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An electronic theory for the total energy of binary alloys is developed and applied suc-

cessfully to alkali-alkali —and noble-noble —metal alloys. The theory uses the extended

cluster-Bethe-lattice method to compute the electronic density of states. A new scheme

for incorporating the long-range effects of the Coulomb interaction is developed and used

to determine the parameters of the Hamiltonian self-consistently as a function of the

charge transfer between the elemental components. This approach allows the energy of a
binary alloy to be calculated as a function of arbitrary concentration and short-range or-

der with the use of only properties of the pure constituents.

I. INTRODUCTION

There has been considerable interest' in the
systematics of the heats of formation (b,H+) of
metallic alloys recently. However, AH+ is only a
single aspect of a broader problem, the dependence
of an alloy's free energy on the positional correla-
tions between the different types of atoms within
it. This dependence is central to the study of
order-disorder transitions and even to the interpre-
tation of experimental values for hHF. In this pa-
per we investigate a model which allows the elec-
tronic energy of an alloy to be calculated over the
entire range of concentration and positional corre-
lations. The method is not ab initio, but requires
only information about the pure elemental consti-
tuents of the alloy. Information about the stoi-
chiometric AB compound is useful, if available, but
not necessary. This input information is readily
calculated using standard band-structure tech-
niques which cannot be directly applied to alloys.
As a test we apply the model to alloys of simple
metals.

Almost all theoretical treatments of positional
correlations concentrate on one of two limiting
types: short-range order (SRO), which describes
correlations over the range of a few atomic spac-
ings, or long-range order (LRO), which describes
the large-distance limit of the correlations. In this
paper we study the effect of SRO on the electronic
energy of an alloy, specifically the effect of corre-
lations between nearest-neighbor sites. The impli-
cations for LRO can be derived trivially if the con-
stituent atoms tend to segregate, but are somewhat

more complicated if they prefer to form a com-
pound. The configurational entropy of the alloy
can be found using Kikuchi's cluster-variation
method and combined with the electronic energy
to predict phase diagrams for the alloy. However,
in this paper we consider only the energy, leaving
detailed description of thermal effects to a later
date.

Many methods of calculating the electronic den-

sity of states of alloys have been developed.
However, only a few, the recursion method, ' clus-
ter coherent-potential approximation (CPA), ' and
cluster-Bethe-lattice method (CBLM), ' ' can in-

clude both the effects of short-range order and of
charge transfer. Charge transfer is important be-
cause the degree of SRO affects both the amount
of charge transfer and its effect on the self-con-
sistent one-electron Hamiltonian of the alloy. As
we show later, the alloy's energy is affected signifi-
cantly by charge transfer.

All the methods mentioned above are based on
the same physical picture. The self-consistent
one-electron Hamiltonian and SRO are treated ex-
actly within a cluster of atoms, and the remainder
of the alloy is replaced by an effective medium.
The projected local density of states (LDOS) on the
central site of the cluster is assumed to be relative-
ly insensitive to the approximations made outside
the cluster. It can be integrated to find the charge
transfer and electronic energy of the alloy. This
information can then be used to determine new
parameters for the one-electron Hamiltonian and,
if feasible, the process can be iterated to self-
consistency.
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The major differences between the competing
methods are in computational difficulty and in the
properties of the effective medium. Little progress
has been made in using the cluster CPA to incor-
porate SRQ in actual calculations. The recursion
method may include SRO in an effective medium,
but not in a transparent fashion. Calculations are
made for larger and larger clusters and extrapolat-
ed to produce the effective medium. Qne cannot
study the properties of the effective medium in-

dependently, and computation is difficult because
large clusters must be treated exactly before the ex-
trapolation is made.

We work with an extension' of the CBLM.
The effective medium has the same SRQ and coor-
dination number as the alloy, but has the geometry
of a Cayley tree (or Bethe lattice). ' This is a to-

pological construction equivalent to a network
without closed rings of bonds. The LDOS of the
Cayley tree effective medium can be evaluated in-

dependently and, for a single band, only involves
the solution of a quartic equation.

The formalism we use is very similar to that of
Kittler and Falicov. ' The main difference is in
the treatment of interatomic Coulomb interactions
arising from charge transfer. We include the
long-range nature of the Coulomb interaction so
that the model can be consistently applied to the
entire possible range of concentration and SRQ.

Section II contains a description of the model
with emphasis on the treatment of the interatomic
Coulomb interaction. Section III presents the re-

sults of the model for binary alloys of monovalent
metals and compares them to the experimentally
observed properties of simple-metal alloys. Section
IV gives a summary and conclusions.

x =cq, the concentration of A atoms, and o., a
variable describing the degree of correlation in the
occupation of neighboring sites. ' In terms of x
and o. the concentrations and pair probabilities are

cg =x, cg=1 —x

y&q
——x'+x (1—x)o,

yea ——(1—x) +x(1—x)o,

3„s=pm ——x(1—x)(1—o) .

Note that when o =0 neighboring sites are not
correlated, i.e., the pair probabilities are just the
product of the relevant concentrations. For o. y 0
an atom is more likely to be surrounded by atoms
of the same type, and for cr & 0 it is more likely to
be surrounded by atoms of the opposite type.

