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A theoretical analysis of the helium diffraction experiments performed on the
GaAs(110) surface by Cardillo, Becker, Sibener, and Miller is presented. Dynamic
scattering calculations for several model potentials approximating that of the surface are
presented. These suggest that the surface is a smoothly corrugated soft wall with a
peak-to-trough distance along the [001] direction of ~1 A and an attractive well depth of
~7 meV. Existing methods for generating van der Waals potentials are reviewed and an
explanation is suggested for their poor performance in the case of helium. New semiem-
pirical rules fit to the known helium rare-gas potentials and consistent with the recent re-
sults of Esjberg and Ngrskov are proposed. These are used to construct an approximate
potential for GaAs(110), which we show to agree qualitatively with the empirically fit po-
tential. The classical turning-point surface of this potential lies 3.5 A above the As nu-
cleus. Scattering calculations performed on this potential are shown to agree poorly with
experiment. We conclude from this that the scattering is very sensitive to nuances in the
potential, and that very accurate surface charge densities will be required before a poten-
tial capable of scattering in agreement with experiment can be constructed.

I. INTRODUCTION

The diffraction of helium atoms from surfaces is
a powerful new tool for surface structure analysis
still in its infancy."? At present, its usefulness as
a diagnostic tool is impaired by the difficulty of
interpreting data from highly corrugated surfaces,’
notably the semiconductors.*> From a theoretical
standpoint, the most significant source of this dif-
ficulty has been the absence of rules for generating
the scattering potential given the positions of the
target nuclei. In this paper, we attempt to shed
some light on this problem by discussing in detail
the diffraction of helium from the GaAs(110) sur-
face.

The situation in the theory of atom diffraction
from surfaces is well illustrated by the case of LiF.
Like graphite,® LiF has been studied extensively
both experimentally’ and theoretically.® Neverthe-
less, scattering calculations based on “realistic” po-
tentials capable of producing good agreement with
experiment have never been performed (although
Wolken® has performed dynamic scattering calcu-
lations for an approximate model potential). Gar-
cia® has obtained excellent agreement with the dif-
fraction intensities from LiF(100) observed by Boa-
to et al.,” by modeling the surface as an infinitely
hard wall. The maximum peak-to-trough distance

25

of this wall, 0.3 A in each principal direction, is
sufficiently small”®10 that the depth of the van der
Waals attractive well bounding the wall can be in-
ferred from kinematic analysis’ of the selective-
adsorption resonance positions. This depth (~8
meV) is found”® to be small compared with the
kinetic energy (~21 meV) of the probe. While the
complete scattering potential for LiF(100) is not
known, some information about it has been ob-
tained!! from selective-adsorption line shapes and
anticrossing splittings. The latter analysis has been
performed sufficiently thoroughly by Carlos and
Cole'? for graphite that the helium-graphite poten-
tial can be said to be known accurately, up to arbi-
trariness in the location of the origin. This is not
true for any other surface.

Attempts to calculate scattering potentials from
first principles have been discouraging. Freeman'’
has calculated the helium-graphite potential using
the Gordon-Kim'# technique to obtain an attrac-
tive-well depth roughly % (Ref. 13) of the meas-
ured® value and hard-wall parameters agreeing
poorly with the data.® Somewhat better results
have been obtained by Tsuchida,'® who has
represented LiF as a sum of known He-Ne and
He-He potentials and obtained attractive well
depth and corrugation parameters agreeing to
within 30% of experiment. Except for the work of
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Tsuchida'® and that of Esjberg and Ngrskov'® on
the Al(110) surface, there has been no success at
predicting corrugation parameters. A strong corre-
lation between the attractive depth and the polari-
zation properties of the target is known' to exist.
In this paper, we approach the problem of hel-
ium-surface potentials both using GaAs(110) as a
prototype surface on which to test both potential
generation and diffraction from those potentials.
There are two reasons why GaAs(110) is superior
to either LiF(100) or graphite in this regard: (1)
Its structure is well known,!” so that information
contained in the scattering signal tells us about the
potential rather than the structure. (2) It is non-
trivial topographically, and thus its diffraction in-
tensities are difficult to fit. This topography is il-
lustrated in Fig. 1. GaAs(110) is composed of
zig-zag chains of Ga and As atoms arranged in
parallel rows on the surface. The separation be-
tween the chains is 5.59 A, the repeat distance
along the chain is 3.95 A, and the vertical drop be-
tween surface chains and the floor of the trough
separating them is 1.98 A, before reconstruction.

z [0o1] 0Ga

X

FIG. 1. Schematic drawing of GaAs(110) structure.
Atoms (1) and (2) belong to one surface chain. Atom (5)
is the analog of atom (1) on an adjacent chain. Atoms
(3) and (4) form the floor of the trough separating the
two chains.
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As the Ga dangling bond contains no electrons, the
system reconstructs'’ by tipping the chains 27°.
This raises the As atom 0.46 .3., lowers the Ga
atom 0.19 A, and increases the drop between the
As atom in the surface and those in the second
layer to 2.44 A. As we shall show in Sec. 111, this
surface has three times the corrugation of LiF in
one direction.

