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Because of the unusual width of the probability distributions of the zero-temperature

response functions for disordered systems their mathematical expectation value will not
represent the results of a numerical or physical experiment. %'e show that it is possible

to derive analytically a scaling law for the average resistance p and the average conduc-
tance g taken over a finite ensemble of m systems, which is of a different analytic form

than (p) and (g ), and which gives good qualitative and quantitative agreement with nu-

merical results. The conditions under which this new scaling behavior might be observed

experimentally are discussed. Our result also rigorously proves that

lnp/(lnp) =- —
lug (lnp) ~1 as L ~ ao,' thus, as expected, it is the geometric means of the

zero-temperature response functions which are the relevant quantities in this limit.

Despite the existence of long-standing arguments

that all the eigenstates of a one-dimensional disor-

dered system are localized, ' until very recently
thclc remained R nuIQbcI' of puzzling disagree-

ments between the results of various numerical stu-

dies on the average zero-temperature conductance
and resistance of such systems, and also between

analytic and numerical results. The explanation
for these apparent confhcts, although implicit in

the mathematical work of Furstenberg, " Tutuba-

lin, ' and O' Connor, and the work of Landauer,
was first clearly stated by Anderson et aI. who

showed that it is essentially the logarithm of the
resistance which is statistically well behaved (in a
sense to be defined below) for these systems. This

implies that the distributions of the dimensionless

resistance p=R/T (Ref. 7), and conductance

g =1/p, will be poorly behaved in two different

scnscs;

(1)»r(p)/(p )'» 1,
(2) (p) much greater than the median value of p.

These properties have three consequences. First,
(g) is not approximately equal to (p) ' and more

generally (f(p)) ssf((p)). Second, (p) is not

typical or representative of the distribution, al-

though the geometric mean, exp( (lnp) ) will be
representative. These two points have been made

by Anderson et al. (Ref. 8) and many others, and

in themselves give a partial explanation of some of
the discrepancies mentioned above. However, a
third consequence of the two properties of the pro-

bability distribution D(p) noted above has received
11ttlc attention, Rnd yet lt turns out to bc very im-

portant for the understanding of the relationship
between analytic results, on the one hand, and nu-

merical and experimental results on the other. If
D(p) is poorly behaved, then an analytic (infinite
ensemble) average of p, denoted by (p), will in

general differ significantly from a finite ensemble

average, denoted by p, obtained by summing a fin-

ite number m of observations distributed according
to D(p). If they do differ, it is clearly the latter
quantity, p, which is relevant to both laboratory
Rnd colIlputcf experiments.

For example, Fig. 1 illustrates the results of a
computer calculation of InP (the squares) for the
Anderson model for Axed disorder and various

lengths as compared to an analytic calculation of
ln(p) (the solid line). Clearly lnp is not scaling
linearly with L as is ln(p). The purpose of this

paper ls to dcflvc R scaling law fol 1Hp Rnd lng
which will explain both qualitatively and quantita-
tively the results of numerical calculations of lng
Rnd lop for disordered one-dimensional systems in
the highly localized regime. %C will show that
such a scaling law can be derived on the basis of R

single very general assumption, which has been
found to hold in many different models of disor-
dcI'cd ln systems, thRt thc distribution of 1Ilp,

Ht (lnp), is well behaved with mean and variance

growing as L„ the length of the sample.
%e begin by assuming that lop is distributed

with mathematical expectation (lnp) =yL and

»r(lnp) =o L, thus the fractional variance of Inp
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FIG. 1. plot of 1n((1+p) ) vs number of atoms for a
1D Anderson model with both diagonal and off-
diagonal disorder at E =0 (from Ref. 9). The squares
are the numerically computed (finite ensemble) average
taken over an ensemble of 1000 systems. The solid
curve is the analytic result of Eq. (41), Ref. 9. The
dashed line is the analytic result for lnp to be derived
below [Eq. (3)].

goes to zero as I.~ oo. It is not hard to show that
these properties of HL(lnp) imply that p is poorly
behaved in the two senses defined above as long as
crV L » 1. We note that it follows trivially that
lng has the distribution HL( —lnp), with

(lng) = yL and the—same variance. Therefore, if
HL is symmetric around its mean, then each step
in our subsequent argument also applies to log
with the simple replacement y—+ —y.

