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The motion of Bloch electrons in homogeneous magnetic fields is reduced without

approximations to, at most, two dimensions in the general three-dimensional case, i.e., for
arbitrary crystal potential, arbitrary field-lattice geometry, and all rational fields. This is

done by fully exploiting a canonical transformation and by constructing with the aid of
ray-group projection operators generalized k-q functions, which separate off one degree of
freedom. Previous ad hoc reductions to one dimension for essentially two-dimensional

situations are recovered and explained. The solutions of the resulting lower-dimensional

effective Schrcidinger equations are functions of generalized coordinates. They are
converted into the real-space wave functions by means of a contact transformation; their
local and global properties are investigated. The results presented allow first-principles
calculations of diamagnetic band structures and wave functions to realistic systems.

I. INTRODUCTION

In recent years methods have been developed'
which allow calculations from first principles and
to high precision the energy spectrum and the
wave functions of crystal electrons in a homogene-
ous magnetic field. One of the concepts involved
is the reduction of the problem to a one-dimen-
sional problem by means of a canonical transfor-
mation and a special separation ansatz. A dif-
ferent reduction procedure has been derived in-

dependently by Wannier.
Both these reduction methods apply only to

essentially two-dimensional systems: In Refs. I —4
the assumption is made from the outset that the
motion of the charged particle along the magnetic
field completely decouples from that within the
plane normal to the field. %annier's approach, on
the other hand, requires the influence of the varia-
tion of the crystal potential along the field to van-
ish altogether. Therefore, as can be shown easily,
his treatment of "triclinic" lattices is equivalent to
the treatment of monoclinic crystals presented in
Refs. 1 —3.

Some years ago Zak had already worked out the
reduction to one dimension for two-dimensional

lattices and very special magnetic fields perpendic-

ular to the lattice plane.

In almost all realistic situations all those restric-
tive conditions for the field-lattice geometry and
the periodic potential are not met; thus nearly al-
ways one has to deal with a genuine three-
dimensional situation. This is certainly true for all
real crystals and even for such an artificial system
as a two-dimensional lattice with the magnetic
field pointing in any direction except perpendicular
or parallel to the lattice plane normal.

In the first part of this paper (Secs. II and III) it
mill be shown how the reduction of the dimen-
sionality of the problem can be achieved for arbi-
trary periodic potential and general rational field

by constructing equivalent, at most two-dimen-
sional Hamiltonians. This construction takes full
advantage of two main concepts: (i) the theory of
the magnetic translation group along the lines
marked by Brown and Fischbeck (see, for example,
Refs. 7 and 8) and (ii) the canonical transformation
introduced in Refs. l —3. Owing to the combina-
tion of both tools the reduction procedure becomes
very simple and perfectly straightforward. The ad
ho@ techniques used in Refs. 1 —3 and 5 can be ex-
plained as special cases of the general approach,
which, as a secondary effect, also produces all

quantum numbers of the problem.
In the second part (Sec. IV) the mathematical

structure and the physical properties of the di-
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Rinagllctlc wave fllllctloIls will llc Investigated.
T1118 Rlialysis 18 based OIl tllc rcslllts obta1nlxl 111

Sec. III and in previous model calculations ' for
the "equivalent" solutions, i.e., for the stationary
states as functions of the generalized coordinates.
As a prerequisite, concise transformation formulas
will be derived, which allow us to find in a simple

way the "true" wave functions from the equivalent

ones and vice versa.

(2.4)

-= a3
(2.5)

wllcrc I RIld X Rlc 111tcgcl8 wltllollt colllllloil fac-
tor and Q=(alX az}.al.

In view of the reduction procedure below there
is an optimal choice of the Cartesian system of
axes. Lct

II. TRANSFORMATION OF THE OPERATORS

The Hamiltonian for an electron in a periodic
potential and a magnetic field is

'2

p ——A(r) + V(r),
2Ptl

(2.1)

where V(r+R) = V(r) for all lattice vectors R and
A is the vector potential. Denoting the primitive
vectors of the lattice by ai, a2, and al, we have

3

R=g n;a;, n;EN .

implying B—:Bz. Defining a—=eB/Irlc and a =uz
all rational magnitudes of the field are given by

2m I.a= —
f
al

/

.0 X
(2.6)

Because of Eq. (2.3) we are free to choose

b
X—: (2 7)

Introducing tllc IlotRtloll a I:—Rl x, b I —=b I'x, ctc.
we then gct

The primitive vectors of the reciprocal lattice
b1, 12,13 and the general reciprocal-lattice vector
6 are then defined by

af=o,

al =1/bi, O'I ——1/a3,

A=a 1a~2a3,

(2.8a)

(2.8b)

a; bj ——5ij,

6=2m ggb;, g;EN .
(2.3)

2m L
a",a'2 &

' (2.8c)

We will consider general rational magnetic fields
(in the sense of Brown and Fischbeck ' ) which
form a dense subset of the set of all possible mag-
netic fields. Without loss of generality we choose
Biial. Then

VA'thout exception we will use the symmetrical
gauge for A, i.e.,

A = —,BX r =—( —yx+xy } .