In Fig. 1 we show the parameter space defined

by x and o.. Three limiting types of SRQ are iden-
tified. For o =1, the alloy is segregated, there are
no A —8 or 8—A bonds. When o.=O the distribu-
tion of atoms in the alloy is random, yIJ ——cIcJ. A
binary-ordered arrangement is one in which either

yqq or y~~ is zero. Atoms are surrounded by un-
like atoms to the maximum possible degree. For
structures with only even-numbered rings, the
value of o in the binary-ordered limit is

1o.= —x/(1 —x), x & —,

o= —(1—x)/x, x & —, .

II. MODEL
Segregated &

A. SRG parameters

The SRQ parameters which are incorporated in
the effective medium are the pair probabilities. A
bond in a binary alloy of A and 8 atoms can have
four configurations: A —2, 3 —8, 8—A, and
8 8. The fraction o—f bonds of type (I J)is-
denoted by yIJ. Symmetry requires that y~~

——y~~,
and normalization requires

0

Random ~

0.5 1.0
ye=1

IJ

Thus there are only two independent-order parame-
ters. It is most convenient to choose these to be

FIG. 1. Accessible region in the (x,o.) parameter
space. Lines of segregated, random, and binary-ordered
configurations are shown.
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B. Extended CBLM

A complete discussion of the extended CBLM is

presented in Ref. 16. What follows is a brief re-

view of the method.
The starting point for the theory is a tight-

binding Hartree Hamiltonian with nearest-neighbor

hopping only. It is convenient to work in real

space because the alloy has no translational sym-

metry, because SRO parameters only describe the
immediate environment of an atom, and because
the Coulomb energy from charge transfer is easily
calculated. In this section we assume that the ef-
fective one-electron parameters of the Hamiltonian
are known. The following section describes the
self-consistent inclusion of Coulomb interactions.

The general form for the Hamiltonian is

H g EjpBlp+ g rjp j+jpQjy 2 Hpp

i' iP,J'V

where i and jJ, indicate the site and type of an orbi-

tal; a;&, a;&, and n;& are creation, annihilation, and
number operators for the given orbital; E;& and

i;z J, are the on-site and hopping matrix elements
of the Hamiltonian. The site index i determines
the type of atom at the site. Half of the electron-
electron interaction, H„, must be subtracted be-
cause it is double-counted in the effective one-
electron Hamiltonian. The hopping elements t;& J
are assumed to vanish unless i and j are nearest
neighbors. For convenience the local basis is
chosen so that the on-site elements

Eip, ,iv= Eip~pv

The local density of states D;&(E) of an orbital jl,

at site i is related to the diagonal element of the
Green's function:

D; (E)=—ir 'Im[G;~, (E)],
where

6;„„(E)= (ijJ, f
G(E)

[ jv) .

The equations for G;„;„(E)couple it to all other
sites through the hopping elements of the Hamil-
toniy, n. Dyson's equation gives

EGll ll =1+Ell G~'l ll + +rll J~GJ'~~l ~

Jv

The quantity of interest is the ensemble average
of the LDOS taken over all states of the alloy con-
sistent with the assumed SRO. It is not possible to
solve Eqs. (7) for all arrangements of 1023 atoms
and then perform the ensemble average. The first
approximation of the extended CBLM is to take
the ensemble average in the equations determining
G rather than averaging G itself. This is equi-
valent to replacing the actual local environment of
each atom with an effective environment deter-
mined self-consistently by the pair probabilities.

The second approximation of the extended
CBLM is the Bethe-lattice approximation. The
real lattice is replaced by a Bethe lattice which has
the same coordination number, but contains no
rings of bonds. This simplifies the equation for
the matrix GJ„,.&.

The effective medium models the local environ-
ment of an atom very well. The coordination
number and distribution of nearest-neighbor pairs
are reproduced exactly. Longer-range fiuctuations
in the local environment and the influence of rings
of bonds can only be included in the cluster of
atoms, which is treated exactly. However, Falicov
and Yndurain have investigated the effect of
rings of bonds and find that the LDOS remains
qualitatively the same.

%e are interested in the total energy and charge
transfer, which are integrated properties of the
LDOS. Previous research' suggests that such pro-
perties are much less sensitive to approximations
than specific details of the LDOS itself. The ef-
fect of approximations is also reduced because we
are only interested in the change in energy with
short-range order. Absolute errors in the calculat-
ed total energy cancel. It is thus reasonable to ex-
pect the extended CBLM to give an accurate
description of the dependence of an alloy's energy
on SRO.

C. Interatomic Coulomb interactions

The LDOS calculated for given parameters of
the one-electron Hamiltonian can be integrated to
find the mean charge on A and 8 atoms. Charge
conservation dictates that

etc.

EGjV, lp EJVGJV, lp+ Q rJV, kkGkk, lp
k+i

A,

J 'P PP'

cg Ag +cgAg ——0,
where 61 is the mean difference in the number of
electrons around a type-I atom from the atomic
value. The distribution of charges produces a
Coulomb potential which must be incorporated
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into the one-electron Hamiltonian, leading to new

values for the charge transfer, etc. At each step
the Coulomb potential falls off as r ' even if the
alloy is metallic. Screening is the result of the ap-
proach to self-consistency. It cannot occur at any
individual step because the charge distribution is
fixed by the one-electron Hamiltonian.

If a complete set of local orbitals is used the
Coulomb potential is q/@or, where eo is the vacu-
um dielectric constant. Practical calculations must
be limited to orbitals with energies near the fermi

energy. One can approximate the effect of other
orbitals by using a different value for e. The
screening process is thus treated on two levels.
The redistribution of electrons within orbitals on
the same site is treated approximately through e,
and the charge transfer between sites is treated ex-

plicitly and self-consistently. In what follows we

assume e does not vary significantly with SRO and
treat it as a phenomenological parameter. If the
ratios of the atomic polarizabilities to atomic
volumes of the alloy's constituents are very dif-
ferent, this may not be a good assumption.

