(R) (16)

where ki (ki) is the perpendicular momentum of the scattered (incoming) atom and $0(R) =f (k&,Z)
&(exp(ik~~ R~~)/2n. . This first-order result could also have been obtained from tne distorted-wave Born
approximation. We now make the replacement (13) and write the electronic wave functions as Pp(r)
=Ii „(z)exp(i k~~ r ~~)/2ir Th. en we perform the R~~ mtegral in (16) which produces the parallel momentum

k&~

conservation delta function. Inserting into {15)yields

lim fp,(R)=-
&—+co

i ( k
) (

—k
( ~+ k

~)~
).R

~ ~

2m'
e IPQ (17)

mp, ——
2 ro,. f dZf(kfi, Z)hk„(Z)hk„(Z)f(k'i, Z) .

To calculate the probability I'-„- of exciting an electron from the state k" to the state k me have to

take the ratio of outgoing to ingoing flux. With the normalization of f (k&,Z) the incoming flux is (1/2m)

kI /4 and the total outgoing (non-angular-resolved) flux follows from (17) as (I/2') kfi
~
mp

~

. So we have

(1&)

The probability that the atom losses the energy 6 and momentum kll is then

P(e, k~~)=2f d k"fd k"Pk„k f(ep)[1 f(e,)]—5{e+ep e)5(k—~~+kp~~
—k~~),

(20)

e' "
I "llhp(z)

%here

where f(e)=1/[1+ exp(Pe)] is the Fermi function and T =1/P is the temperature. To calculate the inelas-

tic scattering probability (19) we have to specify the potential V(Z) [Eq. (7)] felt by the incoming atom and

the potential w (r) felt by the electrons. The potential V(Z) is obtained from the calculation by Zaremba
and Kohn' and for the w (r) we use the step barrier model

0, z(0
~ "= eF+y=ay, z)0

where P is the work function. The electronic-wave functions are given by

slil( k iz +pp )

hp(z)= W X, p
J —a z

v'b, y

(22)
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where Akj ='1/2@le and fK =[2tn (Ap e—)] . Then we obtain

1 l.P(e, k())= fd k~) f dkj&k k-f(&k)[1 f(—&k+&)]4~' kg'
(23)

P(e, kii) =
g~s 1 —exp( —Pe)

k'~k"
X

kzkq

where ek and ek- are now assumed equal to ep.

(24)

where k'=( k~~, kz) and k' ' is determined by con-
servation of energy and parallel momentum. We
are interested in energy transfers and temperatures
which are very small on the scale of electronic en-

ergies. Therefore, for a given k~~, the product of
the two Fermi functions is non-negligible only for
a very smaB interval of kz values. If we assume
that the other quantities do not change over this
interval, the k j integral can be evaluated and

0, Z&ZO' z(z (25)

I

sion of this assumption has been given by, e.g.,
Child' for intermolecular scattering. Here we give
a more explicit and quantitative discussion for
scattering of rare-gas atom from a surface by
choosing the potential V(z) in Eq. (7) in such a
way that the problem can be solved analytically.
Since the van der Waals attraction of a helium
atom is weak, we neglect it for the moment and as-
sume that the potential is purely repulsive. We ex-
pect the potential to have a steep almost exponen-
tial growth and assume

III. COMPARISON %ITH CLASSICAL
TREATMENT

It is often assumed that the scattered atom can
be treated as a classical particle. A general discus-

where Zo is the classical turning point. From Eq.
(18) we obtain the quantum mechanical transition
probability

k fRXU y

2 2
(tea /2M) +fPa , (O'J +UJ )+—[e—15k(( —,(vI)+v())]

Pci g y 0 p g g p ply/0

(27)

where R (t) describes the classical trajectory. We
find

2po1 AxUy

(Azug) +(e—Ak() v)))

2

(28)

where c =2tok~jkze '/b, P, a=a&+~„and
uI (u/~) is the perpendicular part of the velocity of
the rare-gas atom in the intial (final) state. The
classical result is obtained from

(29)

(30)

This means that the classical description is valid if
the wave function f(kq, Z) of the rare-gas atom
has many oscillations over the region 4m. /a, which
is essentially the range over which the particle in-
teracts with the substrate. For a helium atom with
the energy 0.025 CV we find

(31)
'~

respectively.
We can see immediately that if the energy and

momentum transfers are small the classical
description is valid if

and the condition (29) is fairly well satisfied. We
have calculated o. under the assumptions that elec-
tronic states close to the Fermi energy with k~3

——0
arc cxcitcd and that th.c helium atom has normal
incidence. As expected the classical description be-
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comes better if, for fixed velocity, the mass is in-

creased or if the velocity is increased for a fixed
mass.

