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Deteiiaination of bond lengths from extended x-ray absorption fine structure
using the linear phase functions
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The extended x-ray absorption fine-structure (EXAFS}spectra of many elements and

compounds have been analyzed to determine their phase functions as a function of the
zero of kinetic energy, Eo, of the excited electron and the weighting power of the wave

vector used in the Fourier transforms. It is found that a linear phase function exists for
any material at some particular value of Eo——E,, The procedure for determining this E,
value is described. A hnear-phase-function method of determining bond lengths is pro-

posed and compared to other existing methods of EXAFS bond-length determinations.

The many advantages of using these linear phase functions in EXAFS analysis are dis-

cussed. With the use of the linear phase functions with a linear extrapolation of their

parameters, it is demonstrated that it is possible to verify the existence of a more general

form of phase transferability which relates the phase functions of different atom pairs.
Such relations allow the number of phase functions needed to characterize a system of N
atoms to be reduced from N to 2X —1. This type of comparison is not feasible with the
usual nonlinear phase functions.

I. INTRODUCTION

The use of extended x-ray absorption fine struc-
ture (EXAFS) to obtain structural information has

undergone extensive development in recent years.
This has occurred because of the iInprovement in
the quality of the data due to the increase in x-ray
intensity from electron storage rings and brause
Lytle, Sayers, and Stern' advanced the analysis

proccdurc significantly by 1ntroduc1ng Fouricr-
transform techniques. Stern and others ' have

attempted to establish a strong theoretical basis for
the analys1s. In part1cular Lee and co-workers *

have calculated scattering F(m, k) and phase-shift

P(k) functions that are often used in the analyses
of data.

In evaluat1ng coordination numbers or bond

lengths in unknown Inaterials, it is necessary to as-

sume amplitude and phase transferability from
model compounds of known structure or from cal-
culated functions. It has now been well establish-

ed ' that amplitude transferability for coordination
number determinations is not generally valid but
holds only between "chemically similar" sub-

stances. Howcvcr thc transferability of phases foI'

bond-length determinations appears to be more
generally valid.

By now several procedures have been proposed
to obtain bond lengths. They are all closely related

and generally assume that the zero of kinetic ener-

gy, Eo, of the excited electrons is within a few

volts of the E edge. In determining an unknown

bond length, Eo 1s trcatcd Rs R frcc pRI'RInctcr and

adjusted to meet certain specified criteria. This
procedure hopefully compensates for many of the
approximations made in the analysis. A second,

parameter n, the weighting power of the wave vec-

tor is also introduced in most analyses. In Secs.
III and IV we investigate the effects of these two

parameters and develop a new method of treating
the data which determines the linear phase func-

tion of a material. %C show that there are great
advantages in analyzing the data using this linear

phase function.
In Sec. II we describe the initial data reduction

and the determination of the radial-scattering dis-

tribution. In Sec. VI a new linear method of
analysis is proposed. In Sec. VII we discuss some
of the other methods of analysis and their limita-

tions. In Sec. VIII we derive and test general

phase transferability.

The generally used one-electron single-scattering
form representing the EXAFS oscillations is given
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by2

—20~k 2

X(k) = —Q 2 E; (n, k).e
i kf

Xe ' ' sin[2kr;+P;(k)],

x rays. The main effect of this energy spread is to
dampen the EXAFS oscillations. It does not af-

fect the nodes appreciably and so it is not neces-

sary to deconvolute the energy resolution from the
oscillations for bond-length determinations. Thus,
we have not made such corrections in this analysis.

Such corrections can obviously be very important
for coordination number determinations.

where the index i indicates the ith-neighbor shell of
atoms surrounding the absorbing atom. N; is the
number of atoms in the ith shell and r; is its dis-

tance from the absorbing atom. E; is the ampli-

tude of the backscattering function of the atoms in

the ith shell and cr; is a correlated Debye-Wailer
factor. A,; is the mean free path of the electron
which has been ejected from the absorbing atom.
It has a k dependence and for the first shell is due

mainly to inelastic-scattering processes. We sub-
script A,; since it may vary for the different shells.

tI}; is the phase shift of the electron due to back-

scattering from the ith shell. It has a contribution

of P, arising from the absorbing atom and a com-

ponent Pb arising from the backscattering atom.
Equation (1) does not take into account any in-

terference or multiple-scattering effects within or
between shells. These effects as well as many-body

relaxation effects have been discussed by several

authors '"' and can be incorporated, to some ex-

tent, by introducing further parameters into Eq.
(1).

As seen from Eq. (1), even in the one-electron

single-scattering approximation to X(k), each shell

is characterized by six parameters or functions plus

another parameter, Eo, which represents the zero
of kinetic energy of the electrons. Due to the large
number of parameters EXAFS analysis is a very

intricate process which must be applied with cau-
tion. Three types of information have mainly been

obtained from EXAFS data: (1) Bond-length
determinations which are mainly sensitive to the
phase functions of P(k). (2) Coordination num-

bers, N;, which are obtained by evaluating the pre-
factors of the sine functions in Eq. (1). Both of
these quantities are preferably obtained from data
taken at low temperatures in order to enhance the
EXAFS oscillations. (3) The correlated Debye-
Waller factor 0.; is obtained by varying the tem-
perature ' and will be discussed no further here.

The data analyzed here were taken at SSRL at
Stanford and CHESS at Cornell. The energy reso-
lution at both storage-ring sites is determined by a
1 —2-mm slit at about 17—20 m from the storage-
ring orbit. This gives about 1 —2-eV resolution for
7—8-keV x rays and about 10—15 eV for 25-keV

A. Initial data reduction

The generally used procedure of data reduction
of an x-ray absorption curve is similar to the fol-
lowing. We first find the absorption coefficient

p, '(E)d =ln(I/Ip) where I is the measured intensity
of x rays of energy E. The region below the E
edge is then extrapolated to higher energies by fit-
ting it to a Victoreen formula given by

pb(E)d =2/E +8/E (2)

where A and 8 are determined by usual curve-

fitting procedures. It is then subtracted from the
measured p'(E)d to give p(E)d The .region above

the K edge is then smoothed by one of various pro-
cedures (multiple averaging, spline fitting, etc.) to
obtain the absorption by isolated atoms, pp(E)d.
The oscillations P are then obtained by taking the
difference between the measured p(E)d and pp(E)d
and normalizing by dividing by the properly scaled
atomic absorption coefficient p, (E) due only to the
transitions of the absorbing atom. The p, (E)
curves are well determined quantities which over
the years have been tabulated in many works, e.g.,
see Ref. 10 where the atomic absorption due to
only the E edge is essentially given by

p, (E)= (&i C2)IE' (D i
—&2)/E— —

The C and D values are tabulated in Ref. 10.
Often the samples being measured contain many

atomic species, or are mounted on some backing,
or may contain holes so their exists a background
due to many effects. However near an edge the
observed step and oscillations should be due to
only the atomic species being measured. We nor-
malize out all other effects by finding the step
value p,,(Ei)d =pp(Ei)d —pp(Ei)d at some energy
Ei slightly above the E edge, (e.g., Ei ——20 eV) and
then scaling by the factor p,,(Ei }d/ p, (Ei). Thus,
we obtain X(E) given by the expression

[p(E)d —pp(E)d]p, (Ei )
X(E)=

p, (Ei )dp. (E)

Next X(E}is transformed to X(k) by assuming
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the electrons are free, i.e.,

k =[2m/Ii (E —Eo)]'~, 0.10

(0}

Fe(-ao K)

where Eo is a parameter which defines the zero of
kinetic energy of the outgoing electron. It is a
parametric quantity sometimes called the "inner
potential. " In a simple picture of a metal, the K
edge corresponds to the Fermi level EI;, so Ep
would be expected to have a value similar to the
bottom of the conduction band.

