## VOLUME 25, NUMBER 2

## Localization of screening orbitals, local-environment effects, and intermediate valence in core-level spectroscopy: Ce vs Tm

A. Bianconi

Istituto di Fisica, Universitá di Roma, I-000185 Roma, Italy

M. Campagna Institut für Festkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, West Germany

S. Stizza

Istituto di Fisica, Universitá di Camerino, I-62032 Camerino, Italy (Received 31 July 1981)

We have studied the x-ray absorption spectra (XAS) at the  $L_3$  and  $L_1$  absorption edges of metallic  $\gamma$ -Ce, CeCu<sub>2</sub>Si<sub>2</sub>, CePd<sub>3</sub> and compared with those of Tm metal and intermediate valence TmSe. We analyze the x-ray absorption near edge structure (XANES) taken at high signal-to-noise ratio and high resolution using synchrotron radiation at the facility PULS in Frascati with respect to (1) energy shifts of core-level transitions due to 4*f* electron screening, (2) determination of the local character of the 5*d* final states and mixing of the 5*d* with 6*s*,*p* orbitals near the Fermi level, and (3) use of the XANES as a microscopic tool to determine the intermediate valence in mixed-valence rare-earth-metal compounds. It is concluded that while for the heavy rare earths, Z > Sm, the XANES gives direct information on the intermediate valence, in Ce the occupancy of the 4*f*<sup>0</sup> (5*d*, 6*sp*)<sup>4</sup> configuration is underestimated by about a factor 5 to 6 in favor of the 4*f*<sup>1</sup>(5*d*, 6*sp*)<sup>3</sup> configuration.

### I. INTRODUCTION

The use of x-ray absorption spectroscopy (XAS) to investigate the electronic structure of intermetallic compounds has recently regained interest because of the work of Launois et al.<sup>1</sup> and Martin et al.<sup>2</sup> on TmSe and  $Sm_{0.75}Y_{0.25}S$ , respectively. Those authors showed that the structure near the  $L_3$  edge  $(2p \text{ to } \overline{5}, \epsilon d^* \text{ transitions})$  can be used to obtain quantitative information on the intermediate valence (IV) (from the near edge structure) and on the coupling of valence fluctuations to the phonons [from the extended x-ray absorption fine structure (EXAFS)]. More recent work by Bauchspiess et al.<sup>3</sup> and Krill et al.<sup>4</sup> on Ce intermetallic and insulating compounds showed that in the case of Ce a straightforward determination of the intermediate valence v from the x-ray absorption amplitudes may lead to erroneous conclusions (e.g., CeO<sub>2</sub>, an  $f^0$  system in the ground state, which also shows "two  $L_3$  peaks", would be classified as an IV compound).

We compare here XAS data of  $\gamma$ -Ce, CeCu<sub>2</sub>Si<sub>2</sub> (formally  $f^1$  systems in the ground state), and

CePd<sub>3</sub>, a prototype IV Ce compound, with XAS data of trivalent  $(f^{12})$  Tm metal and IV TmSe. We deduce that a major so-called change in f mixing in the final state after photoabsorption occurs (primarily) for the local  $4f^0$  configuration. This change is so large that for a system formally in the  $f^0$  configuration in the ground state, e.g., CeO<sub>2</sub> with valence  $v \cong 4$  ( $f \cong 0$ ) in the ground state, one obtains  $v \cong 3.4$  ( $f \cong 0.6$ ) after photoabsorption. In contrast, we deduce that this "f-count change" in XAS is much smaller, i.e., not larger than 10%, for metallic  $f^n$  systems with  $n \ge 1$ . We will therefore suggest that the presence of two-absorption thresholds in metallic Ce compounds is indicative of the presence of both  $f^0$  and  $f^1$  configurations in the initial state. However, since one expects a transfer of weight from the  $f^0$  to the  $f^1$  configuration which, as we shall see, is about 5 to 6 times larger than the transfer  $f^1 \rightarrow f^2$  we have to take this into account when quantitatively estimating the "valence" of Ce. The experiments have been performed in Frascati, using x-ray from the storage ring Adone. Experimental details have been given elsewhere.5