%e now assume for a moment that k~I =0 but
that e is non-negligible. From Eq. (27) we can see

that ln the classical descr1ptlon the probabihty for
an energy transfer e is substantially reduced if

(32)

where T =1/(auj) is the time during which the
perturbation is large. If the condition (32) is ful-

filled there is a large destructive interference in

(27). In the quantum-mechanical description the
relation

I

e'
I
(o.'Uj is less obvious, since there is no

classical trajectory and the velocity plays a less

conspicuous role. Nevertheless we can see from

Eq. (17) that the functionsf(k~z, Z) and f(kz, Z)
interfere destructively over the range of h&(z)h„(z),
that is the matrix element is small, if

(33)

Multiplying by u~ it becomes clear that Eqs. (32)
and (33) are essentially the same. That the energy

dependence is very similar can also be seen directly
from Eqs. (26) and (28), which are also shown in

Fig. 1. For large energy losses, however, the re-

sults are different because of the prefactor k~q/kg

in the quantum mechanical expression. This pre-
factor prevents, for the given V(Z) [Eq. (25)], en-

ergy losses larger than the initial energy, which

would be unphysical.

Finally, we discuss the case of a more realistic
V(Z) which increases gradually. In a classical
description there is, in general, no difference be-
tween matrix elements for a gain and for a loss
process [see Eq. (27)]. In the quantum-mechanical
description, however, the final-state wave function

f (k~z, Z) penetrates deeper into the surface if the
"perpendicular" energy I k f /2M is increased in-

stead of decreased. Therefore, the interaction with
the electronic states becomes stronger and the ma-
trix element larger. Thus, although the Fermi fac-
tors in Eq. (19) tend to suppress the energy gain
events the matrix elements tend to have the oppo-
site effect. In certain situations the energy gain
events can therefore dominate in the quantum-

rnechanical treatment.

~e fi~st consider the work of Mason and Wil-
hams on the scattering of helium from a Cu sur-
face. For the theoretical description we use the
He-Cu adiabatic potential of Zaremba and Kohn'
and the He electron t matrix of Jortner et al. ' The
initial energy of the He atoms is 22.6 meV and the
temperature is 16 K. In Fig. 2 we show the proba-

bility for inelastic scattering as a function of the

1.0—

0.8

0.6

0.4

0.2

l ~ l

-0.02 -0.01 0 0.01 0.02
e IeV)

FIG. l. Probability of exciting an electron-hole pair
with energy e as a function of e. Thc results for a
quantum-mechanical (solid line) and a classical (dashed

line) treatment of thc scattered atom are compared. We
have considered a helium atom with the initial energy
25 meV and assumed normal incidence without parallel

momentum transfer. The curves have been normalized

so that thc classical result for a=0 is unity.

I

0.05

s (eV)
FIG. 2. The probability

P(e)= d k()P(e, k(()
2(m)

that the helium atom looses an energy e to electron-
hole pair excitations.
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energy transfer e. The integrated probability for
inelastic scattering is 10 . We note that this in-

tensity is much smaller than the experimental re-
sult. We can also extract results for the energy ac-
commodation coefficient'

(34)

where E; is the energy of the incident atoms, E„
the average energy of the scattered atoms, and

E,=k~ T, is the energy of atoms in thermal equili-
brium with the surface. We find a= 1 X10
which is about 4 orders of magnitude smaller than
experiment. These results are in agreement with
the interpretation that the phonon mechanism
dominates. We also consider the experiment by
Feuerbacher and Willis for Ne atoms scattered
from a Ni surface. Although both the t matrix
and the rare-gas-atom —metal-surface interaction
are different, these differences should not be large
enough to change the qualitative result. We there-
fore use the same modd as before but change the
initial energy of the rare-gas atom to 64.5 meV and
use the temperature 300 K. We calculate the total
inelastic scattering probabilities to be 2&(10 ".
Feuerbacher and Willis observed inelastic events
corresponding to an energy transfer of 15—45
meV, which occurred for almost zero parallel
momentum transfer. Since there have been some
speculations that these events are due to electron-
hole pair excitations we show in Fig. 3 the inelastic
scattering probability as a function of the absolute
value of the parallel momentum transfer for a
given energy transfer. This probability basically
decreases with increasing value of