Our objective is to find a reasonable interpola-
tion scheme for the mean effect of the Coulomb
potential on the Hartree parameters of the Hamil-
tonian. Previous treatments have only considered
the effect of a finite cluster on the Coulomb poten-
tial at a site. ' ' This is a bad approximation for
alloys near the limits of segregating or binary order
because the Coulomb potential is long range. Any
charge transfer between macroscopic regions of
segregated atoms produces an infinite potential and

no finite cluster can reproduce this. In a binary-
ordered compound, the Coulomb potential from
other atoms is proportional to the Madelung con-
stant which is also a long-range property of the
system. The potential from a finite cluster is only
a good approximation to the total potential near
the random limit. In this regime the charge distri-
bution averages to zero within a few atomic spac-

1ngs.
The parameters of the Hartree Hamiltonian that

are most affected by the long-range character of
the Coulomb potential are the on-site energies.
The hopping matrix elements are mainly deter-
mined by the local environment. Self-consistent
changes in these parameters may be incorporated
using conventional methods.

To find the change in on-site energies we calcu-
late the mean distribution of types of atoms
around a given atom and sum the interatomic
Coulomb interaction over all sites. The alloy is as-

sumed to have only substitutional disorder, i.e., the
distribution of types of atom is disordered but all
atoms are located on a regular periodic lattice. We
also assume that each atom can be assigned its
mean charge transfer and that the charge is reason-

ably localized and spherically distributed. ' The
average Coulomb potential Pr on a type-I atom
due to atoms at all other sites R~ is then

3'm
gu(& + I)= g gal(n)

E
One finds

(10)

where a(o) is a simple function with no concentra-
tion dependence. The details of the calculation are
given in the Appendix.

Figure 2 shows a(0.) for a bcc lattice. Note that
it has the correct behavior in the three limits of
SRO. For 0.—+ —1, a(0) approaches the Madelung
constant; for cree+1, a(0) becomes infinite; and
a(0) =0. The derivative at cr=0 is also correct.
Near random SRO only the first shell has an ap-
preciable mean charge. The magnitude of the
charge on each atom of the first shell is o.A~e, and
thus

where Z is the number of nearest neighbors. If we

only considered the potential from nearest neigh-

+

gaJ(~i)~~
a,~o

where A is the nearest-neighbor separation,
V =e /eR is the nearest-neighbor contribution per
electron transferred, and g&J(R~) is a correlation
function giving theyrobability of finding a type-J
atom at a position R~ relative to a type-I-atom.

The correlation function must be consistent with
the pair probabilities, but cannot be uniquely deter-
mined from them. However, an approximate
form for gr~(R~) can be derived which is exact in
the random and segregated limits for all concentra-
tions and in the binary-ordered limit for the
stoichiometric AB compound. The approximation
amounts to ignoring higher-order positional corre-
lations which are consistently left out of the
theory. The correlation function is assumed to
depend only on n, the smallest number of nearest-
neighbor bonds connecting R~ to the origin. The
pair probabilities are then used to define a recur-
sion relation for g&J(n):
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used as the basis on each site and the cluster is
taken to be of one atom. The on-site Coulomb in-

teraction is treated in the mean-field approxima-
tion. Its strength U; may depend on the type of
atom at the site. Spin ordering is not considered.

The Hamiltonian becomes

1& = g Eiilis+ g ijiiisiijs 2 +ee ~

l1$

where s indicates the spin index, and where the
self-consistent on-site energy E; and the on-site en-

ergy without charge transfer E;0 are related by

I I I /I I I I I I

0

FIG. 2. Coefficient a(0.) of the interatomic Coulomb

sum as a function of short-range order 0..

E;=Ep+ gnis —1 [—, U;+ Va(o)] .

The electron-electron interaction is

H„= g(E; E;p)n;,—.

(14)

bors, ' this form for a would hold for all a. It is
clear from Fig. 2 that this is not a good approxi-
mation for ~a

~

&0.1.
For intermediate values of o there may be furth-

er corrections to a, because of higher-order posi-
tional correlations. Changes in a of a few percent
do not appreciably affect our results.

D. Application to monovalent metals

To study the predictions of the extended CBLM,
we consider the simplest case, alloys of atoms with

one valence electron each. A single s-like orbital is

The on-site and hopping parameters are assumed
to depend only on the types of atoms on the
relevant sites. An arbitrary alloy is then speci'-

fied by its lattice, seven energy parameters

EB0 EA 0 4A rAB rBB UA UB
two order parameters (x and o). The energy
parameters can all be derived from properties of
the elemental constituents using the prescriptions
discussed below.

We have estimated energy parameters for alkali-
alkali —and noble-noble —metal alloys (Table I).
The on-site energy difference C was taken to be the
difference in the ionization potentials of the con-
stituent atoms. The pure, elemental hopping

TABLE I. Energy parameters.

Element (eV)
tll

(eV)

Elo'
(eV)

Li
Na
K
Rb
Cs

11.22b

779
3.96
3.28b

2.31b

1.060
0.736
0.374
0.310
0.218

—5.390
—5.138
—4.339
—4.176
—3.893

CU

Ag
Au

15.57'
13 39
14.42'

1.471
1.265
1.363

—7.724
—7.574
—9.220

'Reference 26.
Reference 27.