The plan of the paper is as follows. In Sec. II,
we briefly review the principles of scattering from
hard walls and show how these bear on scattering
from the more realistic potentials suitable for de-
scribing GaAs(110). In Sec. III, we review the
GaAs(110) helium-scattering data of Cardillo et
al.,’ and analyze these using the empirical-model
potentials. In Sec. IV, we discuss the problem of
generating a scattering potential, and propose ways
of circumventing the difficulties commonly en-
countered when trying to do so. In Sec. V, we dis-
cuss the application of the rules for generating po-
tentials discussed in Sec. IV to GaAs(110). In Sec.
VI, we summarize our results.

II. ELASTIC SCATTERING
FROM SOFT WALLS

Following Garibaldi et al.'® and Garcia et al."?
we consider a one-dimensional wall, the height of
which above the surface at x is & (x). We let the
probe atoms impinge on the surface with polar an-
gle 6 and momentum g, and write?® for the wave
function

Y=eexpli (g} —k?)'" %]

+ zaGei(k+G)x
G
Xexp{ —i[¢*—(k +G)*1"%z}, (1)

where k=g,sin(6) is the component of momentum
in the plane of the surface, and each G is a reci-
procal-lattice vector. The scattering amplitudes,
ag, related to the probabilities I; for adding trans-
verse momentum G to the probe by

__cos(6')
" cos(6)

where 6 and ¢’ are the angles of incidence and exit,
must be picked to make the wave function zero at
the surface, in the manner

lag |2, %)
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0=1+ 3 age®exp(—i{ (g5 —k>)'*+[g5—(k +G)*1'* }h(x)) . 3)
G

This is possible, in general, only when the surface
is trivial, since the Rayleigh approximation® [Eq.
(1)] forces the expansion set to be incomplete.
However, if the surface is weakly corrugated
[|8h/8x| <0.1 (Ref. 18)] one can make the further
approximation'® that the normal momentum
transfer is independent of G,

(g3 —k)V2 4 [q3 —(k +G)?]’~q , @

in which case the scattering complitudes can be
written as a definite integral of the form!®

agz% feiG"e‘i"h(")dx R (5)

where () is the area of the unit cell. This is the
eikonai!® approximation, the hard-wall analog of
the Born approximation, in the sense of being
equivalent to a first-order expansion of the Green’s
function, G, of the form

G=G°~—2;1—:_ surfalceGOVG-dS
# — —
=~Go— EﬂT fsurface GOVGO as, (6)

where G, is Green’s function in the absence of the
wall. Equation (5) is particularly useful for inter-
preting the scattering semiclassically. The in-
tegrand can be seen to be rapidly oscillating, and
thus integrating to a small value, except in those
regions for which

oh =G ™
dox q

Thus, as in classical scattering, particles deflect
into an angle O=tan~!(2G/q) when they strike the
surface at a point where the slope is tan(6/2). At
large g, the magnitude of this contribution to
lag | * is properly proportional to the radius of cur-
vature of the surface at the classical impact point.
At small g, one has the additional effect of quan-
tum-mechanical interference between reflections
from points on the surface with identical slopes.
This gives rise to beats in the diffraction pattern
called supernumary rainbows.'® The infinite radius
of curvature at the inflection point always gives
rise to a large peak in the diffraction pattern called
the primary rainbow. This is typically the most
distinct feature in the pattern.