We are interested in the behavior of the random
variable P=1/mg, , p;, and in particular that of
lnp for ov L » l. It is very useful to define a
new random variable, 5, so that

lnp; =yL+o~L5; .

Thus 5 has a distribution of the same form as
HL(lnp), but with mean zero and standard devia-
tion unity, which we will denote as H(5).

Then p= 1/m g,. &
exp(yL+crv L 5, ), and

since exponentiation spreads out the values of the

p; very broadly, the sum of the p; tends to be dom-
inated by its maximum value, call it po—=exp(yL
+ov L g). One can see this clearly by consider-
ing, for fixed m

lim P = lim +exp[ —vLo(g —5;)]~1.
L~ oo PO/m L~ ao;

(2)

Thus, we expect lnp to behave like ln(po/m). In
particular, the expected value (InP) satisfies the
scaling law

(lnp) =(lnpo —ln(m) )

=yL+o (g)~~L —ln(m)
and, similarly

(3a)

(lng) = yL—+o (g)~V L —ln(m) . (3b)

Moreover, we expect observations of lnP to be
well represented by (1nP), since (1nP) =(lnpo) im-
plies Var(lnP) cc L so that the fractional variance of
lnp decreases as 1/L.

Let us first examine the qualitative consequences
of Eq. (3). First, it rigorously corroborates the ar-
guments of Anderson et al. (Ref. 8) that at zero
temperature as L, —+ ao the scale resistance,
exp((lrjp) ) =er, and conductance e r are the
relevant quantities. From (3) we see that a finite
ensemble average of p or g yields
lnp/( 1np )= 1up/yL = lng /y—L ~1 as L +oo. —
Second, for large finite L, it predicts a correction
to the scale resistance proportional to v L, which
we shall see is important for explaining numerical
results and may be experimentally observable under
conditions to be discussed below. This VL correc-
tion implies slower than linear growth of lnP (i.e.,
second derivative negative) for finite L, which has
been observed in the numerical studies of Andereck
and Abrahams, ' and Stone et al., whereas all
known analytic calculations give ln(p) cc L for
large finite L. In particular, in the special case of
the Anderson model with purely off-diagonal
disorder at E =0, it has been shown that the
parameter y=0. " Thus (3) implies 1np cc ~L in
this case as was found in the numerical studies of
Economou and Soukoulis, ' despite the fact that
even in this special case the analytic result is
ln(p) ~L (Ref. 11). Third, Eq. (3) implies that for
L & o (g)~/4y, d (lng ) /dL is positive and Ing
will typically increase with I., suggesting incorrect-
ly the absence of localization. '

Equation (3) has no adjustable parameters since
the quantities y, o, and (g)~ are all determined by
the distribution of lap and the ensemble size. The
parameter y may be shown to be equal to twice the
average inverse localization length, and for the
Anderson model with diagonal disorder this is
known from a perturbative calculation' which
gives y=0.084( W/V), where 2W is the width of
the rectangular distribution of site energies. In ad-
dition, many models of disordered 1D systems
satisfy the relation y= —,o. for weak disorder, in-
cluding the Anderson model (Ref. 9). Thus in
many cases Eq. (3) may be calculated entirely
analytically, given the value of (g)~. Therefore,
we should be able to get meaningful quantitative



P(g)d(= m [H(g)] 'dH .