Now Eq. (2.1) may be written as'

(2.9)

~—1/2

Py

2

+ +g U(G) exp[iG (xx+yy+zz) j,
(2.10)

where we have Fourier-expanded V(r) and defined co, =—eB/mc.
The magnetic translation operators, which form a ray group ' when R runs through the lattice, are given

by

I 8T~(R)=exp —R. p+ —A
fi c

~1/2 ~—1/2 ~1/2 ~—1/2 ~—1/2
=exp &a' R — y+ p„x+ — x+ p y+ p z

2 e " 2
(2.11)
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Of course we have

[A, TM(R)] =0,

Tsr(R) T~(R ') =exp —(R)&R ')a T(R+R ')
2

(2.12a)

(2.12b)

for all R,R'. We now introduce generalized coordinate and momentum operators (see also Refs. 1 —3):
1/2 —1/2 1/2 —1/2

1/2X= X — Py, g= X+ Py~ Z=A Z ~

2 A 2 A'

1/2 —1/2 1/2 —1/2 —1/2

P"=
2

'+ r '"' P'=
2

'+
implying

x =a—'"(x+y), y =a-'"(p„py), z=a-'—"z,
a1/2(p +p ) p 1/2( x +y) p ~1/2P

(2.138)

(2.13b)

The new observables are canonically conjugated:

[x,p„]=[y, p~]=[z, p, ]=i .

All other commutators vanish.
In rotated phase space the Hamiltonian assumes the form

(2.14)

(p„+x )+ p, +gu(6)expIia '/6 [(x+y)x+(p„—p~)y+zz] I .X

6

The Fourier components of the periodic potential will be factorized as follows:

V( Gx,y,z)—=u(6)expI ia ' 6 [(x+y)x+(p„—py)y"+zz] ]

=u (6)X(6;x,p„)Y(G y,p~ )Z (g3,z),

(2.15)

(2.16)

with

X(G;x,p )=exp[ia '/6 (xx+p„y)],

Y(G;y,pr)= exp[ia —' 6 (yx p~y). ], —(2.17)

. 2' sZ(g3iz)=exp i
~/p b3g3z1/2

f

Throughout this section we exclusively refer to this
system and therefore drop the tildes: x~x, etc.
Choosing the coordinate representation all opera-
tors act on a vector space of functions f(x,y, z).
This space, which will be called S(R ), is spanned

by the simultaneous eigenfunctions of the commu-
tating new coodinate operators, i.e., by the product
basis

For the magnetic translation operators we get

TM(R) =exp[ia' R (pzx+yy+p, z}] . (2.18)

Note that we have achieved through the canonical
transformation (2.13) a simultaneous reduction of
the originally three-dimensional magnetic transla-

tion "group" and of the kinetic part of the Hamil-
tonian to two degrees of freedom.

I 5(x —xp)5(y —yp)5(z —zp)
~
xp yp zp ESP I

In other words,

S(~')=S(~„)XS(~,) XS(~.),
where S(A'„) denotes the function space associated
with the x degree of freedom, etc. Equation (2.14)
of course implies

III. REDUCTION OF THE DIMENSIONALITY

1 8 1 3 1 ()
(3.1}

The new observables (2.13a) belong to a pseu-

dosystem with three degrees of freedom.

Now, quite analogous to the normal case of an
"ordinary" symmetry group, the Hamiltonian
(2.15) does not couple functions out of S(9P ),
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which belong to different irreducible ray represen-

tations ' of the magnetic translation "group"
(2.18) or to different rows of the same irreducible

ray representation. Owing to this fact the eigen-
value problem associated with 4 can be greatly
simplified by decomposing S(A' ) into invariant
sllbspaccs wl'tli tllc aid of 1'ay-g1'ollp pro1cctlon
operators.