In another view, considering the electrons as be-

ing in free space, Eo would correspond to the work
function or in the case of a nonmetal to the ioniza-
tion potential. Both pictures have been used in the
literature. The values corresponding to the phases
and amplitudes of Lee et al. ' span the range
around +8 eV. It is not at all clear that it is justi-
fied to treat Ep as k independent but for practicali-
ty this is done. In Sec. III we examine the conse-
quences of varying Ep in greater detail.
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B. Determination of radia1-scattering distribution

The next usual step in the analysis is to take the
Fourier transform (FT) of k "X(k). The purpose of
the k" factor is to reduce the k dependence from
the prefactor of the sine function in Eq. (l). At
this stage a window function W(k), which falls off
smoothly near the minimum and maximum k
values, is also used. This suppresses the side peaks
which would be caused by sharp cutoffs. In the
data presented here an error function of width =1
A ' has been used. To further reduce cutoff ef-
fects the minimum k is always taken at a node in

X(k). The oscillations near the E edge are not
used since band-structure effects dominate in this
region. Thus the minimum k is generally & 3 —4
A . The radial-scattering function is thus given

by

k2
R(r)= ——f W(k)k"X(k)e ' "''dk .

X(k) and its Fourier transform R (r) with n =3 are
shown in Fig. 1 for an Fe spectrum taken at
around 80 K.

III. EFFECTS OF VARIATION OF Eo AND n

Let us investigate the effects on R (r) of the two
arbitrary parameters, Ep and n, which have been

introduced into the analysis.
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A. Peak position behavior

In Fig. 2(a) we show the variation of the peak
positions of R (r) as Eo is varied for the n values
of 1, 3, and 5 for a 5-pm Ni foil at about 80 K.
Ep is measured relative to the K-edge energy which
is taken as the half-height of the absorption step.
The peak positions are shown for the first (N I),
third (E3), and fourth (E4) shells surrounding the
absorbing atom. We observe two striking features.
One is that there exists an Ep value that gives a
transform peak shift which is independent of the
weighting factor n. Let us call this crossover ener-

gy E,. The other is that, for metals, E, is essen-
tially the same for all the well-resolved inner shells.
This behavior is seen in all the metals examined so
far. They are listed in Table I.

We can understand the general behavior of the
peak-position variation in Fig. 2(a) as follows. In
converting from electron kinetic energy to wave

r (A}

FIG. 1. (a) EXAFS osrillations g(k) for Fe at -80
K and Eo= —32 eV. (b) Magnitude ~R(r)

~
and ima-

ginary Im[R (r) j of the Fourier transform of O'P(k) for
Fe.
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FIG. 2. (a) Peak positions of the N1, N3, and E4 shells of Ni as a function of Eo for various wave-vector weighting
factors, k', k, and k'. Note the r scale for N1 is a factor of two larger than that for the other shells. (b) The k-
independent part of the phase a; as a function of Eo for various weighting factors.

vector, Eq. (5), we see that a change in Ep by 5E
results in a change in the k scale of hk given by

b k =md, Elhi k .

Thus, for a given b,E, the k scale changes much

more at small k than large k. As a result, for a
shift of hE, the X(k) curve is affected more at
smaller k than larger k. Since for larger n the
higher k values are weighted more than the lower
k values, for a given hE, X(k) changes less for

TABLE I. E, and E~B values and peak shifts for first-neighbor shells of various elements
(energies are in eV and distances in A.).

Element E ELB

( =b/2)
&&r.B

26Fe

"Ni
29Cu

32Q

"As
'4se
4'Nb

Mo

47Ag
' Sn (P)
s)Sb

—32
—29

—24+2
—26( —29)"
—23( —28)
—17( —20)

—10
—14

0
28
13
0

8
2.5
5

4(1)
3(—2)

7(4)
—6
—8
—5
—1

0
5

0.19
0.20
0.20
0.20
0.21
0.23
0.30
0.25
0.28
0.38
0.37
0.25

0.30
0.28
0.29
0.27
0.28
0.28
0.31
0.265
0.27
0.29
0.32
0.265

0.00
—0.01
—0.02
—0.01
—0.016

0.006
—0.025

0.00
—0.01
—0.10
—0.02

0.02

2.482
2.490
2.553
2.449
2.516
2.374
2.857
2.724
2.688
2.886
3.02
2.903

'See Ref. 11 for sources of distances.
'Values in parentheses axe with respect to the peak above E~.
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larger n than for smaller n. Thus, the peak posi-
tion derived from the Fourier transform of X(k)
shifts less for higher n than for smaller n. This is
just the behavior seen in Fig. 2(a) where the higher
the power of n the less the shift in the peak posi-
tion variation with Eo.

The significance of the existence of an Eo value,

E„that gives a peak position which is the same
for any weighting factor n is the following. As
seen in Eq. (1) the contribution to X(k) from a
given shell is of the form

Xi(k)= —A(k)sin(2kri+P) .

Since the FT of a sum is the sum of the FT's of
the individual terms, we can consider each shell

separately. As derived below [Eq. (10)j, the peak
position of a given shell is essentially determined

by the argument of sin(2kr, +P). Thus, the peak
position of a given shell being independent of n

(i.e., of how X is weighted) means that all the
nodes in 7; are equally spaced in k. This only oc-
curs if P;(k) is a linear function of k. Thus,
P(k)=a bk for —E, .

The second feature of E, being nearly the same
for all the well-resolved inner shells has been found
to hold only for the metals investigated so far.
This can be attributed to the crystal potentials in
metals being quite isotropic due to the presence of
conduction electrons. Not only do the well-

resolved first few shells have the same E, values
but their shifts in peak positions, hr; are essential-

ly the same at E,. This behavior is not found in
nonmetals. There the E, values as well as the peak
shifts, Ar;, are different for the different shells.
For example for Ge we find the E, values are
—26, —32, and —16 eV for the E1, Ã2, and X3
shells, respectively, while the respective Ar j values
are r = —0.20, —0.11, and —0.17 A. This is as
expected since the electron densities and potentials
in nonmetals are anisotropic due to the directional-
ity of the bonds in these materials.