'Reference 28.
Reference 29.

'Reference 30.
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parameters tII were fitted to band-structure calcula-
tions. The band structures for the alkali me-

tals are clearly not fitted well by a single tight-

binding band. An approximate bandwidth was de-

fined by taking the difference in energies of the
lowest states of even symmetry under inversion at
the center (I'i) and corner (Hi&) of the bcc Bril-
lioun zone, W=E(Hi2) —E(I'i). The value of tll
was then determined by requiring that the CBLM
produce the same bandwidth,

tII ——8'/4@~7 = IV/4&Z —1 .

In lithium the first band is actually narrower than

IV because a p-like state, at the H corner, H, 5, has
lower energy. The hopping parameters for the no-

ble metals were determined in the same way, using
the energy difference between the I'i and W3 states
of the fcc Brillouin zone to define the bandwidth.

Our model for the interatomic Coulomb interac-
tion does not apply to an fcc lattice because it has
odd-numbered rings of bonds. We cannot apply
our technique at arbitrary SRO, but we can com-

pare the results in the random and binary-ordered
limits where a(cr) is zero and equal to the Made-

lung constant, respectively. A fact related to the
odd-numbered rings is that no structure with

0 = —1 is possible. The ordered configuration

adopted by CuAu is I. 10 and has alternate layers
of like atoms stacked along the [100] direction. ' '

The distribution of nearest-neighbor pairs is con-

sistent with 0.=——,. We take this value as the

SRO at x =0.5 in the binary-ordered limit in cal-

culating properties of noble-noble —metal alloys.
The energy gained from hybridization is probably
underestimated because there is no special long-

range order in the Bethe-lattice effective medium
1

at +=-
In the absence of calculations on the binary-

ordered compounds and for the Coulomb coeffi-
cients we used two prescriptions to determine ener-

gy parameters. A variety of physical models sug-

gest that tzz should be close to the geometric mean

t of the pure elemental tII. Rough calculations
based on both free-electron and Huckel-type
models for alloys of simple metals gave values for
tzz/t which range from 0.9 to 1. Values less than
1 are associated with sizable differences in the
atomic radii.

The only remaining free parameters are Uz, Uii,
and V. For most purposes we choose Uz ——Uz.
Ferromagnetic instabilities occur for U larger than
—, of the bandwidth. We use a value near this lim-

it in calculations for real systems.

The relative magnitudes of U and V are obtained

by means of a scheme suggested by Rudnick and
Stern. In this scheme the distribution of charge
on the shell of nearest neighbors is assumed to be
approximately spherical. The ratio U/V is then
determined by requiring the potential due to a uni-

form charge on the shell to be the same on the
central site and on the nearest neighbors. For a
bcc lattice this gives U/V =6.422. For an fcc lat-
tice U/V=7. 552.

A better prescription for the on-site Coulomb
repulsion may be to make UI inversely proportion-
al to the atomic radii. This choice improves the
quantitative agreement between model and experi-
ment for all the alloys we consider, but the effects
are not substantial.

Size effects are known to play an important role
in determining the stable configuration of an alloy.
In our model we have chosen parameters which are
essentially suited for alloys of equal-sized elements.

Size differences introduce complications of various

types: changes in the hopping parameters, local
elastic distortions, and inhomogeneities of the diag-
onal and off-diagonal elements of the Hamiltonian.
We have not included these effects here because

they introduce much too many uncontrollable
parameters. We have explored, however, the ef-

fects of size difference in the specific alloys
described below and we have found that no quali-

tative changes are produced. The most important
qualitative feature associated with size differences
is the empirically established fact that size differ-
ences of more than 15% lead, in general, to the ab-

sence of continuous-solid solutions. However, it is

important to note that size arguments are most ef-

fective in determining when two metals can form
continuous solid solutions. They do not do well at
predicting whether solid solutions do form and

whether alloy systems without solid solutions

segregate or form compounds.

III. RESULTS

A. General considerations

The results are presented in several stages. First,
the general influence of the energy parameters is
described at ~ = —, and Z =8 by comparing the en-

ergies in the limiting cases of SRO. The effect of
the one-electron parameters is discussed taking

Uz ——Uz ——V=0, but not allowing charge transfer
in the segregated limit. Then the modifications
caused by including self-consistency are described.
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Second, the predicted trends are compared with ex-

perimental information on alkali-alkali —and

noble-noble —metal alloys. Finally, we discuss the
particular example of the Na-K alloy system in de-

tail. This example illustrates general features of
the concentration dependence of the model.

The zero of total energy is always taken as the
energy of the segregated configuration at the same

concentration. With this choice and Uz ——Uz the
total energy and the magnitude of the charge
transfer are invariant under the interchanges
(C-+ —C) or (tzq~tBB and cq~tt). %hen
Uq QU~, the magnitude of the charge transfer and

the total one-electron energy are invariant under

these transformations; only the mean value of H„
changes. The electronic charge transfer is always

from the atom of larger Etc to the one with small-

er Eqo.
The unit of energy is defined to be Z'~ t, wheret:(t„„tie—)' . The factor of Z' is included so

that the results are relatively independent of the
coordination number. In the model, the coordina-
tion number's main effect is to control the width

of the bands. The second moment' of a pure me-

tal LDOS with nearest-neighbor hopping t is Zt .
Using Z' t as the unit energy compensates for the

change in bandwidth with coordination number. It
allows us to plot bcc and fcc alloys in the same

graph.