Now it is a decisive advantage that after the
canonical transformation (2.13) has been performed
the full ray group of magnetic translations does
not act on S(9F ) but only on the smaller function

D q (R)=exp(iq R)DO(R) (3.2)

space S(%&))&S(9F,) .It therefore becomes "too
large" and, as a consequence, the decomposition
into invariant subspaces will be so effective that
the y dependence of the wave functions can be pro-
jected out completely. This is demonstrated below.

For a general rational field as given by Pq. (2.4)
the magnetic translation group has the following
nonequivalent unitary irreducible ray representa-
tions (see also Refs. 7 and 8):

D„{R)=exp in —ni[nz+2(t' —1)] 5, , +„,(modE), t, t'=1,2, . . . , E
I~

and q spans the magnetic Brillouin zone:

2%
q =qi bi+qzbz+q313, qi, qzC 0, , q36[0,2n) .E

(3.3)

(3A}

We will now decompose an appropriate basis of S(SF„)XS(SP&).into sets of E functions each, which
transform identically according to D q when the operators T(R} act upon them. Then, iff q (t, tn;y, z)
denotes the tth partner of the lrlth set, the set of symmetry-adapted functions

I f q (t,m;y, z)
~

m =1,2, . . .; t, q fixed J

spans an invariant subspace with respect to 4 .
The decomposition is achieved by means of the ray-group projection operators

F 11 =g {Diqi (R) ]*Tlt(R), (3.&)

which yield the first partner, and the simple relation

f q(t, m)=exp[ iqz(t —1)—]T3t((t —1)az)f q (1,111) .

Using (2.8c) and g.12b) we easily find

{3.6)

Tlt(R) = CXp —in' ll 153 CXp —1 0 iu 15 1 Ty {tz 0151)Cxp(l lz tt ia iy)Tg(C lt ill 1 )2

x [exp(ia'~za~z nzy)T, (a'~zaznz)]~[T, (a'~za3n3)], (3.7)

where T„and T, denote ordinary translation operators:

T~(c)g(y,z)=g(y+c, z) and T,(d)g(y, z}=g(y,z+d) .
From Eqs. (3.3), (3.5), and (3.7) we immediately find

Pi i
= g cxp( —lq ill 1 ) cxp 1 Q itt ill 1 Ty—(tz u itti ) exp(ilz li lit 13 }2g(tz u 1111)

n)GX

g exp( iqzEr) exp(ia' —az Erp)T, (a' azEr) X g exp( —iq3n3)T, ((x 03113) (3 8)raw n3EN



HANS-JOACHIM SCHEI.I.NHUBER

(3.9)

Hence we choose for S(%„)XS(9P, ) the pre-adapted basis

where r is a new index entering through n& and the summations are completely decoupled.
As can be directly seen from Eqs. (3.2) and (3.3}the symmetry-adapted functions must behave as Bloch-

type functions under the action of the operators Tir(n& a&) (which together form an Abelian subgroup of the
magnetic translation group), i.e.,

TM(nsa3}f q(t, m)=exp(iq3n&)f" (t,m) .

3
b(q3, s,yo', y,z}—:exp i, (qs+2frs)z 5(y —yo), sEW, yoESP . (3.10)

Ili the followillg we will distinguish two cases.

%e begin by considering the very special situation when aI and a2 simultaneously are perpendicular to a3
and therefore to B. The treatment of this simpler case will feature the reduction method and recover all re-
sults from previous work'* ' ' in an easy and systematic way.

In addition to Eq. (2.8a) we now have a i
——a &

——0. Using this the decomposition of the basis (3.10) into
irreducible function sets by means of the projection operators (3.8) and the relation (3.6) becomes a rather
simple procedure. We find that the different sets transforming according to a certain D q can be classified

by the indices I =1,2, . . . , I. and s E9'. The rth partner P q (t,s, l) of such a set is given by
1

g
2% Q)

Pq(t, s, l;y, z)=exp i —

i& (qi+2irs)z g exp i (i ——1)(l+Im) exp i qi — „qz m
A Qp

.n „y 2 2l
+exp —l—a ~Q ~ pl +—pt

2 I.
I /2

X5 y —cx uim —Gf Qi —-- Qi&g2 x I o' x&
I. 2m. L,

(3.11)

By construction the set of functions
P t

(ts, l) qi, q2E 0, ; q3E[0,2m); i =1,2, . . . , ¹ l =1,2, . . . , L; sC2'
L

forms a basis of S(9F~)XS(9F,) and the elements of this symmetry-adapted basis are orthogonal in the fol-

lowing sense:

(p q (t s, l),p q (r', s', i')) =constX5(q —q ')5«5„5', (3.13)

where the "normalization constant" can be determined easily. The sets

2% .' f(qi ~qz~i &y) qi)qz & 0i i i = I»& ~ ~ ~ ~ I

I pq(is, l) ~1=1,2, . . . , I.; sCW J

span the distinct invariant subspaces of S(9P~)XS(9F,), which will be denoted by S, (9'~,A', ). The invari-

ant subspaces of S(9P ) are then given by S(A'„)XSiq (9F„,SP, ). The eigenvalue problem associated with 4
can be separatdy attacked within each of these function spaces. Moreover, because of the N-fold degeneracy

of the eigenvalues, we may restrict the investigation to the subspaces S(A', ) XSi (9F„,SF, ): Once the first

eigenfunction of the degeneracy space is found the others may be generated immediately using Eq. (3.6).
Defining the set of functions

P
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pq(l, s, l;y,z)=—exp i i~, (q3+2m)z g&(qi, q2, l,y) ~

any element g q (1;x,y,z) of S(9tz) &(Siq {91'&,9Pz) can be expanded in the following way:

ce bZ
P" (1;x,y,z)= f dxo g g C(s, l;xo)5(x —xo) exp i,~z (qi+2ms)z g&(qi, q2, l;y)

sE9' 1=1 Q

(3.14)

Let

I bZ
3

bZ
3

exp i, q&z g C(s, l;x) exp i, 2irsz q&(qi, q2, l;y) .
I=1 . , 0', seX CX

$Z

F&(x,z): QC—(s, l;x) exp i i&i 2nsz
s F9' i/2

(3.15)

(3.16)

(3.17a)

(3.17b)

r

Pq(I;x,y,z)=g exp i,q q,z Fi(x,z) q(q„qz, l;y),

F,(x,z+a'"a*, ) =F,{x,z) .
For a field-lattice geometry with ai, a2las (3.17) represents the general separation ansatz leading to a

reduction of the dimensionality of the problem. Special realizations of the separating functions y(qi, q2, l;y}
have been used ad hoc in Refs. 1 —5 to treat essentially two-dimensional model systems. Note that the

y{qi,q2, 1;y) by themselves constitute an orthogonal basis of S(9's). They could have been generated direct-
ly from the basis I 5(y —yo) i yo G9 J as symmetry-adapted functions with respect to the sub-ray-group of
magnetic translations I Tsr(niai+n2a2}

~
ni, n2EN J. For ailaz and I =1 the y(qi, q2, 1}become the

one-dimensional k-q functions' whose existence and properties are thus closely related to magnetic transla-
tion symmetry.

Inserting Eq. (3.17a) into the Schrodinger equation associated with (2.15) and using (2.16) and (2.17) we
find:

A P q (1;x,y,z)= g %co~ 2 2 F0~ 2 6 3
(p~+x )+ p, exp i i~2q3z Fp(x,z) p(q»q2, l',y)

bZ

u(G)X(G;x,p„)Z(g3,z)exp i,z q3z E~(x,z) [F(G;y,p~)q(qi, q2, 1',y)]
I'=1 0 Q

QZ

=Eg q (1;x,y,z) =exp i
i&2 qiz g [EF~(x,z)]q&(q&, q2, 1;y) . {3.18)

The kinetic term, i.e., the first term on the right-hand side of Eq. (3.18), readily gives

exp i,q2q, z g g '(p„+x )+ '
p, + i~, qs2 2

$)pEp(x, z) r p(qi, q2, l;y) (3.19)

Regarding the potential term in the second 1ine eve observe that

I'(G;y,p )= exp im g, g2 exp—im gz —T ——a —aigzy y

Xexp —ia —8"g~ exp ia —a2g/y
~re& y - ry2& y

1 I. (3.20)
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for ai, a2las. Then, after a somewhat lengthy but straightforward calculation we find

I.
I'«v»JI, }q(ql q2 I 3} g~ll'(ql q2 gi S2}V(ql q2 I 3}

1=1

filth

(3.21}

E ' .2m,
~0'(q»q2~gl g2}=CXP Ilr gig2 CXP ' I gl CXP ' (q28'i —qlg2}I. I.