The hard-wall appropriate for describing

[

GaAs(110) is sufficiently corrugated that the eikon-
al'® approximation describes scattering from it only
qualitatively. In Fig. 2 we compare intensities of
various diffracted beams as a function of polar an-
gle of incidence for 21 meV (A=0.98 A) helium
atoms scattering from a hard wall of the form

h(x)=hocos(Gpx) , (8)

where Gy =1.125 A generates the reciprocal lattice
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FIG. 2. Intensities of various diffracted beams for
21-meV helium atoms scattering from a hard wall
described by Eq. (8) as calculated exactly (solid) and in
the eikonal (Ref. 17) approximation (dashed), plotted
versus 6;, the polar angle of incidence of the probe. The
specular beam is shown in (a) the first diffracted beam
(deflected toward 6=0) in (b), etc.
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and hy=0.57 A is the corrugation parameter. The
solid curve, calculated both by satisfying Eq. (3) at
30 points on the surface and by performing
dynamic scattering calculations (see the Appendix)
on a potential of the form

V(x,z)ze—a[z—h(X)] , (9)

with a=12 A~ compares well with an eikonal
calculation, shown as a dashed line, only for large
deflection angles. The worst agreement is obtained
for the specular beam [2(a)] in which the peak at
45° in the exact calculation is shifted to 55°, where
a dip should occur. This would cause a 50% error
if it were used to infer A, from specular scattering
data. Also missing in the eikonal calculation are
the sharp features at 17.9°, 28.3°, 40.5°, and 55.5°,
which are thresholds® or resonances corresponding
to selective adsorption into a state with zero bind-
ing energy, which occur when

. #
sm(())-l—«ano_l 0.175n . (10)
This discrepancy is less important, since these reso-
nances will always reappear with the addition of an
attractive well.

Softness of the wall has a significant effect on
the diffraction pattern. In Fig. 3 we compare
scattering calculations for a potential of the form
of Eq. (9) for a=4.0 and 8.0 A~!. We have plot-
ted scattering intensity as a function of exit angle
for various values of the incidence angle of the
beam. For fairly normal incidence (bottom) the
difference in a has little effect. In both cases one
sees a primary and a supernumary rainbow dis-
placed five and two beams from specular, respec-
tively, which track with the specular beam as the
incidence angle is increased. However, at large in-
cidence angles, the collapse of first the supernu-
mary and then the primary rainbow into the specu-
lar beam occurs sooner for the softer wall. This
collapse is a consequence of shadowing by the
ridges of the inflection point, the semiclassical
source of the primary rainbow. Softness en-
courages collapse by causing the particle to refract
outward as it skims across the tailing repulsive po-
tential of the ridges, thus preventing it from reach-
ing the inflection point. The tendency of softness
to return intensity to the specular beam has been
noted previously by Armand and Manson.?!

One important aspect of rainbow scattering is
that both the primary rainbow angle and the angle
at which collapse occurs are independent of probe
energy. Thus, in Fig. 4 we see that the same sur-
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FIG. 3. Intensity plotted vs 6, the polar angle of
exit of the probe, for various values of 6;, the polar an-
gle of incidence, for 21-meV helium atoms diffracting
from a one-dimensional soft wall described by Egs. (8)
and (9) with =4 A~! (left) and a=8 A~ (right). In
each case, the arrow indicates the specular beam.

face (a=4) proved with 63 meV atoms also has a
rainbow angle of 50° which collapses by 65° in-
cidence. The fully developed pattern at 24.1° in-
cidence shows three supernumary rainbows at 18°,
5°, and —12° which collapse in succession as the
probe so lowered toward grazing incidence. One
can also see emerging in Fig. 4 the outline of the
U-shaped pattern characteristic'® of classical
scattering.

GaAs(110) has a slight asymmetry,® due either
to the heteropolarity of the surface or to the recon-
struction,'” which manifests itself most distinctly
as a difference in the left and right rainbow angles.
In Fig. 5 we show the effect on the diffraction pat-
tern of addition to /4 (x) an asymmetry of the form
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FIG. 4. Intensity plotted vs O, the polar angle of
exit of the probe, for various values of 8;, the polar an-
gle of incidence, for 63-meV helium atoms diffracting
from a one-dimensional soft wall described by Egs. (8)
and (9) with =4 A~'. In each case, the arrow indi-
cates the specular beam.

Ah(x)=hsin(2Gyx) , (11)

where h;=0.08 A. The small skewness this gives
to h, shown to scale with and without AA at the
top, causes the rainbow angle for particles imping-
ing on the steep side of the ridge (right) to be 60°,
while that for particles impinging of the shallow
side is 40°. As this is a net difference of 40% of
the original of 50°, we conclude that a small asym-
metry can produce large changes in the diffraction
pattern.