2477

©1982 The American Physical Society

### II. RESULTS AND DISCUSSION

Figure 1 shows the x-ray absorption near edge structure (XANES) of metallic  $\gamma$ -Ce at both the  $L_3$ and  $L_1$  edges. The zero of the energy scale has been taken at the energy  $E_1$  of the maximum of the derivative of the absorption jump at the  $L_1$ threshold.  $E_1$  is the energy threshold for transitions from core 2s electrons to the Fermi level. It is impossible to locate the Fermi level in the  $L_3$ spectrum because of the strong  $2p \rightarrow \overline{5,\epsilon}d^*$  "giant resonance" occurring right at the Fermi level. In order to compare the  $L_3$  with the  $L_1$  spectrum on the same energy scale, we have used the criterion of aligning the minimum m of the  $L_1$  EXAFS oscillations with the maximum d of the  $L_3$  EXAFS oscillations (see Fig. 1). This is because we expect a difference of phase  $\sim \pi$  between the two EXAFS oscillations.<sup>6</sup> This criterion locates the Fermi level between the derivative maximum  $E_3$  and the main absorption peak of the  $L_3$  spectrum. The same criterion for the energy scale has been used also for the  $L_3$  and  $L_1$  spectra of the Ce compounds shown in Fig. 2. In this figure the spectra of the compounds CePd<sub>3</sub> and CeCu<sub>2</sub>Si<sub>2</sub> have been normalized to the high-energy absorption continuum above 90 eV and the relative absorption has then been plotted. This procedure allows the comparison of the intensities of the peaks between spectra of different samples. Three regions can be identified in the absorption spectra of Figs. 1 and 2: (a) the edge region, corresponding to an energy range of about 5 eV at the absorption threshold (the shadowed area in Fig. 2); (b) the XANES region, extending from

the edge region to an energy  $E_c = \hbar \omega - E_1$ = 151/d<sup>2</sup>; in this region the excited photoelectron has a wavelength larger than the interatomic distance d; (c) the *EXAFS region* at energies higher than  $E_c$ , where the photoelectron has a short wavelength (high  $\vec{k}$  values).<sup>7</sup>

# A. The edge region: Mixing of 5d and 6sp orbitals near the Fermi level

Because of dipole selection rules the  $L_3(L_1)$  absorption spectrum of the edge probes the local density of states of the d components (p components) of the final states near the Fermi level. Therefore, the comparison of the  $L_3$  and  $L_1$  edges can give information on the mixing of the 5d and 6sp orbitals. In the edge region the  $L_1$  spectrum is therefore dominated by transitions to delocalized p states at the Fermi level while the  $L_3$  edge is dominated by the giant resonance  $2p \rightarrow \overline{5,\epsilon}d^*$ . In the 2p core transitions to continuum levels it is expected that the final-state d wave function will collapse inside the inner well due to the centrifugal potential acting on the l=2 final state. Giant resonances due to the final-state wave-function collapse have been observed in atomic rare earths at the 5pcore threshold to the  $\overline{5\epsilon}d^*$  final state.<sup>8</sup> A similar giant resonance has been observed at the 3p threshold of atoms of the first period of transition metals and this resonance is retained in the solid-state spectra.<sup>9</sup> The atomic character of the giant reso-



FIG. 1. X-ray absorption at the  $L_3$  and  $L_1$  edges of  $\gamma$ -Ce. The photoabsorption derivative of the  $L_3$  edge is also shown (dashed curve).



FIG. 2. Comparison of the  $L_3$  and  $L_1$  absorption edges of  $\gamma$ -Ce, CePd<sub>3</sub>, and CeCu<sub>2</sub>Si<sub>2</sub>, indicating the *edge* region (shadowed area), the XANES, and EXAFS region, respectively.

nance is confirmed by the *energy position* of the maximum, which is at the same energy  $(\pm 0.2 \text{ eV})$  in each compound, but *solid-state* effects dominate its *line shape*. As it is shown in Table I the linewidth  $\Gamma$  of this resonance is decreasing from 5.6 eV for  $\gamma$ -Ce to 3.6 eV for CeCu<sub>2</sub>Si<sub>2</sub>. This broadening of the line cannot be ascribed to a chemical shift of the core initial state. In fact, the  $L_1$  edges for all the compounds are at the same energy within  $\pm 0.5$  eV. Moreover if one takes the maximum of the derivative of the  $L_3$  spectra one obtains a chemical shift for the Ce compounds which is different than the one observed in x-ray photoemission.<sup>4,10</sup>