~

k
I ~

~

. Howev-

er, this decrease is much too slow to explain the
data of Feuerbacher and Willis, and the figure
gives no support for the interpretation that the
electron-hole pair mechanism is important for Ne-
Ni scattering. In passing we note that the initial
increase in P{e,kI~) in Fig. 3 can be understood
from, e.g., Eq. (26), since a finite kII with an ap-
propriate direction reduces the last term in the
denominator. This effect does not occur for e-0.
Finally, we note the electron-hole pairs could also
in principle be excited by long-range van der W'aals

forces. However, Schaich and Harris' have found
this effect to be negligible.

V. DISCUSSION

To understand the amazingly small result for the
energy accommodation coefficient in Sec. IV, we

make a connection to our previously presented bo-
son formalism and perform a "back of the en-
velope" calculation.

We have shown that for systems where the in-
teraction mainly takes place via one adsorbate level
the energy transfer can be written as

2 ~ d
E, E„= I ——5(—r) dk . (35)

df

The phase shift 5(t) =mbn (r) is directly related to
the occupancy hn(t) of the adsorbate level and the
spin degeneracy has been taken into account. Por
simplicity, we assume that the He atom can be
treated as a hard-core pseudopotential, where the
core radius r, is chosen so that the correct t matrix
is obtained. ' The unperturbed substrate density
n (r) has to be excluded from the hard core and as
an estimate of the induced charge we use

bn(i)= —I, ,
n(r)d r, (36)

which gives an approximation to 5(r) if we assume
that mainly one adsorbate level is involved. Por
the adsorbate trajectory we assume

R(t)=Zo+uo
~

t ~, (37)

where Zo is the classical turning point according
to the potential energy curve of Zaremba and
Kohn' and Uo is the initial velocity. We interpo-
late the results of I.and and Kohn' for the jellium
model to the density of copper (r, =2.67) and find

0.5

Ik, I & OI)

FIG. 3. The angular average of P(e, k~~} over the
directions of k~~ as a function of

~ k~~ ~. The initial en-

ergy is 64.5 meV and the figure shows results for events
where the incident atom gains an energy 25 meV.
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a simple analytic form

n(r) =noe (38)

—cZp —cNp i
l

~

S(t)= —Xn,e e (39)

N =2tt [ar, (e '+e ') (e —' e—')]jla

This leads to thc cncrgy tlansfcr

approximatively valid in the density tail far from
the surface. Equations (36)—(38) give the phase
shift

transfer would be larger for several reasons. The
attractive forces would bring the molecule in closer
co~tact with the substrate (smaller Zo) and they
would increase the velocity Uo. In addition, the
fact that the level is close to the Fermi energy
would tend to increase the occupancy An. For cer-
tain systems the adsorbate level may actually cross
the Fermi energy. In that case we would get
6-Ir. Since E„E;-—5 this fact alone would tend

to increase our result by about 7 orders of magni-

tude.

—2QZpE„E;=——(Nno) e auo (40)

VI. INCLUSIONS
and the energy accommodation coefficient is

0.6X 10,which differs by about a factor 2 from
the more accurate calculations in Sec. IV. Consid-

ering that a change of r, by about 10% would be
enough to obtain the "correct" result, this is a
good agreement.

We can now see that the main reason for the
small energy transfer is the small maximum value

of 5(t) 10 . Tllc lcasoll ls tllRt tllc substrate

chalgc dcns1ty 1s very small cvcn at, the turn1ng

point of the He atom. We can see from Eq. (39)
that if the He atom could move to the jellium edge

(Zo ——0) the energy transfer would increase by
almost 4 orders of magnitude.

For a chemically reactive molecule, with an ad-

sorbate level close to the Fermi energy, the energy

We have studied the inelastic scattering of rare-

gRs Rtolrls fl'0111 Illetal suIfRccs. By comparing
with a full quantum-mechamcal calculation, we
have found that for small energy and momentum
transfers a classical treatment of the rare-gas atom
is sufficient except for very small initial velocities.
%C have also calculated the total inelastic scatter-
ing probability and studied the dependence on the
momentum transfer. The results show that the
electron-hole pair mechanism should not be impor-
tant for rare-gas atom scattering. Finally, we want
to emphasize that the model used here is not appli-
cable to atoms or molecules which react chemically
with the surface and our conclusion does therefore
not apply to such systems.
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