We have found that a crossover point is obtained
for all good data sets of K edges investigated so far
(materials with Z g 51). In the cases where we had
a poor data set (low signal-to-noise ratio, glitches,
etc.) and found no consistent crossover point, in-

variably when we obtained a better data set we
found good, clear crossover points. Thus we as-
sume that at least for materials containing ele-

ments with Z & 51 there is some Eo whose
corresponding phase function is approximately
linear. In Sec. IV we derive the phase functions as
a function of Eo by back-transforming and show

(a)
Fe,

Eo *ELe= 8 eV

Eo Ec -Mi. V

Eo=Ec= -296(

N4(I2)

N

(8

I I

6 2

FIG. 3. Radial-scattering distribution obtained by
I"ourier transforming g(k). (a) For Fe with a weighting
factor of k and Eo ——Eqa-—-8 eV and Eo——E,= —32 eV.
(b) For Ni with k and Eo ——ELq ——2.5 eV and

Eo——E,—29 eV. Note that the distributions obtained
with E, are more symmetrical and well defined. Also
the first few shells of each metal have the same shifts in

peak position.

that P(k) is indeed linear at E, I.f P(k) has too
complex a shape there may be no linear P(k), e.g.,
we have found that the Ptl. transition does not
give a good crossover point. Thus, the phase func-

tion for very high Z materials may have such com-
plex shapes that they have no linear phase func-
tions. However for the materials investigated here
with Z & 51 linear phase functions do exist. In
general we have found that the P(k) functions ob-

tained by back-transforming are less structured and
have less curvature than those calculated by Teo
and Lee.'

There are other pleasing features of the Fourier
transforms R (r) for Eo E, . T——his can be seen in

Fig. 3 where we show R (r) for Fe and Ni for
Eo ——E, and for the Eo ——EL&, the value obtained
using Lee and Beni's (LB) criteria and similar to
the Eo values usually used in EXAFS analysis.
The latter will be discussed in Sec. V. It is seen in

Fig. 3 that the peaks at E, are much more sym-
metrical and well defined than those at ELii. This
is because of the lack of distortion of the peak
shapes for the linear phase function. This graphi-
cally illustrates that caution should be exercised in

analyzing peak shapes from EXAFS. For example
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at Et n the E3 shell in Fe has a definite shoulder
which is seen to be an artifact of the analysis since
the X3 shell shape is entirely symmetrical and well
resolved at E,. Thus the radial transforms ob-
tained using E, provide much cleaner data for
selection of single peaks for back-transformation
than those generated from other Eo values. This
removes one source of error in EXAFS data
analysis. Another feature that is seen is that the
peak shifts for the various shells are similar for E,
but quite different for Ez.n. In Fig. 3 the vertical
arrows indicate the positions of the higher-
neighbor shells relative to the /1 shell. As seen in
Fig. 3, the N2 and N3 shells of Fe are well aligned
for E, but considerably shifted for Et.z. For Ni
also, all the peaks are shifted by the same amount
for E, whereas for Ez,a the X2, N3, and N4 peaks
are shifted by different amounts. The shifts for
Ezn are, of course, also n dependent.

The measured values of E, for different materi-
als are listed in Tables I—III. They are measured
rdative to taking the value at the half-height of
the step in the absorption curve equal to 0, i.e.,

E&——0. In cases where there is a sharp exciionic-
like peak above the E edge we have also listed the
energy relative to this feature in parentheses. We
see from the tables that E, varies from about —30
eV for Z-30 to positive values for Z-SO. This
variation can be related to the systematic variations
seen in the phase functions calculated by Teo and
Lee.

The values of the shifts in the peak positions,
—br;( =b;/2), for these materials with known
structure" are given in column 4 of Tables I—III.
The slopes of the linear variation of peak positions
with Eo, r= —b—,r;/bEO ( =b /2), are listed in
Tables III—V. Note that although the bond
lengths must be known to obtain hr; they do not
have to be known to obtNn p'g and E~. Thus, I'g

and E, can be obtained for any unknown material.
We have found that the difference in r' values

for r-2. S A for n =1 and 3 is about 0.9 && 10
A/eV. Thus, for materials with E,——30 eV (as
Fe to As), this would lead to a difference of about
0.03 A between analyzing the data with n =1 or 3
for Eo 0 (the E edge), the value often used.

TABLE II. E, and ELB values and peak shifts for various compounds (energies in eV and
distances in A).

Compound ELB

—hrLB
(n =3)

Mn02 (X1 Mn-0)'
(N2 Mn-Mn)"

FeAs2 (Fe-As)'

NiAsd

Aswi

FeGep (Fe-Ge)'

NiSe

FeSb2 (Fe-Sb)

FeTe2 (Fe-Te)"

NiTe'

—55( —64)
—20( —29)

—13

37

38

3.5

—3

0.18
0.23

0.19

0.24

0.31

0.39

0.35
0.31

0.28

0.28

0.21

0.23

0.23

0.01
0.01

0.01

—0.017

—0.02

—0.01

—0.015

—0.03

1.89
3.426

'2 0 at 1.878 A and 4 0 at 1.892 A.
b4 0 at 3.345 A, 8 Mn at 3.426 A, and 4 0 at 3.433 A.
'2 As at 2.327 A and 4 As at 2.366 A..
6 As at 2.439 L and 2 Ni at 2.517 A.

'S Ge at 2.549 A. and 2 Fe at 2.4S1 L.
6 Se at 2.502 A. and 2 Ni at 2.677 A.

s2 Sb at 2.565 A. and 4 Sb at 2.600 A.
"4 Te at 2.562 4 and 2 Te at 2.576 k.
'6 Te at 2.664 k and 2 Ni at 2.690 A.
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TABLE III. Measured quantities for higher shells for n =3.

Material

Fe

Shell

N1
N3
N4

E,
(eV)

—32
—32
—31

0.19
0.20
0.03

a;
(rad)

3.4
3.4
5.4

I
t

—P.

(A/ev)
(=& /2)
(X10')

2.9
5.9
7.7

1

a;
(deg/eV)

7.2
14.8
17.6

Ni N1
N3
N4

—29
—29
—29

0.20
0.18
0.20

4.4
3.4
6.1

2.6
5.1

5.4

6.8
12.6
13.7

N1
N2
N3

—26
—32
—15

0.20
0.11
0.18

5.8
2.1

5.0

2.5
4.1

6.2

6.2
10.8
14.3

Mo N1
N2
N3

—14
—15
—15

0.25
0.26
0.24

6.8
6.7
5.5

2.8
2.8
4.3

7.1

7.9
11.7

NiAs

N1
N3
N4

N 1(As)
N4(As)

0
0

—5

0.28
0.29
0.30

0.19
0.31

8.7
9.7
6.7

5.2
2.5

2.4
3.9
4.5

3.5
6.8

6.7
11.1
12.8

7.8
14.2

B. Magnitude behavior

The same type of behavior, as seen for the peak
positions, is seen in the magnitude of k-indepen-
dent part a of the phase function. The va1ue of a

is obtained by comparing Im[R (r) j to
~

R (r)
~

at
the peak positions. To see this, consider only the
first shell where Xi(k) is given by Eq. (8).