Both the *intensity* of the giant resonance, which in CeCu<sub>2</sub>Si<sub>2</sub> goes from 98% of the atomic absorption at high energy (normalized at 1 in Fig. 2) to 45% in  $\gamma$ -Ce, and its width are strongly medium dependent. The spectrum of CeCu<sub>2</sub>Si<sub>2</sub> is significantly different than that of the other compounds. At the  $L_3$  edge the giant resonance is very strong (98% intensity) and sharp and the jump at the  $L_1$ absorption at  $E_1$  is small when compared to that of  $\gamma$ -Ce. We conclude that at the Fermi level the final states are primarily *d*-like in CeCu<sub>2</sub>Si<sub>2</sub> and that the mixing of the 5d with the 6sp final states is quite small within an energy range of 4 eV above the Fermi level. In comparison  $\gamma$ -Ce shows a rather weak giant resonance and a large absorption jump at the  $L_1$  edge. This indicates a much larger mixing of states with different symmetry at the Fermi level in  $\gamma$ -Ce.

We note that the same trend is observed when comparing TmSe, TmTe, and Tm metal, see Figs. 3 and 4.<sup>5</sup> Metallic IV TmSe and semiconducting TmTe exhibit a stronger and sharper giant resonance than Tm metal, indicating a weaker mixing of 5d with 6sp orbitals.<sup>5</sup>

On the other hand, from the comparison of Fig. 3 we deduce that the giant resonance is stronger in Tm than in Ce metal. This provides experimental evidence for an increased localization of the 5d final states (smaller hybridization) in going from the light to the heavy rare-earth metals.

## B. The XANES region: Enhancement of the local character of the d final states by local environment effects

The XANES region is dominated by multiplescattering resonances of the excited photoelectron inside the neighbor atomic shells.<sup>7,11,12</sup> The intensity of the multiple-scattering resonances is determined by a joint effect of the geometrical distribution of neighboring atoms, around the absorbing central atom, and of the type of neighboring atoms through their photoelectron backscattering amplitude at low values of wave vector K of the photoelectron. Our data show that these conditions are satisfied in the case of  $CeCu_2Si_2$  at the  $L_1$ edge, where strong peaks p and q appears in the XANES region (see Fig. 2). These peaks arise from multiple-scattering resonances of the initially excited *p* photoelectron which is backscattered by Si and Cu neighbors. The final-state wave function at the resonance energy is strongly localized inside a molecular cluster around the central Ce atom. If strong multiple-scattering resonances appear at the  $L_1$  edge, they should be expected also at the  $L_3$  edge of the same atom. However, at the

| $L_3$ edge                        | Derivative<br>maximum<br>$E_3$ (eV) | Absorption<br>maximum<br>$A_1$ (eV) | Linewidth<br>$\Gamma = A_1 - E_3$<br>(eV) | $A_1/\mu_0^a$<br>relative<br>intensity | Splitting of absorption maxima $\Delta$ | Splitting of<br>derivative<br>maxima δ                |
|-----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------------------|
| γ-Ce                              | 5720.5                              | 5726.1                              | 5.6                                       | 1.45                                   |                                         |                                                       |
| CePd <sub>3</sub>                 | 5722.5                              | 5726.1                              | 3.6                                       | 1.8                                    | $\Delta = 9.4 \text{ eV}$               | $\Delta = 11.6 \text{ eV}$<br>$\delta = 4 \text{ eV}$ |
| CeCu <sub>2</sub> Si <sub>2</sub> | 5722.5                              | 5726.1                              | 3.6                                       | 1.98                                   |                                         |                                                       |
| Tm metal                          | 8648.8                              | 8654                                | 5.2                                       | 1.52                                   | ~7                                      | ~7                                                    |
| Tm <sup>3+</sup> in<br>TmSe       | 8651.2                              | 8654                                | 2.8                                       | 2.0                                    | ~7                                      | ~7                                                    |

TABLE I. Transition energies, linewidth, and splittings of the  $L_3$  edge of Ce in  $\gamma$ -Ce, CePd<sub>3</sub>, CeCu<sub>2</sub>Si<sub>2</sub>, and Tm in Tm metal and mixed - valent TmSe.