B. One-electron parameters

The three independent one-electron parameters

may be chosen to be CIZ' t, (t„&ItBB)',and

tati It Figure 3 s.hows the regions in the (CIZ' t,

(tz„lttttt)' ) parameter space where each of the
three limiting types of SRO has the lowest energy
for three different values of tqBIt. The results are

clearly understood as arising from two competing
effects. As C IZ'~ t increases, there is more

charge transfer and hybridization in the binary-

ordered and random configurations and their ener-

gy decreases. The binary-ordered arrangement is
most favored because a gap is created by the hy-

bridization and only bonding states are filled. As

(tzz Ittta )' increases, the segregated configuration
becomes favored because it has wider bands. The
segregated configuration energy is proportional to
the arithmetic mean of the elemental bandwidths;
the random and binary-ordered configuration ener-

gies are roughly proportional to tzz, which varies

as the geometric mean of the elemental band-
widths. As (t„„/tttB)' increases, the arithmetic
mean becomes increasingly larger than the
geometric mean. If one were to take t„ti
=

2 (tzz+ttitt ), the binary-ordered compound

would always be stable.
The balance between the binary-ordered, ran-

dom, and segregated configuration energies

changes with concentration. The binary-ordered
configuration energy decreases sharply near x = —,

as long-range order develops and a gap opens in
the density of states. The random configuration
energy is a smooth function of concentration.
Near x = —, it always decreases with increasing

concentration of the atom with the larger band-

width. The concentration dependence is discussed
in greater detail when we consider the example of
the Na-K alloy system.

Following Pettifor, we have attempted to model
our results with an approximate density of states
(DOS) consisting of one or two rectangular bands.
The heights and widths of the rectangular bands
are determined from the first three (zeroth, first,
and second) moments of the true DOS. ' Pettifor
uses a single square band to model both the ran-

2.0

tAB ( tAA tBB}
dom

- 1.5 — Segregat

Binary-Ordered

tAB(tAAtBB) = 1.1
I I I I I

0.4 0.8
1.0

0
I l

0.4 0.8 1.2041.2 0 0.8
C/Z"t

FIG. 3. Regions of relative stability of the segregated, random, and binary-ordered arrangements as a function of
CIZ' t and (t»lt»)' for three values of t&z/t.
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dom and binary-ordered DOS curves in his theory
for the heats of formation of transition-metal com-
pounds. The predictions of his model disagree
with our results and with experiments on simple
metals. The random arrangement is always
favored in Pettifor's model unless tzsit & 1, and its
total energy changes in the wrong direction as a
function of concentration. Our results for the ran-
dom configuration energy are qualitatively repro-
duced if two rectangular bands are used to model
the DOS, one associated with the I.DOS of each
component. For example, the line where the ran-
dom and segregated configuration energies are
equal is reproduced within -S%%uo over the range
plotted in Fig. 3. The binary-ordered configura-
tion energy is more difficult to model because of
the sharp features in the DOS associated with the
formation of a gap.

C. Coulomb interactions

+0.03

+0.02

+0.01
~CV

LLI

—0.01

—0.02
—1.0

l

—0.5 +0.5 +1.0
0

FIG. 4. Total energy of the alloy as a function of
short-pange order for various values of V. The other

parameters are Z =8, x = —,, U& ——U& ——1.12Z' t,

t~g ——t, (tq~/tqq)' =1.5, and C =0.606Z' t.

The effect of the on-site Coulomb interaction is
straightforward and well understood. Nonzero
values of Uq and Us lead to a self-consistent on-

site energy difference which is smaller than C.
Thus the energies of the random and binary-
ordered configurations increase and the amounts of
charge transfer decrease. The segregated arrange-
ment becomes more favored. In the graphs of Fig.
3 the area corresponding to segregated alloys in-

creases as U& and Uq increase.
The intersite Coulomb interaction Va(0 )b,l is

treated better here than in previous calculations.
Its importance is most clearly seen in a plot of en-

ergy versus SRO (Fig. 4). When V=0 the energy
approaches the wrong limit as o.~+ l. Even
small values of V produce the correct asymptotic
behavior in this limit. This is only because we
have used a form for a(0.) which approaches ao at
0 =+1 as the exact a(a ) must.

For larger values of V, the binary-ordered con-
figuration energy begins to change drastically.
These values are unphysical. Vfhen

U+2Va(o ) &0 the effective on-site energy de-

creases as more electrons are added. If
U~+2Va( —1) & —

~
t;;

~

the pure metal is unstable

against charge-density waves.

D. Comparison with real alloys

Figure 5 shows the region in which each limiting

type of SRO has the lowest energy for Iq~/t = 1,

2.0—

1.8
LQ
Cl

1.6

Segregated

Li-Cs 0—

Na-Cs ~g

Cu-Ag ~
1.0

0 0,2 0.4 0.6 0.8 1.0 1.2
C/Z"'t

FIG. 5. Regions of stability as a function of C/Z' 2t

and (t~~ltgg) for t~g ——t, x = 2, Z=8, Ug ——UgI 2 1

=6.422V=1. 12Z' t. Values for real monovalent alloy

systems are plotted: Squares indicate systems that
segregate at all concentrations; circles indicate systems

that form 328 compounds but no solid solutions; trian-

gles indicate systems with extended regions of solid solu-

bilities and in some cases binary-ordered compounds.