Taking P(k) to be linear we substitute 1; into
Eq. (6). Then upon neglecting the variation of the

TABLE IV. Measured quantities for the linear first-neighbor phase functions of some ele-

ments at n =3.

Element

26F

28Ni

29Cu

32Qe

"As
'4Se
"Nb

Mo
4'Rb
47Ag

"Sn
51Sb

Q)

(rad)

3.4
4.2
4.3
5.8
6.7
7.9
7.0
6.8
8.7
6.8
6.6
4.1

r

9&

(deg/eV)

7.2
6.5
74
6.2
6.75
6.3
7.6
7.1

6.7
7.5
8.2
8.1

I

(A/ev)

(=b) /2)
(X 10'~

2.9
2.6
2.5
2.S
2.9
2.4
3.1
2.8
2.4
3.0
3.2
3.3

k range
(A-')

4—18
4—18
4—21
4—19
4—19
4—20
4—18
4—22
4—20
4—17
4—20
4—16
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TABLE V. Measured parameters of the hnear phase functions for various compounds for
7g =3.

Compound

If }
(Agev)

( =&'/2)
(X10')

k range
(A ')

Mn02 (N1 Mn-0)
(N2 Mn-Mn)

FeAsq (Fe-As)

NiAs

AsNi

FeGe2 (Fe-Ge)

NiSe

FeSb, (Fe-Sb)

FeTeq (Fe-Te)

NiTe

0.70

3.4

5.6
10.65

7.72

84

2.5
4.9

3.5

3.38

4.06

3.6

4—18

4—15

4—20

4—15

4—18

3.5—15

3.5 —,. 16

3—15

prefactor compared to that in the exponential
terms we get (a procedure similar to that used in
Ref. 3):

2 i([2(r —r;)+slk —a)
}

(9)

linear phase function which occurs at E, I.et us.
also consider only the contribution gi for the first
shell. It can be obtained from R (r} by back-
transforming as discussed in Sec. IV. At E, it is
of the form

where we have kept only the term with a max-
imum at positive r. Evaluating Eq. (9) gives

sin(k2 —k i )s
/R(r)

f
=

2$
(10)

gi(k) =—A (k) sin(2kri+a bk), —

where the total phase 4{k)=2kr i+a bk. At th—e
nth node in Xi we have 4(k„)=nm. , so

where s =r ri+b/2. Th—e peak in ~R(r)
~

is
s =0 or r =ri b/2 The—imagi. nary part of 8 (r)
is found to be given by

1m[a(r)]= —~Z(r) ~cos[(k, +k, )s+a].

We can thus obtain the magnitude Q at the peak
position, s =0, from

o i
——nn. —k„(2ri b), — (14)

where k„=[0.2625(E„E,)]'~ and E„ is —the en-

ergy at the nth node. Energies are in eV and k in
If we then change from E, to E,+b,E the

momentum at the nth node changes to a new value
k„=[0.2625(E„E, 4E}]'~ . —Assu—ming the to-
tal phase can still be approximated by a linear
function we have 4(k) =2kr i +a —b k. Again
4(k„)=nn. so we have

a =cos 'I —Im[R(r)]/~R(r)
~ I . (12) a, =nn —k„{2ri b) . —

We obtain Im(R) because we kept only the positive
r values in Eq. (9). In Fig. 2(b) we show the a;
behavior for Ni as a function of Ez. We see that
these have a similar behavior to that of the peak
positions in that they are essentially straight lines
of increasing slope for lower n. They have the
same crossover points as the peak position lines
and thus can also be used to determine E, values.

The linear variation of a with Eo can be under-
stood as follows. For simplicity let us consider the

The change in a, ha =a, —a i is thus given by

ha =2ri(k, k„)+bk„bk„—. —

Neglecting the difference between b and b and
evaluating k„—k„we get

ha =0.2625M'(r i b /2)/k„, —

a i
—ha /b, E =0.2625(r i b /2)/—k„. —

Thus, ba varies linearly with EE as seen in Fig.
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2(b). The a' values for many materials are listed in
Tables III—V. It can be seen that a'-7'/eV or
-0.12 rad/eV for r-2. 5 A and n =3. At the
same r value it is -8'/eV for n =1 and -6'/eV
for n =5. The variation of a' with r can be seen
in Fig. 2(b) and Table III. It is obvious that the
slope of a; increases for the higher shells. We
found that the k„values varied between about
4 —5 A. ', with a tendency for smaller k-range
data sets to have lower k„values. This agrees well

with the k„values calculated by assuming that the
dominate nonlinear term in the nonlinear phase
functions goes a 1/k and linearizing it over the
measured k range.

Both a;(E, ) and a can be uniquely determined
for a given atom pair in any material; no knowl-

edge about the structure of the material is required.
While a;(E, ) is independent of n, a/ is of course n

dependent since it involves a weighted average in
k. The a; values are, of course, known only to
within multiples of 2'.

C. Slope of peak position variation

As seen in Fig. 2(a), for a given n, the variation
of the peak position as a function of Eo is essen-

tially linear. We define the slope of this linear
variation as r'= b'/2. An e—xpression for this
slope can be derived in a similar manner to that of
the magnitude. In this case we consider the
behavior of the total phase 4(k) at consecutive
nodes k„and k„+&. Taking the difference of the
expressions for the linear phases

and about 0.6& 10 A/eV more positive for
n =5. The variation of r' with bond length can be
seen in Fig. 2(a) and Table III, the slope is more
negative for greater bond lengths as indicated in
Eq. (19). In evaluating Eq. (19), the (k„k„+~)'~
values varied between -8.5—11 A ' with, again,
the lower values corresponding to data sets with
smaller k ranges and the higher values to sets with
larger k range. Again these (k„k„+&)'~ values
agree with linearized calculations assuming a 1/k
term dominates in the nonlinear phase functions.
There seems to be no particular correlation be-
tween these values and the Debye-Wailer factor or
energy resolution. The values of k„and
(k„k„+~)'~ are highly correlated with the ratio
(k„k„+t)'~ /k„being between 2.1 and 2.3 for
/l =3.

Thus we can understand the behavior of all the
features seen in Fig. 2. For any material the pro-
cedure described here gives a method to obtain E,
and the quantities r

&

—b/2, a, a', and b' which
characterize the linear phase function and its varia-
tion with Eo. We can further investigate the
behavior of the phase functions by back-trans-
forming R (r) and deriving the amplitude and
phase functions by use of Eq. (1).

IV. BACKTRANSFORMING THE DATA

A further step often used in analyzing EXAFS
data is to obtain the individual contributions X; by
back-transforming the individual peaks of the radi-
al scattering function 8 (r). That is

4(k„+~ (n +1)m and ——4(k„)=no at E, , X;(k)=~2/vr f R(r)e '""dr, (20)

we obtain

b, =2r, n/(k„+, k„)—. . — (18)

At E, +DE, where the nodes move to k„+i and k„
we get a similar expression for b&. Taking the
difference of b& and b, and substituting in the ex-

pressions for k„+i and k„and keeping terms to
first order in 0.26256E/2k„+&k„we get

where ro and r„are values spanning the peak due
to the ith shell. Considering the first shell we have

i@i(k)Xi«)=Re(X1)+t Im(X1)= lri Ie

(21)

where

hb =b ) b) ——0.2625(r ) b—/2)b E/k„k„+ )—,
—202k2 —2r /A,

kryo

(22)

or defining b i
——hb/AE =—2r', we get

b ) ——0.2625(r, b/2)/k„k„+, —. (19) @i«)=2«i+Pi(k) =cos 'elm(&i)/
I &i I ] .