 ${}^{a}\mu_{0}$  is the atomic absorption background in the EXAFS region.



FIG. 3. Comparison of  $L_3$  absorption edge of  $\gamma$ -Ce and Tm metal.

 $L_3$  edge the multiple-scattering resonances are due to the *d* channel of the photoionization, therefore they will be located at different energies. The anomalous intensity of the  $A_1$  giant resonance in CeCu<sub>2</sub>Si<sub>2</sub> is therefore explained by the local character of the final state enhanced by the multiple scattering inside the molecular potential of neighboring atoms, like the resonances in the  $L_1$ XANES of the same system.

The amplitudes of the XANES are coupled to the degree of hybridization of the states above the Fermi level. In  $\gamma$ -Ce both the  $L_1$  XANES and the giant resonance are very weak. This confirms further that the final states are mostly *delocalized in*  $\gamma$ -Ce and a large mixing of the orbitals of 5d and 6sp symmetry occurs. From Fig. 2 we deduce



FIG. 4. X-ray absorption at the  $L_3$  edge of IV TmSe and photoabsorption derivative indicating the IV state of Tm (two  $L_3$  edges) in this selenide.

that the case of CePd<sub>3</sub> is intermediate between that of  $\gamma$ -Ce and CeCu<sub>2</sub>Si<sub>2</sub>.

C. The intermediate valence of  $CePd_3$ and the effect of core-hole induced relaxation

The  $L_3$  edge of CePd<sub>3</sub> in Figs. 2 and 5 shows an anomalous peak  $A_0$  which is not present in the other compounds. A jump in the absorption coefficient appears in the  $L_1$  spectrum at the corresponding energy. We ascribe these features as due to the intermediate valence of CePd<sub>3</sub>, where in the ground state the Ce atoms resonate between the  $2p^{6}4f^{0}(5d, 6sp)^{4}$  and the  $2p^{6}4f^{1}(5d, 6sp)^{3}$  configurations. The peaks  $A_1$  and  $A_0$  are therefore assigned as originating from the final states  $2p^{5}4f^{1}(5d, 6sp)^{3}$  $\overline{5}, \overline{\epsilon}d^*$  and  $2p^5 4f^0(5d, 6sp)^4 \overline{5\epsilon}d^*$ . We have plotted in Fig. 5 the high-resolution spectrum of CePd<sub>3</sub> with its derivative. The derivative spectrum shows a third, comparatively small structure in the lowenergy side of the absorption threshold. We identify this structure as the  $4f^2$  final state of the Ce atom after the switching on of the core hole. In



FIG. 5.  $L_3$  edge of clean and air-oxidized IV CePd<sub>3</sub>. The photoabsorption derivative (lower part) indicates the final state  $f^0$ ,  $f^1$ , and  $f^2$  after photoabsorption in the clean IV CePd<sub>3</sub>.

The photoionization of an inner shell causes rearrangements (relaxation) of the valence states at the atomic site of the core hole. In the presence of the hole the more atomiclike 4f states are attracted in a different way than the other delocalized states. Two types of core-hole screening are therefore possible: one where an extra electron occupies the 4flevel resulting in the well-screened final state, the other where the usual screening occurs through conduction electrons, i.e., in the sense of a Friedel impurity screened by conduction electrons.

If the identification of the features of Fig. 4 as the  $f^2$ ,  $f^1$ , and  $f^0$  final-state configurations in the same  $L_3$  spectrum of CePd<sub>3</sub> is correct then we have to conclude that the partial relaxation with subsequent filling of the 4f state takes place during the lifetime of the excited state. This process is obviously typical for Ce compounds involving the  $4f^0$  configuration in the ground state.