U= U~ ——Us=1. 12Z' r, and V= Ul(6 422) Fo.r.
the same parameters, Fig. 6 gives the magnitude of
the charge transfer associated with a given value of
CIZ' r for tzz tss. The b——inary-ordered charge
transfer is unaffected by (t„z itss )'~ because only
A Bbonds oc—cur. The charge transfer in the ran-
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0.8

0.6
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0.4
0)
U)
6$

0
0.2

0
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C/Z 't

FIG. 6. Magnitude of the charge transfer
(electrons/atom) as a function of C/Z' t for

1

tgg ——tgg ——tgg, x =—,Z =8, Ug ——Ug ——6.422'
=1.12Z' 't. Electron charge is transferred to the ele-

ment with lowest Ezo, the on-site energy.

2.5

dom configuration decreases by about 10% as

(t„„ltzz)' varies from 1 to 2. Electronic charge
is always transferred to the element with lowest

Ero

Also plotted in Fig. 5 are points corresponding
to each of the alkali-alkali —and noble-noble—
metal alloy systems. Squares are used to indicate
systems which segregate at all concentrations, cir-
cles indicate systems which form Ag8 compounds
but no solid solutions, and triangles indicate sys-
tems with extended ranges of solid solubility and
in some cases compounds. The predicted binary-
ordered and random energies and charge transfers
are given in Table II. Even with our simple choice
of parameters, the results of the model are in good
qualitative agreement with experiment. No at-
tempt has been made to improve the fit by varying
the value of U. In the following paragraphs we
discuss each group of alloys in detail.

The lithium alloys are all found to segregate,
even in the liquid state. The Li-Na system has a
miscibility gap with a critical point at 715 K. The
other lithium alloys have immiscibility critical
temperatures which are too high to have been
measured (T & 1300 K). Our model predicts that
all four should segregate, and is consistent with a
much lower critical temperature in Li-Na than in
the other three alloys. The asymmetry with con-
centration in the immiscibility gap of Li-Na is in

TABLE II. Calculated energies and charge transfers at x =- —.1

Alloy
(A -B)

Random
(me V/atom)

Energy'
Binary-ordered

(me V/atom)
Random

(electrons/atom)

Charge transfer
Binary-ordered

(electrons/atom)

Li-Na
Li-K
Li-Rb
Li-Cs

+ 12.2
+ 43.8
+ 49.7
+ 53.7

+ 29.9
+ 110.6
+ 131.6
+ 155.9

+ 0.0279
+ 0.1510
+ 0.1853
+ 0.2522

+ 0.0826
+ 0.3430
+ 0.4051
+ 0.5186

Na-K
Na-Rb
Na-Cs

+ 0.0
—1.3

—11.7

+ 2.0
+ 3.4
—2.8

+ 0.1449
+ 0.1871
+ 0.2720

+ 0.3208
+ 0.3914
+ 0.5172

K-Rb
K-Cs
Rb-Cs

—0.5
—6.7
—3.7

—2.0
—15.6
—9.8

+ 0.0472
+ 0.1506
+ 0.1065

+ 0.1286
+ 0.3267
+ 0.2493

Cu-Ag +32 + 4.6 + 0.0111 + 0.0144

CU-AU —38.9 —50.1 —0.1071 —0.1384

Ag-Au —51.1 —65.9 —0.1270 —0.1641

'The segregating energy is always taken to be zero.
A positive number indicates electron-charge transfer from B to A in the A-B pair of column 1.
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the direction predicted by the model.
Near room temperature, the alloy systems K-Rb,

K-Cs, and Rb-Cs form continuous solid solutions
at all concentrations. Recent experiments show
that the compound K2Cs forms, but only below
185 K. No compounds have yet been observed in
K-Rb or Rb-Cs. The model predicts that all three
should form a binary compound at T =0. Howev-
er, the ordering energies are so small that the or-
dered phases would not be observed at room tem-
perature. The largest predicted ordering energy is
for K-Cs, the only system in which a compound is
observed.

Unfortunately, the small cluster size and the
Bethe-lattice topology did not allow us to examine
the possibility of formation of 228 compounds.
However, the asyrnmetries with concentration that
are discussed below suggest that a K2Cs compound
should be more stable than either a KCs or KCs2
compound.

The predictions for the above alloy systems are
relatively insensitive to changes in the energy
parameters. For example, changing U by 15%
changes the energies by only 1 —10%. In contrast,
the predictions for the alloy systems Na-K, Na-Rb,
and Na-Cs are altered drastically by this change in
U. This is because they lie in the random configu-
ration region of Fig. 5 where the energy balance
between arrangements is changing.

Experiments on Na-K, Na-Rb, and Na-Cs show
that the solid metals are only slightly soluble in
each other. The compounds NaqK and Na2Cs are
found to form at 280 K and 265 K. No Na2Rb
compound has been observed, which is surprising
since Rb is intermediate in all respects between K
and Cs. The reaction forming Na2Cs is very slug-

gish and lower-temperature work on Na2Rb might
reveal such a compound. The model's predictions
at x = —, are not in agreement with experimental

observations. This discrepancy may occur because
the value of U we chose was —15% too large, be-

cause of size effects, or because we could not in-

clude the possibility of an Az8 compound. %e
discuss the last possibility later.

The predicted values for the energies of noble-

noble —metal alloys all have the correct sign. ' In
contrast, a previous calculation' using the extend-

ed CBLM, predicted all three alloys would form
ordered compounds. This calculation was in error

1

because an unphysically large value for Va( ——
)

1
3

was used. A large value of Va( ——, ) favors charge

transfer and thus a binary-ordered structure. For
the value used previously, the pure materials are in

fact unstable against charge-density waves. %ith
1

reasonable values for Va( ——,), the signs of the
ordering energies are very insensitive to the choice
of parameters. The alloys lie far from the binary-
ordered —to —segregated transition in Fig. 5.