The r' values for many materials are listed in
Tables III—V. It is seen that r'- —2.7 & 10
A/eV for r -2.5 A and n =3. At the same r it is
about 0.9&(10 A/eV more negative for n =1

(23)

Where Im(X&) occurs because we retain only posi-
tive r values in the Fourier transforms.



DETERMINATION OF BOND LENGTHS FROM EXAFS. . .

thus contains information about N, E, o',

and A,. In practice the shape of the scattering
function, especially at low k values, is sensitive to
the values ro and r„and to the value of n used in
the Fourier transforms. This is shown in Fig. 4—2r) /A, iwhere we show F~(m, k)e for various (ro, r„)
regions as indicated for Ni in Fig. 3(b) by b, ~, 42,
and b,3. This sensitivity can make evaluation of
quantities in the prefactor somewhat subjective.
The calculated I' values of Teo and Lee are typi-
cally a factor 1.7—2.0 times larger than the de-

—2r) jA)
rived values of F&e ' ' values for an interval
such as h2. Part of this is due to inelastic scatter-—2r
ing as represented by the factor e ' '. Inelastic
and multiple scattering, as well as many-body and
thickness effects must be considered in evaluating
the quantities in the prefactor. Discussions of
some of these difficulties have been published re-
cently. ' Amplitude transferability is found to
hold only for chemically similar materials, so that
coordination number determinations can be quite
inaccurate. In this paper we will not consider the
amplitude and prefactors any further but will con-
centrate on the simpler determination of bond
lengths. In contrast to the sensitivity of the pre-
factor parameters to the (ro, r„) interval, the phase
functions P(k) obtained by back-transforming are
essentially insensitive to the tails of well-resolved
peaks.

A. Determination of phase functions

The phase functions P(k) of an atom pair in a
material whose structure is known can be deter-

mined from Eq. (23) which relates k (and thus,
Eo), r;, and P. The P(k) functions vary systemati-
cally Rs Eo 18 var1ed. Th1s 18 shown 1n Figs. 5 Rnd

6(a) where we show typical sets of phase functions
of the first shells of Ni and Ge for various Eo
values. We see that the phase functions are sets of
curves that tend to converge at high k values and
fan out at low k values due to the slopes being in-
creasingly negative as Eo increases. It can be seen
that, as expected, the P(k) curves for Eo E, ——
( —29 eV for Ni and —26 eV for Ge) are linear.
The dashed curves are the phase function calculat-
ed by Teo and Lee. In Fig. 7(a) we show the de-
rived P(k) for the well-defined El, X3, and X4
peaks of Ni for E,. N2 is left out since it is too
small to give a reliable peak due to having only six
sites. We see that RH shells have similar slopes, b,
as was already evident in Fig. 3 where Rll the peaks
were shifted by the same amount. However, the
magnitudes a, are seen to be different for the vari-
ous shells. In Fig. 7(b) we show the derived P(k)
functions for N 1, N3, and X4 evaluated for the
Eo value (2.5 eV) determined by the Lee and Beni
procedure. We see that for this Eo value the P(k)
have different slopes as was also seen in the peak
positions in Fig. 3(b). They also have different
magnitudes.

In Fig. 6 we show the derived linear P(k) func-
tions for the E 1, N3, and N4 shells of Ge at their
respective E, values. This nonmetal not only has
different E, values for the different shell but also
different slopes (although E 1 and N3 are similar)
and a values. Thus we have found that there is no
phase transferability between shells for this nonme-
tal.

(a)

Eo -"E~ ="29 eV
0.4

0.3

~a

0.2
4

O. E

I ) I ) I ) I ) I

6 8 I0 I 2 l4 l6

I ) I l I l I 1 I

6 8 I 0 I 2 l4 l6

FIG. 4. Derived amplitude functions of Ni, (a) for a k weighting factor and the various r regions A~, h, 2, and h3 as
shown in Fig. 3(b), (b) for the interva1 h, q for different weighting factor k ', k, or k .
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lO l2
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l4 l6
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I 0 i2 i4 i6

FIG. 5. Derived phase functions (I)(k) for various Eo
values for the N 1 shell of Ni. The linear i))(k) is ob-
tained at Eo ——E,= —29 eV. The dashed curve is the Ni
phase function calculated in Ref. 5. It corresponds to
ELB——2.5 eV as described in the text.

IO i2

k (A")

l4 ie is

2

FIG. 7. Derived phase functions i))(k) for the X 1

W3, and X4 shells of Ni. (a) Eo ——E,= —29 eV, note
that they all have essentially the same slope but dif-
ferent magnitudes. (b) Eo——EL&——2.5 eV, the slopes as
well as magnitudes are no longer the same for the dif-
ferent shells.

IO l2 l4 l6 It should be emphasized that the a (Eo) curves
such as shown in Fig. 2(b) are not the intercepts of
the derived i))(k) curves as seen in Figs. 5 and 6(a)
(the ((i(k) are actually never determined below

0-3—4 A ') but are values corresponding to re-

placing each i))(k) curve by the linear approxima-
tion i'(k) =a,rr b,rrk-

In Tables I—V we have listed the parameters
characteristic of the materials measured. We see
that the (('i(k) at any energy, Eo E, +b,E can be-—
represented in terms of the linear iIi(k) at E, by

IO l2 l4 l6

gati(Eo) =P(E, )+ (a' b'k)AE, —

or hg=iI)(Eo) —P(E, ), is given by

(24)

k(A )

FIG. 6. Derived phase functions il)(k) for Ge. (a) the
variation of P{k) for the N 1 shell for various Eo values.
The linear il)(k) corresponds to E,= —26 eV. The
dashed curve is the phase function calculated in Ref. 5.
(b) The i)1(k) functions for the first three shells for their
respective E, values. Note that in this nonmetal the E,
values and slopes are different for the first three shells.

bg=(a' —b'k)bE, (25)

where b'= —2r'. lt is of interest to compare this
to the usual expression for b,P used in the litera-
ture. 3 This is obtained by setting biti=2rb, k so
fmm Eq. (7),

bed=0. 2625rbEIk .
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IO6 8 I 2 I4 I6

k(A )

FIG. 8. The "true" back-transformed P(k} for Ni at
Eo ———15 and 2.5 eV are sho~n by the solid curves.
The other curves are derived from the linear phase func-
tion obtained at Eo ———29 eV using two different pro-
cedures as discussed in the text.

tude, a. Thus, in a metal, where all the shells have
the same E, value, the similar b values would indi-
cate that the size of the atoms are the same in all
direction or the potentials are isotropic. However
we found that at E, in a metal the magnitudes or
well depths were usually unequal for the different
shells or directions. In nonmetals we found that
the E, values were different for different shells in-
dicating that the size or potentials of the atoms
look different in different directions.