Interestingly, the peaks  $A_1$  and  $A_0$ , i.e., the doublet structure, are absent in the XAS of trivalent CeF<sub>3</sub>,<sup>14</sup> but are present in the XAS spectra of CeO<sub>2</sub> and CeF<sub>4</sub>, formally  $f^0$  systems in the initial state. A puzzling question is still why the separation  $A_1 - A_0$ , 9.5 eV, in metal CePd<sub>3</sub> is apparently much larger than the separation of the same peaks  $f^1$  and  $f^0$  in CeO<sub>2</sub>, which is about 6 eV.<sup>4</sup> A larger splitting,  $\delta \sim 11$  eV, we remember, occurs in the XPS 3d spectra  $3d_{5/2}(f^0)$ - $3d_{5/2}(f^1)$ of CePd<sub>3</sub>.<sup>10</sup> In XAS of CeO<sub>2</sub> and CeF<sub>4</sub> (Refs. 4 and 14) the  $f^0/f^1$  intensity ratio is ~ 2:3 which means that in these *insulating* materials the  $f^1$  final state is occupied  $\sim 66\%$  more often than the  $f^0$  state. In contrast, in metallic CePd<sub>3</sub> we see the intensity of the  $f^2$  well-screened peak is at maximum about 10% of the main  $A_1$  peak. This is also in agreement with recent XAS measurements of CeTe,<sup>15</sup> a  $d^1$  metal, which shows only one  $L_3$ edge and have formally the  $f^1$  configuration in the ground state. Here too obviously the f count does not change significantly from the initial to the final state in XAS. So we conclude that a major enhancement of the  $f^1$  signature occurs in the XAS final state. In applying this to CePd<sub>3</sub> we conclude that in the initial state the  $f^0/f^1$  ratio had to be 0.4/0.6, i.e., implying a Ce valence of  $v = 3.6 \pm 0.1$ . This value comes much closer and it tends to exceed the one deduced from lattice constant systematics and neutron scattering,  $v \simeq 3.4$ .<sup>16</sup>

The energy shift of the transition giving peak  $A_1$ by decreasing the number of 4f electrons by 1 can be as large as ~9.4 eV because of the large localization of the 4f orbitals well inside the radius of the  $\overline{5,\epsilon}d^*$  final state. The shift of the transitions giving the peak  $A_0$  upon changing the number of delocalized 5d, 6sp electrons is much lower (~1 eV) due to the location of most of the charge of these extended states outside the radius of the quasilocalized  $\overline{5,\epsilon}d^*$  final-state orbital.

#### D. The effect of oxidation on CePd<sub>3</sub>

The spectrum of CePd<sub>3</sub> oxidized by heating the sample in air is also shown in Fig. 5. The sample is expected to contain primarily a mixture of  $CePd_3$  and  $Ce_2O_3$  and probably some  $CeO_2$ . Upon oxidation both  $A_1$  and  $A_0$  peaks broaden. The  $f^2$ peak of CePd<sub>3</sub> seems to disappear completely. A clear shift of the  $A_0$  peak (due to the  $f^0$  configuration)  $\Delta E = 0.8$  eV is observed. Also the peak A<sub>1</sub> shifts at higher energies by  $\sim 0.8$  eV. The  $A_0$ peak in the oxidized spectrum is expected to be due to the core transition in the ground state  $4f^{0}(5d, 6sp)^{0}$  of Ce<sup>4+</sup>. The shift towards higher energy of the peak is assigned to the decrease of the core screening by the 5d and 6sp empty orbitals. The peak 0 at 6 eV below the  $A_0$  peak of the oxide observed in the CeO<sub>2</sub> spectrum<sup>4</sup> can be related with the relaxed state of CeO<sub>2</sub>, the  $2p^{5}4f^{1}(5d, 6sp)^{0}\overline{5,\epsilon}d^{*}$  state <sup>13</sup> or due to the 2p excited state of Ce<sub>2</sub>O<sub>3</sub>  $2p^{5}4f^{1}(5d, 6sp)^{0}$   $\overline{5,\epsilon}d^{*}$  which have the same configuration. It is clear from this figure that the splitting of  $f^0$  and  $f^1$  configurations in the insulating CeO<sub>2</sub> ( $\Delta = 6$  eV) is much smaller than that in metallic CePd<sub>3</sub> ( $\Delta = 9.4$  eV).

## E. Light versus heavy rare earths: Ce vs Tm

When going to the heavy rare-earth compounds the 4f bandwidth W becomes very narrow and the intra-atomic splitting  $U_{eff}$  increases. Well-screened peaks in metallic systems in XAS are not observed any more, even in XPS for  $z > \text{Sm.}^{17}$  In IV TmSe (Fig. 4) the valence determined by the Tm  $L_3$  absorption edge is  $v \cong 2.6$ , i.e., close to that measured by direct 4f photoemission.<sup>18</sup> Obviously for the

### ACKNOWLEDGMENT

We would like to acknowledge stimulating discussions with Dr. J. C. Fuggle and Professor D. K. Wohlleben.