Q)
XeXp l g I

———
g2

a~2

Thus the entire potential term becomes

gP'

exp i — „(I' —I ) 511+ivs (modL) . (3.22)

I. I,
exP i, qsz g g g U(6)AII (ql, q2,gl, g2)X(G;x,P„)Z(g3,z) II (x,z) y(ql, q2, l;y) .

I = 1 I'= 1 g
(3.23)

Inserting Eqs. (3.19) and (3.23) into (3.18), dividing both sides by exp(ib3qlz/u' ), and comparing the
"coefficients" of the orthogonal functions y(ql, q2, l) wc arrive at the following set of coupled equations:

L

g H q (x,p„;z,pg)Fp(x, z)=EF((x,z), I =1,2, . . . , L,
It

(3.24)

HIP (x p. ;zS.}= AM~ 63
(px+x }+ ps+

Q

+g U(G)~lr(qi q2 g I g2@«'x P.»(gi z) . (3.25)

Defining the L XL-matrix operator P " (x,p„;z,p, ) by

(A (x,p„;zp, )}II =Hg~ (x,p„;z,p, ),
Eq. (3.24) can be written

4 q (x,p„;z,p, )F(x,z) =EF(x,z),

(3.26)

(3.27)

with F(x,z) =(Fl(x,z), . . . , I'I (x,z}},where the superscript T indicates the transpose.

This is the desired result: The original Hamiltonian (2.10) has been replaced without approximations by

the set

2'4 q (x,p„;z,p, ) ql, q2 6 0, , q2 E [0,2n. ) (3.28)

of two-dimensional equivalent matrix operators,
which act on the space of vector functions F(x,z).
Because of Eq. (3.17b) the coordinate z can be res-

tricted to the domain [0,1). The y degree of free-

dom and all systematic degeneracy which is "tran-
sported" by the former, have vanished altogether
from our eigenvalue problem.

Regarding the equivalent Schrodinger equations
(3.27) we observe the following properties: Owing

to the finite z domain and to the oscillator charac-

l

ter of the kinetic part of the equivalent Hamiltoni-
ans with respect to the x coordinate the spectrum
of each 8 q is discrete (see also Refs. 1 —4).
Therefore we classify the energy eigenvalues of a
given L XL-matrix operator 4 q by E q (r,s, l} and

tllc corresponding clgcllsplllol's by F (P,s, I;x,z)
Here I'E~, st%, and /=1, 2, . . . , 1. refer to the

x, z, and "spin" degree of freedom, respectively.
All eigenfunctions of A [as given by Eq. (2.15)]
are then obtained by Eqs. (3.17a) and (3.6). They
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will be denoted by f q (t, r,s, l;x,y, z), where

t =1,2, . . . , S counts the degenerate states. The
classification parameters

pling of x and z degree of freedom is easily
achieved by factorization of the spinor F(x,z) and

leads to the results previously derived. '

2'
qi, q2E 0, , qiE[0, 2m),

reM, st%, (3.29)
B. Arbitrary field-lattice geometry

l =1,2, . . . , L, t =1,2, . . . , N,
which emerged quite automatically in the course of
the reduction procedure together constitute a com-
plete set of quantum numbers of the problem. As
shown below this is also true for general (rational)
field-lattice geometry.

Only with the conditions of this subsection that
the magnetic field and hence the primitive vector
a3 is perpendicular to two linearly independent lat-
tice vectors is a further reduction of the eigenvalue
problem to one dimension possible. Actually, addi-
tional requirements have to be made: If the varia-
tion of the crystal potential in Eq. (2.1) along the
direction of B is neglected altogether (as has been
done in Refs. 5 and 6) or if this variation is purely
additive [i.e., V(x,y,z) = W(x,y)+ U(z), see Refs.
1 —4], then Eq. (3.27) can be separated into in-

dependent one-dimensional equations. The decou-

We now drop all restrictions of subsection A re-

garding crystal symmetry and orientation of the
primitive vectors with respect to B. We specify,
however, our rational magnetic field by the condi-
tion

X=L =1 . (3.30)

The latter is done only for the sake of clarity; the
generalization to arbitrary X and L along the lines

of the previous subsection is quite clear.
Although we now have to deal with a much

more complicated situation the decomposition of
the preadapted basis (3.10) of S(9F~)XS(9F,) into
irreducible function sets with the aid of the projec-
tion operators (3.8) is still straightforward. Be-
cause of Eq. (3.30) the different sets belonging to
the same B q are classified by only one index, i.e.,
s E N, and consist of a single function P q (s;y,z)
given by

b3 a~
(s;yz)=exp i

i&2 (qi+2ms)z +exp i qi — qz+aibi(qi+2ms) m
ling

)&exp —i—a~a~m 5 y —a a~m-s y 1/2

2

a'" b'3
a iq2 —

i &z (q&+ 2ms )
2m 1/2

(3.31)

(3.32)