Having obtained the linear P(k), we see from
Fig. 8 that is is reasonable to use linear expansions
to examine the behavior of the phase functions. In
particular it is of interest to consider various rela-
tions of the P(k) function for the same atom pair
in two different materials A and 8

V. RELATIONS BETWEEN FAMILIES
OF PHASE FUNCTIONS

» Fig. 8 we show P(k) functions for Ni calcu-
lated using Eqs. (25) and (26) for Eo —15 and——2.5
eV starting with the linear P(k) at E, = —29 eV.
The solid curves are the "true" P(k) obtained by
back-transforming with Eo———15 and 2.5 eV. The
dashed curves are those obtained using Eq. (26)
and the dotted curves are obtained using Eq. (25).
The linear approximation, Eq. (25), is seen to fit
the derived P(k)'s much better than that obtained
with Eq. (26). A better approximation than Eq.
(26) is made by using the more correct form

bg=(2r b)r~/k, —

but this requires knowing b and still gives a poor
fit at low k ( & 6 A. ') compared to the linear ap-
proximation.

As seen from the derived P(k) functions in Figs.
5 and 6(a), an atom pair in a given material can be
equally well represented by any of a continually
varying family of P(k) curves. We can well ask if
there is any unique Eo value which is characteris-
tic of the material'? There seems to be no reason
for this to be so. Thus we take the point of view
that all the P(k) represent the atom pair equally
well. This being so, it is of great advantage to use
E, and its accompanying linear P(k) to represent
the material. We can simply regard E, as being a
parameter which selects the pseudopotential of the
crystal that gives rise to only s-wave scattering of
the photoelectrons. This pseudopotential can be
thought of as a square well of width b/2 and
whose depth is related to the k-independent magni-

As shown in Sec. III, for a known structure, the
uant1tles E~, Q~ 6~ Q ~ and b can be uniquely

determined. Thus suppose we have determined the
families of phase functions Pz(k) and Ps(k) for
the same atom pair in materials A and 8. We can
then consider various possible cases. First let us
consider the case where the two families contain an
identical pair of phase functions.

A. An identical pair of pjjIasc
functions (phase transferability)

Suppose two of the families of phase functions
are the same for two Eu values, say Ez and Es,
that is, P„(Eq ) =Ps(Es). We want to know if
there are any other matched pairs for shifts in Eo
of 6Eg and AEs. Considering phase functions ln
the vicinity of the linear P we can use the linear
approximation and determine the conditions neces-
sary to have other matched pairs.

Using Eq. (24) we obtain that the relation be-
tween the new pair is

(ag bg k)AEg ——(as —beak)bEs . —(28)

where s =-1/(k„) —k/(k„k„+i). If the k ranges
are matched so that (k„) and (k„k„+&) are the
same in A and 8, the energy shifts are in the same
ratio as the transformed peak positions. If the k

Using Eqs. (17) and (19) for a' and b' we see that
Eq. (28) requires that AEq and b,EB are related by

b Es /b E~ (rq —ba /2)sw /(—r—s bs /2)s~, —
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ranges are not the same (k„) and (k„k„+i) for &

and 8 are different and the left-hand side of Eq.
(29) becomes k dependent. Thus, the procedure
often used, of finding the phase function of a
known material at an arbitrary Eo (generally near

the E edge} and then using it to generate P(k) at
other Eo values, is valid only if the k ranges of the
A and 8 data sets are the same. Furthermore, as

we saw in Fig. 8 the usual method of deriving one

phase function from another, using 6$=2rhk, is

not very accurate.

bB(Es) bA(EA )+bA~EA(4/tB

For (k„) and (k„k„+i) being the same in the
two materials the difference in slopes are the same
for aO pairs of phase functions having the same a
values.

Under the circumstance of having the values of
(k„) and (k„k„+i ) the same for the two different
materials the relation between pairing the sets in

any manner is always b,E& /EEtt (rq ——bq /2—)/
(rs bs/—2), whether phase transferability exists or
not.

B. No matching phase functions

Conversely if one phase function in material 3
has no identical corresponding phase function in 8,
then none of the P(k)'s coincide, There are two
convenient ways to consider the mismatch: the
slopes matching but not the magnitudes and the in-

verse. These are equivalent, alternate ways to
match the sets of phase functions.

Matching slopes

In this case we have bq(Eq)=bs(E&) and

a~(Eq )+as(Ett ). In a similar procedure to that
used above we find that while the magnitudes at
Ez and Es were separated by as(Es ) aq(Es ), —
those at E~ +ATE& and Ez+ AEz are separated by

hatt =as(Es ) az (E& )+a& EE—& (ttt /tz —I ),
where t =(k„k„+i)/(k„). If the k ranges are
matched so that (k„) and (k„k„+i) have the
same value in both materials, then each pair of
phase functions having the same slope is separated

by ha in magnitude. So, in this case, there are no
identical P(k) in the two sets. Since only the slope,
or b value, determines the peak position, a match
of this type will give the correct bond length. In
fact this is the type of matching seen between

shells in metals at E, as seen in Fig. 7 for Ni
where the slopes, or peak shifts, are all the same

but the a values are different.

VI. PROPOSED METHOD TO EVALUATE
BOND-LENGTH USING LINEAR

PHASE SHIFTS

%e propose a procedure for determining bond
lengths which should be simpler, more objective,
and more accurate than other methods in use. Un-
til a library of linear phase functions is accumulat-
ed, it requires using model compounds as do the
other methods in use. The procedure is as follows.

The measured X(k) of a given atom pair is
analyzed as described in Sec. III and the quantities

E„a,a', and b' are determined from plots such as
shown in Fig. 2 for both the known A and un-

known material 8. The n-independent quantity
bq(E,") is also obtained for the known material A.
For the unknown material the corresponding quan-
tity r~ =rs bs(E, ) is—obtained. The energy shift
AEs ( =Es E, ) which e—quates the magnitude

as(E& ) to the measured magnitude a„(E,") is ob-

tained from the linear approximation to be

The magnitudes of the nonlinear phase functions
are difficult to determine accurately in contrast
with those of the linear P(k). The linear P(k) are
furthermore least k-range dependent.

If there is phase transferability, then

bs(E, +EEs)=bq(E,"), and the desired quantity,

bs(E, ), needed to determine the bond length is

given by

2. Matching magnitudes

In this case we have az (Ez ) =as(Es ) and

b~(E~ )Qbs(Eb }. Here we find that the difference
in slopes between phase functions at Eq +hE& and

E~+hE~ is given by

The bond length is then obtained by adding bs(E, )

to the measured peak position at Eo =E of ma-
terial 8. In Sec. III we found that a' and b' are
somewhat k-range dependent. However we also
found that their ratio was quite unsensitive to the
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k range and fortunately it is the ratio which enters
thc bond-length determination. In this method no
back-transforms need be taken, only the peak posi-
tions as a function of Ep for various n values are
required. However, it is often of interest to derive
P(k) by back-transforming to check on its lineari-

ty.
Unless the calculated components P, and Pb

that now exist in the literature are linearized they
are of no use for the method described here. One
considerable advantage of the linear P(k) is that
they can be characterized by five numbers rather
than require a table of values.