It turns out to be easier to get a good approxirna-
tion for (g)~ in general by considering it as a
function of the random variable H, so that

(g) =m J g(H)H 'dH .
The reason that this is convenient is that
(H) =m/(m+1) and Var(H)=m/(m+1)
X(m +2), so that for m large, Var(H)/(H )'
=1/m and (g(H) ) is close to g((H ) ). We can
then Taylor expand g(H) around (H) in (5) to
give

(g)=m j H 'dHg((H)-)+
'BH (~ )

(H —(H))

+ — (H -(H &)'+1 Bg
H (~)

(g&.=g((H))+, g"((H &) .2'
Equation (6) is an entirely general approximation

for (g) which is expected to be good for m » 1,
and whose accuracy can be made arbitrarily good
by including higher terms in the Taylor series. A11

one needs to evaluate (6) is an expression for the
inverse of the standardized distribution function H
of lnp.

A part1cularly important case 1s when lnp 1s noI'-

mally distributed. There exists a great deal of re-

cent numerical and analytic work which shows
that lnp is approxiInately normally distributed in
the highly localized regime for Inany simple
models of disordered one-dimensional sys-

tems. 8' "'5 ' In this case H is the standard er-

ror function which is approximated by

H (g)=1—(2~/') 'i' exp( —g'/2)

for g» 1. Then

—In($2)
2m(1 H)—

comparisons of (3) with numerical studies by tak-
ing either the analytically or numerically deter-
mined values of o and y, and by calculating (g)
(g) is the expected value of the maximum of a
set of m independent random variables with the
standard distribution H(5). We shall find that in
fact (g) is both relatively insensitive to the exact
nature of H(5) and is a slowly varying function of m.

To obtain the probability density for g, P(g), we
note that since (=max(5i, . . . , 5 ) it follows that
Prob(g &z) =g, , Prob(5; (z). Therefore,

ln
2'(1 —H)'

i

—ln ln
1

2m (1 H)—

Evaluating (8) at (H) =m/(m +1) gives the first
term in (7) and higher terms may be obtained in a
straightforward fashion. For m =1000, g((H ) )
=3.08 and the next term, (1/2m )g"( (H ) ) =0.16,
so our series approximation for (g& seems nicely
converged. For a bounded distribution H the cal-
culation of (g) is trivial for m large since the pro-
bability that the maximum of (5) is very near the
upper bound becomes very high, and onc can tRkc

(g) equal to the upper bound. For a rectangular
distribution with unit variance the upper bound is
V 3 and the exact result is (g) =v 3(m —1)/
(m +1). Thus, as noted above, we see that for
reasonable size ensembles (m =1000—10000), (g)
only varies by a factor of 2 or 3 between these two
very different distributions, and in both cases (g)
is a slowly varying function of m.

Having calculated (g) we are in a position to
apply Eq. (3) to various numerical results. Here
we assume that lnp is normally distributed and
take (g) from Eqs. (7) and (8). Figures 2(a) and
2(b) show that Eq. (3) does indeed give good quan-
titative agreement with numerical data. In Fig. 2
the circles are the results of the computer experi-
ment, while the thick curve is the analytic result
for lnp and inf of Eq. (3). The thin solid line in
2(a) is the analytic result for ln(p) derived in Ref.
9, which, as usual, predicts much too large values
of lnp, The agreement is excellent in view of the
facts that: (i) Eq. (3) is applied with no parameters
left free; (ii) our computer experiment only consti-
tutes one observation of lnp and thus should have
some small random deviation from the exact
(lnp). In plotting Eq. (3), we have used the aver-

age value of the numerically obtained values of 0.

and y for each length, which are y=0.0381,
0.=0.272. Using the perturbative calculation for
y, and the relation y= —,0 yields @=0.041,
0 =0.29 which gives a reasonable, but less good, fit
to the data. This is to be expected, since the ap-
proximation of weak disorder is beginning to break
down for IY/V = I/W2. Equation (3) also gives a
good fit for the data in Fig. 1 using the numerical-

ly obtained values @=0.0163, 0'=0. 196.
Figure 2 suggests that Eq. (3) and the assump-

tions on which it is based provide a useful descrip-
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theories based on the Landauer formula for the dc
resistance. Thouless has analyzed in detail the role
of these inelastic processes in various temperature
regimes. ' ' In another paper we have shown that
the resistance due to these processes is not subject
to the exponentially large fluctuations which make
it necessary to distinguish lnp from 1n((p) ), except
possibly in the exponential hopping regime. '