Experimentally, the alloy Cu-Ag is found to
segregate in the solid phase. ' There is no misci-
bility gap in the liquid phase, but anomalous be-
havior observed in thermodynamic quantities may
be evidence of substantial SRO. Measurements of~ suggest a random energy of about 40
meV/atom. Our predicted value is substantially
lower. The discrepancy may be due to the differ-
ence in the atomic radii of Cu and Ag, which
should make the appropriate value of tzz less than
t. It may also be related to the d bands, which are
not included in our calculation.

Both Cu-Au and Ag-Au exhibit complete solid
solubility at sufficiently high temperatures. '
The compound CuAu forms below 683 K and
CU3Au and CuAu3 form below 663 and 473 K.
Thermodynamic measurements indicate incipient
compounds with compositions AgAu, Ag3Au,
Ag3AU2, and AgAu3, but no long-range ordering is
found in x-ray experiments. Considerable short-
range order is present in AgAu below 800 K.

The random and binary-ordered energies of
CuAu are measured to be —52.9 and —96.7
meV/atom, respectively. ' The predicted values

are —38.9 and —50. 1 meV/atom. The model

gives a lower energy for Cu3Au than for CuAu3, in

agreement with experiment. As noted earlier, no
structure with 0.= —1 is possible on an fcc lattice.
However, it is interesting to note that for 0.= —1

the CBLM gives an energy of —94.3 meV/atom
which is remarkably close to the observed energy
of the Cu-Au ordered compound. The calculated
energy for o.= ——, might be closer to the experi-

mental value if the effect of LRO were included
correctly.

The random configuration energy of Ag-Au is
measured at about —48 meV/atom. The exact
value is difficult to determine because of residual
SRO. The extended CBLM gives —51.1 meV/
atom for the random energy and —65.9
meV/atom for the binary-ordered energy. It is in-

teresting that although Ag-Au is predicted to have
a lower binary-ordered energy than Cu-Au, more
long-range order is present in the Cu-Au system.
Elastic energies may be responsible for this ap-
parent contradiction. The Ag and Au atoms are
very close in size while Cu is 10% smaller.
Thus, elastic energies are larger in the Cu-Au alloy
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tion, only 3 —B bonds and J—I bonds between
two atoms of the majority element exist. The gap
in the DQS is bigger when the hopping parameter
for the like-atom bonds is smaller. In Na-K,

1

tK& g t&,N, and thus the gap is larger for cN, g —,.
1

Away from cN, ———, the binary-ordered energy
behaves smoothly, following the trends seen in the
random energy.

The cluster of one atom and Bethe-lattice effec-
tive medium do not allow us to calculate the ener-

gy of an A&8 compound. However, it seems rea-
sonable that the asymmetry in the random energy
is mirrored in the energy of binary-ordered!com-
pounds. The energy of the binary-ordered configu-
ration is significantly lower at cN, ———, than at

cN, ———, and, with proper inclusion of the effect of
LRO, might well approach the experimental value
of —6.3 meV/atom in Na2K.

IV. SUMMARY AND CQNCjLUSIQNS

We have applied' the extended CBLM and a
new technique for calculating the long-range effect
of charge transfer to study the alkali-alkali —and
noble-noble —metal alloy systems. As seen in Fig.
5, our results are in good qualitative agreement
with experimental observations. We predict
correctly that the alloys Li-Na, Li-K, Li-Rb, Li-
Cs, and Ag-Cu segregate. Experimental values for
the energies of random lithium alloys are not avail-

able but our predicted values have the right magni-
tude to explain the observed phase diagrams. Qur
value for the energy of Ag-Cu is too small. The
alloys K-Rb, K-Cs, and Rb-Cs are predicted to
form compounds, but with very low ordering ener-

gies. The largest calculated ordering energy is that
of KCs. All three alloys form continuous solid
solutions at room temperature. The only com-
pound that has been reported is KzCS, and it does
not form above 185 K. The alloys Ag-Au Rnd

Cu-Au are also predicted to form ordered com-
pounds. Experiments indicate that compounds
with several compositions form in both systems.
The predicted values of the random energies of
these alloys are within 10—30 /o of experiment.
The remaining alloys Na-K, Na-Rb, and Na-Cs are
all predicted to form random alloys. In fact, Na-
Rb is reported to segregate and the other alloys
form the compounds Na2K and Na2Cs. In the
present application of our model, the energy of an
A 2B compound cannot be calculated. However,

observed asymmetries with respect to concentration
suggest that the energ1es of NR2K Rnd NR2Cs
would be lower than those of NaK and NaCs if
they could be calculated. It is not understood why
Na-Rb does not behave hke the other two alloy
systems.

Previous calculations' with the extended CBLM
of the ordering energies of noble-noble —metal al-

loys, gave the wrong sign for the ordering energy
of Cu-Ag. An unrealistic model for the Coulomb
potential from surrounding atoms heavily favored
the formation of binary-ordered compounds. The
model gave particularly bad values for the
Coulomb potential in alloys with a tendency to
segregate. We have devised a method for summing
the off-site Coulomb interaction for arbitrary can-
centration and short-range order. Using this
method the error in the sign of the ordering energy
of Cu-Ag was corrected, and reasonable calcula-
tions of the effects of charge transfer in segregated
alloys were possible for the first time. Qur treat-
ment of the Coulomb sum is not limited to use in
conjunction with the extended CBLM. It can be
incorporated in any alloy formalism that includes
SRO through pair probabilities and gives a project-
ed LDQS for each type of atom. However, in its
present form, the technique is only applicable to
studies of varying SRO on a fixed lattice.