III. DIFFRACTION FROM GaAs(110)

Up to effects due to the van der Waals attractive
well on the surface, scattering from GaAs(110)
(Ref. 5) is quantitatively that of the soft wall
described by Egs. (8) and (11). In Fig. 6 we com-
pare experimental in-plane diffraction patterns
across the troughs for 21 meV the atoms imping-
ing at various polar angles ;. The left and right
columns, which correspond to particles incident on
the shallow and steep sides of the ridge, respective-
ly, show the similarities and differences visible in
the asymmetric soft-wall calculations of Fig. 5. In
each case, one sees at fairly normal incidence

N S ' 1 A'l[l’l 1111!

INTENSITY {ARB UNITS)
—

|h‘

U
} }

i

L
-60 -40 -20 O 20440 60 -60 -404-20 0 20 40
8y (degrees)

1

i
0

FIG. 5. Intensity plotted vs 6%, the angle of exit of
the probe, for various values of 6;, the polar angle of in-
cidence, for 21-meV helium atom diffracting from a
one-dimensional asymmetric soft wall described by Eqgs.
(8), (9) and (11) with a=4 A~!. The right column has
been reflected across the center. The top shows draw-
ings to scale of the classical turning-point surface with
(solid) and without (dashed) the asymmetry described by
Eq. (11).

(6;=35") a bump at 14°, the supernumary rainbow,
which collapses into the specular beam 6;=45°,
and the entrance from the left at 6; ~50° of a
second feature, the primary rainbow, which col-
lapses by 6;~65°. Although the collapse of rain-
bows occurs sooner in the left column than in the
right, a result of wall asymmetry, similar behavior
in Fig. 5 shows this asymmetry to be subtle and
described well by Eq. (11). Thus, these data show
GaAs(110) to be a smooth soft wall with a peak-
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FIG. 6. Experimental in-plane diffraction patterns
for 21-meV helium atoms beamed across the troughs of
GaAs(110). Diffraction along the troughs cannot be
seen in this scattering geometry. Intensity is plotted vs
Or, the polar angle of exit of the probe, for various
values of 6;, the polar angle of incidence. The left and
right columns correspond to particles impinging on the
shallow and steep sides of the ridge, respectively. The
arrow in each case indicates the specular beam. Note
that data is not taken beyond 0 = —20°.
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to-trough height of 1.1 A and an asymmetry which
is small. 'We emphasize that total collapse by
0;~65° shows that the surface is soft.

Surface corrugation along the troughs has little
effect on scattering across the troughs. This may
be seen by considering a hard wall sufficiently
smooth that its height function contains only first
harmonics, in the manner

h (x,y)=h,cos(xGy) +h,cos(yGy) , (12)

where G and Gf,’ are the generators of the recipro-
cal lattice along and across the troughs, respective-
ly. To the extent Eq. (5) is valid, the scattering
amplitudes are redundant, in that they may be
composed in the manner

1 i G 7, —igh(T) =
-(—)-fe‘ Te— i dT

1 ixG, —igh,, 0
=—6 [fe e COS(xGx )dx]
iyG, —igh 0
X fe e ”cos(yGy)dy] , (13)

and thus characterized by in-plane diffraction
along principal directions only. The data in Fig. 6
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FIG. 7. Experimental in-plane diffraction patterns
for 21-meV helium atoms beamed along the troughs of
GaAs(110). Diffraction across the troughs cannot be
seen in this scattering geometry. Intensity is plotted vs
O, the polar angle of exit of the probe, for various
values of 6;, the polar angle of incidence. The arrow in
each case indicates the specular beam.

reflect only the y integral. If we probe the x in-
tegral by rotating the sample azimuthally 90° and
perform the same experiment, we see, in Fig. 7,
scattering power concentrated in the immediate vi-
cinity of the specular beam, reﬂecting a corruga-
tion parameter the order of h,~0.1 A, as is the
case with many metals.! While it may be possible
to fit these data with a one-dimensional hard-wall
calculation, the approximate nature of the assump-
tions leading to separability in Eq. (13) would
make such a fit unphysical. An experimental ex-
ample of this problem is shown in Fig. 8, in which
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FIG. 8. Experimental specular intensity plotted vs 6;,
the angle of incidence of the probe, for various sample
azimthus ¢. The probe kinetic energy is 21 meV.
¢=180° corresponds to scattering across the troughs
(Fig. 6) and ¢ =0" corresponds to scattering along the
trough (Fig. 7). Note the gradual destruction of the
three-peak envelope as ¢ is decreased.

we reproduce the intensity of the specular beam as
a function of polar angle of incidence for various
sample azimuths. The evident azimuth dependence
is inconsistent with Eq. (13), which predicts no az-
imuth dependence for G=0. Variation of the re-
flection coefficient with azimuth involves a break-
down of the eikonal'® approximation similar to
that shown in Fig. 2, as well as the presence of
higher fourier components in the height function
absent in Eq. (12).