The question of the validity of phase transfera-
bility is under continual investigation. As seen
from Tables I and II, and other determinations in
the literature, bond lengths can be reliably deter-
mined to about 1% or 0.03 A. at the present time.
More accurate determinations on known structures
are often obtained' ' but this may be because the
criteria involved in the analysis procedures are sub-
jective enough that if the bond length is known it
can be obtained. On the other hand, for an un-
known material it is difficult to judge the accuracy
of a given determination. We now discuss and
compare some of the other methods of analysis.

VII. DISCUSSION OP OTHER
METHODS OF ANALYSIS

There have been several methods of analysis pro-
posed in the literature. All assume phase transfer-
ability and use phase functions which are either
calculated or determined from model compounds
of known bond lengths containing the same atom
pairs. Wc will fllrst, discuss a technique dllc 'to Lcc
and Beni (LB) which is really a procedure to test
the validity of calculated P(k) functions for a
known material.

A. Lee and Beni procedure

The procedure proposed by LB is to calculate
R (r), in a manner similar to that given by Eq. (6),
but with the phase function and the inverse of the
prefactor in gl(k) included in the integrand so that
their effects are eliminated. Thus, in Eq. (6) X(k)
is divided by the prcfactor in Eq. (1) and a factor
e'&'+ is included in the integrand. R (r) is then
calculated for various Ep llntil Im(R) and

~

R
~

peak at the same r value. If this r value

corresponds to the known bond length for a partic-
ular atom pair it shows that the phase function be-

ing used is one of the set that represents the ma-
terial under consideration and that the magnitude a
and the slope b are properly correlated.

The derivation of this catena, Im(R) and
~
R

~

peaking at the same place, assumes that the phase
is linear. Nonlinear terms would lead to extra
terms in the integral and a more complex criteria.
Thus the curved P(k) is effectively replaced by
P(k) =a,rr b,rr—k in obtaining the LB criteria.

Using this procedure we have obtained the Eo
values, called EL&, for the nearest-neighbor shells.
They are listed in Tables I and II. As seen in
Table I, the El s values for the elements are in the
range 0+8 eV. This is a result of the potentials
used by Teo and Lee. In Tables I and II we also
list the deviation 5rLn, of the peak position from
the known radial distance. %e see that there is
fair agreement, usually within 0.02 or 0.03 A, for
most of the elements examined in this work. How-
ever the 5r„vl aufeor Ag is —0.10 A., indicating
that the phase shifts for this element listed by Teo
and Lee (TL) are not good. An inspection of the
values for Ag in Ref. 5 shows that its P(k) is
indeed anomalous compared to those near it. The
phase functions obtained in the TI. calculation are,
of course, not unique. Any of the family of P(k)
curves, typically shown in Figs. 5 and 6(a), would
meet the I.B criteria and give the correct radial
distance. In Figs. 5 and 6(a) we show the calculat-
ed TL phase shifts by the dashed curves. We see
that they give fair fits to the measured p(k) at El s
although for Ni there is a displacement by about 6
eV. In general the measured P(k) show less curva-
ture and structure at low k than the calculated
P(k) in Ref. 5. The obvious advantage of using
the calculated phase shifts is that the individual
contributions from the absorber P, and the scatter-
er Ps can be obtained for all elements and then
combined in any combination to give the phase
shifts due to any atom pair. As we shall show
later these individual components cannot be deter-
mined experimentally.

In Tables I and II we have also listed the N 1

peak position shifts, b,ri s, fo—r R (r) as given by
Eq. (6) with Ep =El a and a weighting factor of
n =3. %e see that, for the elements investigated
here, these shifts vary between 0.26 and 0.35 k
The similar peak shifts of the linear phase func-
tions are seen to vary between 0.20 and 0.38 A.
The LB procedure could also obviously be used
with P(k) that are obtained experimentally from a
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model compound of known structure containing
the same atom pair.

B. Method of constant r

This method was proposed by Martens et al. '

Here one uses either a calculated phase function or
one that is obtained from a known material A by
back-transforming to get X&(k) as described in Sec.
IV, Eq. (23). Ep is usually assumed to be near the
E edge. Since rz is known the phase function is
thus determined within a factor of 2mn by

Pg(k, Ep)=@g(k,Ep) —2k' .

This rz generally varies considerably with k, so Eo
is then changed and the procedure repeated until

the derived bond length

rs(k, Ep+ hE) =[ @s(k,Ep+ bE)

—Pg(k, Ep)]/2k, (32)

becomes constant over a large region of the k
range.

Considering the phase functions as linearized,
with effective magnitudes and slopes, the method
is essentially equivalent to the LB procedure. By
requiring that rz be constant the magnitudes, a,~f,

are matched since for a linearized phase Eq. (32)
becomes

r(k, Ep+&E)= rg+[a, rr(Ep+4E) a",g(Ep)]/2k—

[~ ff(Ep+~E) b ff(Ep)] ~

Both methods A and 8 are seen to be procedures to
minimize the 1/k terms in the phase functions.
Note that if there were not phase transferability, or
the known phase function were in error, these
methods are similar to those in Sec. IV B2, where

the magnitudes are matched and the slopes are not
equal. The resulting bond length would be in error

by the difference of the effective slopes of the
phase functions for A and 8.

For the same Eo the total phase 4z, of a second
material with the same atom pair, is determined by
back-transforming. The bond length in 8 is then
obtained by

rs(k Ep) =[Cg(k Ep) Pg(k Ep)—]/2k .

C. Matching total phases at k =0

This is a similar procedure' to the constant r
method. It differs in that it uses the total back-
transformed 4z and 4z and matches them at
k =0 by varying the Eo of the unknown 8. As
can be seen from Eq. (23) this again matches the
Q ff values. Both methods 8 and C effectively
linearize the usually curved P(k). The method
proposed here in Sec. VI has the advantage that it
starts out with a linear P(k).

D. Least-squares fit to g(k)

In this method a trial Xz is obtained using cal-
culated or derived amplitude and phase functions
in the theoretical expression given in Eq. (1). This

gz is compared to the experimental, back-trans-
formed Xz (derived for a fixed Ep) using a least-

squares procedure (e.g., SIMPLEx). Ep, r
~ and asT

many other parameters of Eq. (1) as desired are
varied. Usually Eo is set equal to zero at the E
edge and the change in P(k) with Ep is taken as

hP =0.2625r bE/k. As we saw in Fig. g and its
discussion, this is not a very good approximation
to b,P. It is much better to use b P =0.2625
X(r b ff)EE/k or the AP given by the linear ap-
proximation in Eq. (25).