Further investigation along the lines presented
here could follow several directions:

(I) A larger cluster size. This improvement will

test the convergence of the extended CBLM and
allow a variety of different ordered compounds to
be considered. It will also give information about
the effect of fluctuations in the local environment
on the LDQS and charge at a site.

(2) More basis orbitals at each site. A larger lo-
cal basis would allow calculations on transition-
metal alloys. These alloys are of more practical in-

terest and are better described by a tight-binding
Hamiltonian, which is the starting point for the
CBLM.

(3) Detailed thermodynamic studies. As men-
tioned in the Introduction, calculations of the ener-

gy as a function of SRQ can be combined with
Kikuchi's formalism for the entropy to give free
energies Rnd phase d1aglams.

(4) Inclusion of self-consistent changes in the
hopping parameters with both charge transfer and
interatomic spacing. The latter step would allow
the elastic energy to be included in the model, but
requires an accurate theory of the variation in
atomic spacing with concentration and SRQ.
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APPENDIX

and» is used to indicate the opposite type of atom
from K. Charge conservation, Eq. (8), implies

r

7K K
CK C~

(A3)

and the formulas for the pair probabilities, Eq. (2),
give

y»=b»[(c»+c„o) —c»(1—o)1=—o~» . (A4)

To calculate $J, Eq. (9},we divide the sum over
Ri into contributions from shells of constant n, the
smallest number of nearest-neighbor bonds con-
necting RI to the origin. We write

Thus, we obtain

Q gJJ( + )~J o Q gl»(n)~»
J

and

(A5)

NJ = V g q. Q gJJ(n)~J (Al)
PJ ——Vbra(o ), (A6)

g )»gI»(n) ~ (A2}

where

3 JK 3KK 3 xK)»= g ~J ~» +~a
CK CK CK

where the q„are purely geometric coefficients ob-
tained by summing 8/

~
Ri

~

over all Ri with the
same value of n

From the recursion relation for gJJ(n), Eq. (10),
we may write

3'JKg EJgJJ(n +1)= g b J ggJ»(n)
J J K CK

where

a(o)= gq„o" . (A7)

The first ten coefficients, q„, for bcc and simple
cubic lattices are given in Table III. As

~

o
~

ap-
proaches 1 distant shells become more and more
important. Fortunately one only needs to calculate

q„ for a few shells because they quickly approach
an asymptotic limit. For large n, the number of
sites on a shell goes as n and

~

r; —rJ
~

goes as n

so that q„ is proportional to n, i.e., q„—+pn. Also
given in Table III is the deviation of each coeffi-
cient from the asymptotic value. We rewrite the
sum as

TABLE III. Coefficients of the power series defining a(0).

bcc lattice
(CsC1)

q„ q„—pn

simple cubic lattice
(NaC1)

q„—pn

1

2
3

5
6
7
8
9

10

8
16.5446
24.7369
32.9810
41.2249
49.4694
57.7141
65.9588
74.2036
82.4484

p=8.24483
Madelung constant = —1.7627'

—0.2448
+ 0.0550
+ 0.002'4

+ 0.0016
+ 0.00086
+ 0.00043
+ 0.00037
+ 0.00028
+ 0.000 12
+ 0.00009

1

2
3
4
5
6
7
8
9
10

6
11.4853
17.3519
23.1301
28.9135
34.6966
40.4795
46.2624
52.0452
57.8281

p=5.782 81
Madelung constant = —1.7476'

+ 0.2172
—0.0803
+ 0.0035
—0.0012
—0.000 54
—0.00031
—0.00020
—0.00013
—0.00009
—0.00007

'Agrees to all significant digits with other published values.
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a(rr)= gpno" + g (q„—pn)o"

=po /(1 —o.) + g (q„p—n)o" .

a(o.) =p'o /(1 —o.)'+ (Z —p')o. ,

a( —1)=3p'/4 —Z,
which yield

(A9)

The first term is exactly summable and the re-
mainder is a rapidly converging power series for all
0'.

An ad hoc approximation for a(o ) can be ob-
tained from only the coordination number, Z, and
the Madelung constant, a( —1). The coordination
number gives qi and the other coefficients can be
approximated by an asymptotic form which is fit-
ted to the Madelung constant. One writes

The resulting function is within 1% of the exact
formula for the two examples given above.

It should be noted that the approach used here is
only applicable to lattices which can be divided
into two interpenetrating sublattices such that all
nearest neighbors of an atom on one sublattice be-

long to the other sublattice. This condition ex-
cludes close-packed lattices such as fcc and any
other lattice which contains odd-numbered rings of
nearest-neighbor bonds. In such systems the pair
probabilities are insufficient for specifying the
SRO. It may be possible to extend the current ap-
proach to these lattices by incorporating higher-
order cluster probabilities. For segregating SRO,
the simple model for a(tr) should give good results
on any lattice with a choice of a( —1) near —2.
The peculiar topologies which are important in or-
dered compounds are not relevant to segregated al-

loys.
p'=4[a( —1)+Z]/3 . (A10)
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