There is one important difference between the irreducible basis functions P (s;y,z) and their counterparts
(3.11) of case A: As can be seen from Eq. (3.31) the y and the z coordinate are now coupled through the
parameter s reflecting the physical interdependence of the two degrees of freedom for general field-lattice
geometry. An arbitrary element g q (x,y,z) of the invariant subspace S(9F„)XS q (9F~,SP, ) of S(9P ) has
now the expansion

In deriving this extensive use of Eq. (2.8) has been made.
The sets [ p q (s) Ls GN ] span the invariant subspaces S i(9F~,SP, ) of S(9F~)XS(9F,). Thus the entire

set of functions [ p q (s)
~ qi, qzq&E[0, 2m); s F2'

I forms another symmetry-adapted basis of S(9F„}XS(9F,)
[see Eqs. (3.12) and (3.13)] with the following orthogonality properties:

(p q (s),p q (s'))=constX&(q —q ')&„.

tP
q (x,y,z}= g C, (x)P q (s;y,z} .

sE9'
(3.33)

(3.34)

Inserting (3.33) into the Schrodinger equation associated with (2.15) and proceeding as in Sec. IIIA we are
led, after some algebra, to the infinite set of coupled equations for the coefficient functions C, (x}:

g H q (x,p„)C, (x)=EC,(x}, s EN
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where

X P%co~ ~ 2 i6co~ Q ) I 2H q (x,p, )= (p„+x )+ (b3) (qi+2irs') 5»$$ 2 2'

+g u(G)A» (q;G)X(G;x,p» } (3.35)

&„(q;G)=exp( im—gig2) exp( iq—igi+iqzgi) exp(ia ibsq2gi)

XexpI i [bi(g2a; —gia'i)+a i zbibCi](qs —m'gs+2n's) j5,, +s, .

Equation (3.34) is equivalent to the spinor-Schrodinger equation

4 q (x,p, }C(x)=EC(x),

(3.36)

(3.37)

(3.38)

where the effective matrix operator A q, which refers to the x degree of freedom only but has infinite
"spin" dimension, is defined by

(4 q(x,p„)}„=Hq (x,p, ) .

Of course C(x)=(Ci(x),Cz(x), . . .) .
In the next and final step we replace 4 q by an equivalent scalar operator which refers to two degrees of

freedom instead. We introduce a new pseudocoordinate z', the corresponding momentum operator

p,
' =(1/i)(B/Bz') and a unitary space of functions whose elements F(x,z') have to satisfy the periodicity

condition

F(x,z'+ 1)=F(x,z') .

Then, let

(3.39)

Xq(x,p„;z',p,')=— '(p, +x )+ — (bs) (p,'+qi)'

+g u(G) exp( imÃig—z) exp[ iq&gz+—iq2(gi+aibsgi)]

XexpI i [b3(g2a] gia'2)+a ia2b—3b3g3](q3+rrg3) j

&(X(G;x,p„)exp(i2mg3z')T, (bi(gia i gjaz)+a—iamb 3b3g3) (3.40}

be an operator, which acts on that space.
The Schrodinger equation associated with X (x,p;z,p,

'
) is equivalent to Eq. (3.37). This can be

checked immediately expanding F(x,z') as

F(x,z')= g C, (x)exp(i2ms'z')
$'E 9'

and verifying

~ ~
1 +

dz'[exp(i2 st'r)] ~A q (x,p~;z', p,
'

) exp(i2irs'z') =H,q (x,p„) .

(3.41)

(3.42)

Thus, also in the most general (rational} case we

have succenied in eliminating the y degree of free-
dom: The set of two-dimensional Hamiltonians

A ~(x,p„z',p,'), classified by the wave vector q of

I

the magnetic Brillouin zone, describes the dynam-

ics of our system completely. Obviously all com-
ments given in the preceding section concerning
the quantum numbers of the problem remain valid.
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IV. PROPERTIES OF THE DIAMAGNETIC
WAVE FUNCTIONS

where

One of the most intricate points within this
whole field of research is the structure of the di-
amagnetic wave functions. Many questions arise:
What is the global behavior of the stationary solu-
tions under the competitive influence of the local-
izing magnetic field and the dispersing crystal po-
tential; how is the local shape of the wave func-
tions determined by electrostatic and magnetic
forces respectively; how are the limiting cases of
Bloch functions and free magnetic solutions real-
ized when either the magnetic field or the periodic
potential vanishes, etc.?