We have found that the bond lengths obtained

using this method often vary with the number and
choice of parameters. Although the parameters in

the prefactor of Eq. (1) are not strongly coupled to
the argument of the sine there is some coupling. It
is difficult to judge the accuracy of bond lengths
determined by this method.

VIII. DERIVATION OF GENERAL
PHASE TRANSFERABILITY

We have shown that for each atom pair there
exists a set of phase functions P(k, Ep), parameter-
ized by Ep values, all of which equally well

represent the phase function of the atom pair. We
have also found that one of this set of phase func-
tions, P~(k, E, ), is linear and we characterize its Ep
value by E, . Bond lengths are determined most
accurately by working in the vicinity of P~(k, E, ).
A further advantage of using P~ and linearizing the
set of P(k) as described in Sec. IV, is that the as-

sumption of phase transferability can be easily ex-

am1ned.
In a narro~ sense, phase transferability assumes

that the same set of P(k) applies to a given atom

pair no matter what the environment of that pair
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and that the different environments can be
described by relabeling the Eo values of the P(k)'s.
Thus, in practice, the environmental changes are
taken into account by varying the "muffin-tin
zero" which is characterized by the value of Eo.
The method of analysis proposed in Sec. VI, and in

general all methods of analysis, obtain the change
in Eo by equating the magnitudes, a.

There is a more general type of phase transfera-

bility between different atom pairs. These inter-

dependences have often been referred to in the
literature but in a rather obscure manner since it
has not been understood how to select the Eo
values to be used in the comparison of the various

atom pairs. Only by using the linearized P(k) can
this problem be easily addressed. General transfer-

ability thus assumes that there are relations be-

tween phase functions of the type

4AB+PCD 4D+NCB ~ (33)

where C and D could be A or 8 The t. ype of
transferability represented by Eq. (33) is very im-

portant since it reduces the number of phase func-

tions needed to completely represent a system of N
different elements to 2N —1 rather than N which

would be necessary if no such relations existed.
It should be pointed out that the individual ab-

sorber and backscatterer functions can never be de-

rived experimentally. If we have a system with N
different atoms then, assuming dependencies as

given by Eq. (33), the number of independent

measurable quantities is 2E —1. However there
are 2X independent unknown functions involved,

two for each type atom. Thus, we can never ob-

tain the 2N unknowns. We could, of course, arbi-

trarily define one phase function and obtain all the
others relative to it.

The difficulty to the present time, in using rela-

tions as given by Eq. (33) has been the question of
which values of Eo should be used. We give a pro-
cedure to determine these relevant Eo values. It is
analogous to the procedure used in applying phase
transferability in the narrower sense, i.e., the Eo

values are obtained by setting all the magnitudes,

a, to be equal. (The Eo values could equally well

be obtained by setting the slopes, bi2, equal. )

Thus, e.g., we could obtain the desirable Eo values

by setting all the a values equal to aAB(E, ) where

We can then find the Eo value, ECD, for the CD
materials by using Eq. (24). We get

EcD —[&AB(E,"')
~cD (E ) ]~&CD +E (34)

Note that all quantities on the right side of Eq.
(34) can be measured. The value of EAD and EcB
can be similarily derived. The more explicit form
of Eq. (33) is thus,

PAB«Ee )+LCD«ECD)

'4D( AD ) +PCB(ECB ) ~ (35)

We can now test the more general transferability

by seeing whether

bAB(Ee )+bcD(ECD) bAD(EAD)+bcB(ECB) i

(36)
where

bcD(EcD) =bcD(E

+ [~AB(E ) cD(E ) ]bcD ~ucD

(37)

and similarily for bAD(EAD) and bcB(ECB). The
results of testing Eq. (36) for sI)N;N;+pzszs

ONiAs+ PAsNi d PFeAs+ PNiTe (bFeTe+ 'I)NiAs a
shown in Table VI. We see that for the Ni-As sys-
tem the sum of the peak position shifts is the same
within 0.001 A. For the Fe-Ni-As-Te system the

0

b l2 sums are the same to within 0.02 A. It is ex-

pected that materials of similar atomic number
such as Ni and As would have general transferabil-
ity. A more rigorous test of the transferability in-

volves atoms of widely different Z and bonding.
Thus the difference of 0.02 A in the b/2 sums for
the Fe-Ni-As-Te system may be real or just due to
inaccuracies, e.g., due to different k ranges of the

TABLE VI. Test of general transferability.

Elements
8 C

z [bAB(E,
" )+bcD(EcD)] , [bAD(EAD )+b—cg(EcB )]

Ni
Fe

Ni
As

As
Ni

As
Te

0.503M

0.5053
0.502A
0.5253
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data. Further tests of transferability are in pro-
gress.

In reality the Eca, Ewe, and Eca values never
have to be evaluated since as seen in Eq. (37) the b

values can be obtained from the measured quanti-

ties a (E, ), b (E, ), b', and a'. As in Eq. (31) only
the ratio b'/a', which is quite insensitive to the k
range of the data and should be a constant for
equal k ranges, enters in the evaluation of the gen-
eral transferability relations. It can be shown that
all the a values do not have to be taken equal. It
is sufficient that just the sums of the a values on
the two sides of Eq. (36) be made equal. As long
as the ratios b'/a' are equal, which they are for
good data of similar k range, taking arbitrary a
values, but of equal sums, on the two sides of Eq.
(36) can be shown to be equivalent to taking all the
a values equal. Thus, any one of the P functions
in Eq. (35) can be entirely derived from the other
three P functions by using the procedures described
above. So, in principle, only 2% —1 phase func-
tions need be measured to completely characterize
all the possible pairs in a system of E element.

IX. SUMMARY

Eo is Inet. Further advantages of using the linear
method are as follows.

(1) The E„a, r; b/—2, a', and b' values can be
uniquely determined for each material.

(2) The analysis is independent of the weighting
factor n.

(3) Much cleaner looking R (r) spectra are ob-

tained at E, than other Eo values due to reduced
distortion of peaks. This is especially so for metals
where the E, values tend to be the same for the
first few shells.

(4) The quality of the data can be assessed from
whether or not a crossover point exists. In fact
this provides a good criteria for identifying spuri-
ous peaks.

(5) For metals the slopes of the phase function
or peak positions are found to be the same at E,.

Using linear phase functions removes the subjec-
tivity involved in the other methods of analysis.
For good data sets that fulfill the criteria described
above it appears to be possible to determine bond
lengths in unknowns to about 0.01 —0.02 k
Furthermore, using the methods described here the
accuracy of the inter-relations between the phase
functions of pairs of different atoms can be tested.

The advantages in using the linear phase func-
tions, rather than those derived at some arbitrary

Eo are that they are much easier to use and mani-

pulate. Since most of the other analysis methods
essentially involve linearizing the phase functions it
is more accurate to determine and use the linear
functions directly. The amount of work involved

in processing the data is no greater than for the
other methods. With the linear method one
Fourier transform is made for a few Eo values for
n =1, 3, and 5. For the other methods a series of
Fourier-transforming and back-transforming for
various Eo values is required until some criteria on
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