- <sup>1</sup>H. Launois, M. Raviso, E. Holland-Moritz, R. Pott, and D. Wohlleben, Phys. Rev. Lett. <u>44</u>, 1271 (1980).
- <sup>2</sup>R. M. Martin, J. B. Boyce, J. W. Allen, and F. Holtzberg, Phys. Rev. Lett. <u>44</u>, 1275 (1980).
- <sup>3</sup>K. R. Bauchspiess, W. Boksch, E. Holland-Moritz, H. Launois, R. Pott, and D. Wohlleben, in *Valence Fluctuations in Solids*, edited by L. M. Falicov, W. Hanke, and B. Maple (North-Holland, Amsterdam, 1981), p. 417.
- <sup>4</sup>G. Krill, J. P. Kappler, A. Meyer, L. Abadli, and M. F. Ravet, in *Valence Fluctuations in Solids*, edited by L. M. Falicov, W. Hanke, and B. Maple (North-Holland, Amsterdam, 1981), p. 435; J. Phys. F (in press).
- <sup>5</sup>M. Belli, A. Scafati, A. Bianconi, S. Mobilio, L. Palladino, A. Reale, and E. Burattini, Solid State Commun. <u>35</u>, 355 (1980); A. Bianconi, S. Modesti, M. Campagna, K. Fischer, and S. Stizza, J. Phys. C (in press).
- <sup>6</sup>B. K. Teo and P. A. Lee, J. Am. Chem. Soc. <u>101</u>, 2815 (1979).
- <sup>7</sup>A. Bianconi, Appl. Surf. Sci. <u>6</u>, 392 (1980), and unpublished.
- <sup>8</sup>J. P. Connerade, Contemp. Phys. <u>19</u>, 415 (1978); D. H. Tracy, Proc. R. Soc. London Ser. A <u>357</u>, 485 (1977);
  J. P. Connerade and D. H. Tracy, J. Phys. B <u>10</u>, 235 (1977).
- <sup>9</sup>R. Bruhn, B. Sonntag, and H. W. Wolff, J. Phys. B <u>12</u>,

203 (1979); H. W. Wolff, R. Bruhn, K. Radler, and B. Sonntag, Phys. Lett. <u>59A</u>, 67 (1976).

- <sup>10</sup>R. Lässer, J. C. Fuggle, M. Beyss, M. Campagna, F. Steglich, and F. Hulliger, Physica (Utrecht) <u>B102</u>, 360 (1980).
- <sup>11</sup>P. Durham, J. Pendry, and C. H. Hodges, Solid State Commun. <u>38</u>, 159 (1981).
- <sup>12</sup>F. W. Kutzler, C. R. Natoli, D. K. Misemer, S. Doniach, and K. O. Hodgson, J. Chem. Phys. <u>73</u>, 3274 (1980).
- <sup>13</sup>J. C. Fuggle, M. Campagna, Z. Zolnierek, R. Lässer, and A. Platau, Phys. Rev. Lett. <u>45</u>, 1597 (1980).
- <sup>14</sup>D. K. Wohlleben *et al.*, private communication and unpublished.
- <sup>15</sup>D. Ravot, C. Godart, J. C. Achard, and P. Lagarde in Valence Fluctuations in Solids, edited by L. M. Falicov, W. Hanke, and B. Maple (North-Holland, Amsterdam, 1981), p. 423.
- <sup>16</sup>E. Holland-Moritz, M. Löwenhaupt, W. Schmatz, and D. Wohlleben, Phys. Rev. Lett. <u>38</u>, 983 (1977).
- <sup>17</sup>J. C. Fuggle and F. U. Hillebrecht (unpublished).
- <sup>18</sup>G. K. Wertheim, W. Eib, E. Kaldis, and M. Campagna, Phys. Rev. B <u>22</u>, 6240 (1980).
- <sup>19</sup>L. C. Gupta, E. V. Sampathkumaran, R. Vijayaraghavan, V. Frabhawalkar, P. D. Prabhawalkar, and P. D. Padalia, in *Valence Fluctuations in Solids*, edited by L. M. Falicov, W. Hanke, and B. Maple (North-Holland, Amsterdam, 1981), p. 439.