We have gained in Sec. III a great deal of expli-
cit information on the "equivalent" diamagnetic
solutions. This information, together with certain
results of model calculations, ' can be used to re-
veal the structure of the "true" physical wave
functions. To this end we will first derive formu-
las describing how functions of the coordinates
transform there and back when phase space is ro-
tated according to Eq. (2.13).

As the canonical transformation (2.13) does not
mix the first two degrees of freedom with the third
one and as the partial transformation with respect
to the latter is trivial we have to deal, in this re-
gard, only with a two-dimensional problem. Then
both I x,y ) and I x,y J constitute a complete set
of commutating observables and the corresponding
simultaneous "orthonormal" eigenstates can be
characterized unambiguously by the kets

l g, g &

and
l g, ri &, respectively. Thus we have

g, ri CR,

The kernel fg„-(g,ri)—:(g,g l g, g& of this unitary

integral transformation is easily determined: Eqs.
(4.la) and (2.13a) together yield

pig, y&=x g,y&=
1/2 ~—1/2

X—
2

(4.3)

"Multiplying" this equation by (g, r)
l

we get

1/2

2 k fg, „(kn).-„,af~„(4,g)

(4.4a)

~1/2

2 0 i fg, „(S—n). -

(4.4b)

Subtracting and adding Eqs. (4Aa) and (4Ab) we
arrive at the system of equations

(/+A —a' g)fg„-(g', v])=0,
(4.5)

df& (f,i)); in
(8—k)fg, -„(k n),

which is solved by

1/2

fg-(g, ri)= Cexp i (ri —g)ri
2

On the other hand, setting up for y a relation simi-
lar to Eq. (4.3), one obtains

„,~fg, -„(k ri)

'9

(4.1a)
xlgi&=El(8& yl(8&=8lki&

g, ri CA~,

x s(g —-'"(g+q) ), (4.6)

(4.1$

Obviously the old and the new coordinate represen-
tations of a general Hilbert space vector

l P & are
connected in the following way:

O(r, n)= f" f" dbde&knl4, 8&PC 8» (42)

C being a constant of integration. The latter is
determined by condition (4.1b) up to a phase factor
and will be chosen as (1/2m )'~ .

Reintroducing the symbols x,y,z and x,y, z for
the old and the new coordinates, respectively, and
using Eqs. (4.2), (4.6), and (2.13) we find that the
original and the equivalent three-dimensional wave
functions transform into each other in the follow-
ing way:

1/4 ~ ~ 1/2
yl(x,y,z)=, f f dxdyexp i (y —x)y 5(x —a '~2(x+y))it(x, y, a'~z) (4.7a)



1/2

g(x,y,z) = - I I dx dy exp —i (y —x)y 5(x —a ~ (x+y})P(x,y, a ~ z) .(2~)'" 2
(4.7b)

Obviously, this is the hybrid of a coordinate-coordinate and a coordinate-momentum transformation.
We are now able to describe the global and local structure of the "true" stationary states of our problem.

This will be demonstrated for the familiar model system" ' " ' consisting of a square lattice with lattice
constant a in the x-y plane and a rational magnetic field 8=Bz characterized by I.= 1 (arbitrary N. For
this system Eq. (2.8c) simply becomes

(4.8)

and, according to Eqs. (3.17a), (3.11), (3.14), (4.8), and (3.29), all the first-partner wave functions in rotated
phase space read

with

'(l, r;x,y)=F ' '(r;x)y(qi, qz'y}, qi, q2E[0aa ), rEM (4.9)

y(q»qz, 'y)= g exp(iqim)5 y —a' a(m+1)—
mCX

(4.10)

The F ' ' (r;x) in Eq. (4.9) are square-integrable solutions of the reduced equivalent Schrodinger equations
corresponding to (3.27) under the prevailing conditions. From (3.13) we have on the other hand:

~ ~y(qi, qz,'y)~
(

5(0) . Applying the transformation formula (4.7a) to 1(
' ' (l, r) and defining

kr(m, qz) =aam +qz/a, (4.11)

g
' '(l, r;x,y)=

2m
exp( iqi ) exp— i xy——g exp(iqim) exp[ik„(m, qz )y]

mF9'

XF ' ' (r;a'~z[x —ky(m, q2)fa]) . (4.12)

We do not calculate here the other X —1 partner
functions as the first one is full representative for
our considerations.