Since this regime is not accessible in metallic wires

using present experimental techniques (Refs. 20
and 21), we conclude that zero-temperature statisti-
cal fluctuations are not playing an important role
in the present set of experiments. Nonetheless, if it
becomes possible to probe the regime where the ac-
tual resistance depends exponentially on tempera-
ture then one must ask whether statistical fluctua-
tions lead to a difference between 1nP and in(p).

To analyze the statistics of the response func-
tions at finite temperatures, it is useful to regard
the studies of the zero-temperature resistance,
based on the Landauer formula as studies of the
inverse localization length a, using the relation
a=(1/2L) lnp (Ref. 21). Then the assumption that
lap is normally distributed implies that a is also,
with

I
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I' (a)= —exp

1 (a —y/2)
v ~y/L, y/I.

(9)

FIG. 2. (a) Plot of ln(p) vs number of atoms for
Anderson model with purely diagonal disorder of half-
width W/V= 1/W2. Circles are the numerically com-
puted average over 1000 systems; the thick curve is cal-
culated from Eq. (3a). The values of 0 and y are ob-
tained numerically. The thin solid line is the analytic
result In((p) ) from Ref. 9. (b) Plot of ln{g) vs number
of atoms for the same system parameters as (a). Again,
the solid curve is the analytic result of (3b) and the cir-
cles the numerical values.

where we have used the relation y= —,0. . Kurki-

jarvi has shown that for a one-dimensional sys-
tem in the exponential hopping regime, the Mott
variable range hopping does not occur, but instead

To/T
the hopping resistance satisfies p» Gee, where

kTp =a/4Anf, A is the cross-sectional area and nf
is the density of states per unit volume at the Fer-
mi level. This may be rewritten in the form

tion of computer experiments: Whether it will
contribute to a useful description of actual experi-
ments which measure the resistance of very thin
metallic wires is a great deal more problematic.
Several different experimental groups have found
evidence for one-dimensional localized behavior by
measuring the low-temperature resistance of such
wires. ' While the observations are in qualitative
agreement with theory, the quantitative agreement
is still rather poor. In real experiments at finite
temperature, inelastic scattering provides alterna-
tive transport mechanisms with much higher con-
ductivity than that due to quantum tunneling
which is studied in the zero-temperature scaling

cad(T)
pI CC e (10)

1n(p» ) = 1+ (1 la)

1/2

in(P»)=
2

2 yl.
—in(yL ),

(1 lb)

where d (T)=(4Anfks T) ' has the dimensions of
length, and a is normally distributed according to
Eq. (9). Then exactly analogous calculations of
(p») and P» as for (p) and p yield
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where we have assumed the hopping resistance of
the sample is roughly the sum of the resistances
due to yL segments of length 1/y (the localization
length). The interesting point which emerges is
that as long as 1/y « d ( T)«L, then ln(pI, )
=ln(p), ) =yd/2; thus, we see that statistical fluc-
tuations only give a relatively small correction to
the finite temperature resistance even in the ex-
ponential hopping regime, as long as d (T) «L.
Note also that yd/2 is equal to (lnpi, ) and is the
finite temperature analog of the logarithm of the
scale resistance, so again we find this to be the
relevant quantity. Finally, if d (T) becomes greater
than I., then the conductivity due to tunneling be-

comes greater than that due to hopping and all the
results of -the zero-temperature scaling theories
should apply. Then we mould expect the resistance
averaged over many samples to satisfy Eq. (3a).

Unfortunately, even for a truly one-dimensional
wire of length 100 p, (Akf —+1), d (T) becomes
greater than I. only at about 10 ' K, so, as we em-
phasize in Ref. 21, the observation of these effects
are mell beyond the capabilities of present experi-
mental techniques.
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