First we observe from Eq. (4.12) that the "true"
rational-field wave functions are definitdy Bloch-

type states, extended with respect to all coordi-
nates. This is a reasonable result, because the de-

generacy spaces are of finite dimension and group
theory predicts that all solutions can be chosen as
extended ones. Note the strange property of the
canonical transformation (2.13) and (4.7) to redis-

tribute the amplitude of the original +ave function
ln an extrcme asy111mctfj.c way among thc new

coordinates and vice versa.
Let us now look at the structural details of the

wave functions: The actual diamagnetic solutions
essentially are composed of shifted replica of a lo-

«~ &Z] i/2calized function I' ' ' (r;a'~ x), centered around

all lattice sites along the x axis [see Eq. (4.11)] and

multiplied by plane wave factors referring to the y

I

degree of freedom. The global behavior is a direct
consequence of the field-lattice geometry; the
dependence on the individual shape of the crystal
potential is exclusively felt through the "generat-

ing" function I' ' ' (r), which contains all infor-«&,q&)

mation regarding the energy eigenvalues.

Now, as indicated by extensive model calcula-

tions, I" ' ' (r;a'~ x) by itself is (at least as far as
the center of the magnetic Brillouin zone is con-
cerned) the superposition of strongly localized
functions of separation Xa. The latter are shifted
oscillator functions of a fixed level, periodically
modulated in a way which is prescribed by the
periodic potential actually chosen.

Thus thc diamagnetic wave functions

f ' ' (l,r;x,y) exhibit at least two characteristic
quasiperiods with respect to the x coordinate,
namely the lattice constant a and a superlattice
constant Xa, and may be generated, in principle,
from one single oscillator function by appropriate
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translation and modulation.
When the crystal potential is "switched off"

F ' ' (r) reduces to the rth pure oscillator func-

tion [see (3.27)]; so f ' ' (l, r) obviously becomes(p&,p2)

a linear combination of shifted degenerated free
Landau functions, which is symmetry-adapted to
the empty lattice.

As is well known the limit of vanishing magnet-

ic field cannot be performed in such a continuous

way: Actually, this limit here means X—+ Oo and,

as a consequence, infinite degeneracy of each ener-

gy level at each point of the magnetic Brillouin

zone, which at the same time shrinks to zero area.

The above qualitative analysis for the diamag-

netic wave functions applies, in its main features,

also to the general case of arbitrary crystal poten-

tial and rational field. Quantitative analytical and

numerical results for selected situations are

planned to be presented in a forthcoming paper.

V. CONCLUDING REMARKS

By means of the methods developed in this pa-
per the quantum-mechanical treatment of Bloch
electrons in magnetic fields can be greatly simpli-
fied for all crystals and all rational fields. In par-
ticular, it is shown how a reduction of the dimen-
sionality of the problem is achieved in a direct and
transparent way even in the case of genuine three-
dimensional systems which usually must be dealt
with. As a remarkable fact it turns out that prop-
erly generalized k-q functions' ' constitute a na-
tural and powerful device to take full account of
magnetic translation symmetry.

These results pave the way to an extension of
first-principles calculations' to more complicated
situations than hitherto considered. For instance,
the dependence of the diamagnetic subband struc-
ture on the motion along the field can be studied
by inspection of (simple) model systems, e.g., two-
dimensional lattices with a rational magnetic field
slightly tilted with respect to the lattice plane nor-
mal. As an even more rewarding task the rigorous

treatment of realistic systems seems to be feasible
now. This would be of interest, in the first place,
regarding semiconducting materials, where experi-
mental data are abundant, yet the theory to explain
them is still largely restricted to the semiclassical
approach of the Peierls-Onsager dynamics. 's

As to the computational techniques involved,
such first-principles calculations can be performed
by applying to the equivalent Schrodinger equa-
tions of reduced dimensionality either the varia-
tional method introduced in Refs. 1, 2, and 4 or
second-order perturbation theory, which has been
shown to give excellent results in the Landau re-
gion. '

Regarding the diamagnetic wave functions, their
properties have become sufficiently clear now in
the general rational case. Explicit model calcula-
tions for representative systems can complete the
investigations made above. It should, however, al-
ways be kept in mind that "nearly all" fields (in
the sense of number theory) are irrational ones, im-

plying N mao and i—nfinite degeneracy. Thus there
is "always" considerable freedom in forming spe-
cial linear combinations of the ubiquitous extended
solutions. But even then it is not at all evident
that stationary states localized within the plane
perpendicular to the magnetic field can be con-
structed as is possible for electron motion in an ar-
bitrary field and zero periodic potential': The de-

generacy is not of the same measure in these two
situations. This is related to the fact that the
Hamiltonian commutes with the crystalline mag-
netic translation group in one case but with the
continuous magnetic translation group, which is
much larger, in the other case.
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