Each of the plots in Fig. 8 can be seen to have a

distinct three-peak envelope with maxima at 25°,
45°, and 70°, in good agreement with the correct
(solid line) hard-wall calculation in Fig. 1(a). (The
peak at 6; =58’ is a resonance absent at ¢=0.)
Since the specular scattering arises semiclassically
from regions of the wall with zero slope, this en-
velope may be understood as being due to interfer-
ence between probe particles reflected from the
tops and bottoms of troughs. The dependence on
polar angle 6 occurs through the normal momen-
tum transfer g~2gqcos(6) in Eq. (5). If one ap-
proximates Eq. (5) as

ag «<cos(ghg) , (14)

one obtains a specular intensity curve similar to-
the dashed line in Fig. 2(a). The presence of an en-
velope in the GaAs data is important in that it in-
dicates a van der Waals attractive well on the sur-
face shallow compared with the kinetic energy of
the probe. This is significant because a deep well
tends to exaggerate the rainbow angle, and thus
cause the surface to appear more corrugated than
it actually is. The well depth is customarily®—? in-
ferred from the positions of the selective-adsorp-
tion resonances, the fine structure in Fig. 8 absent
in Fig. 2(a). However, we have found a self-
consistent kinematic analysis of these data to be
extremely difficult, as our scattering calculations
have shown the resonance positions and intensities
to be extremely sensitive to subtleties in the poten-
tial. We believe that band-structure effects’ caused
by the unusually large corrugation of this surface
are responsible for the difficulty. Accordingly,
rather than perform possible wrong kinematic
analysis of the resonance positions, we have per-
formed close-coupling scattering calculations (see
the Appendix) on a series of model potentials and
examined trends with increasing well depth. These
potentials are of the form

V(x,p,2) =Ae ~%Z2—h _Be—a/dz—h_c

3/(z—zy) ?
(15)
where
h =h,cos 2mx +hycos —2—7;1 (16)

The functional form of Eq. (15) is primarily a
computational convenience. The parameters, listed
in Table I, are chosen to optimize the 21-meV
rainbows. The well depth is adjusted by varying B
and z, only, as the effects of varying z, and C; are
identical within the accuracy with which potentials
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TABLE 1. Parameters used in Egs. (15) and (16) to
generate Figs. 9 and 10. Distances are in A and ener-
gies are in meV.

A C; a hy h, a b

4.7x10° 413 2.9 0.1 0.45 4.0 5.6

of the form of Eq. (15) scatter in agreement with
experiment. In Fig. 9 the experimental (solid, top)
specular scattering intensity of 21-meV He atoms
beamed across the ridges as a function of polar an-
gle is compared with that calculated from model
potentials of the form of Eq. (15). Figure 9(a)
(B=0, C;=0) shows the distinct three-peak en-
velope evident in Fig. 2. The 1.5-meV depth of
Fig. 9(b) (B=0, zo= —2.0) can be seen to effective-
ly bind one state giving rise to resonances
corresponding well with features in the data.
While resonances in the data are sufficiently _
numerous that this might be fortuitous, we think it
is not, since any potential has one weakly bound
state for which band-structure effects are small due
to its distance from the surface. As the well depth
is increased to 4 meV in Fig. 9(c) (B=134 and
29=1.23) one sees the resonances in Fig. 9(b) mov-
ing to the right as their binding energy increases,
and new resonances emerging at the old positions
as new levels become bound. Band-structure ef-
fects may be the cause in Fig. 9(c) of the reso-
nances at 26°, etc. lying to the left of the vacuum
positions. In Fig. 9(d) (B=202 and zy= —0.5) the
attractive potential has been increased to force the
most deeply bound state to resonate at 33°. We
note that the envelope is beginning to be destroyed,
and that there are large numbers of coincidences of
resonance positions between theory and experiment.
The rainbow angles of this potential still agree
with experiment, up to the absence of asymmetry
in Eq. (11). In Fig. 10, we compare across-trough
diffraction patterns for the potentials generating
Figs. 9(a) and 9(d). In each case, at 6;=35" fully
developed primary and supernumary rainbows can
be seen at —20° and 15°, respectively. As 6; is in-
creased, there is a definite trend for both to col-
lapse, although in the presence of the attractive
well (right) collapse is somewhat retarded.

The destruction of the specular beam envelope
and the retardation of rainbow collapse are conse-
quences of the presence of a deep attractive well
seen in all our model calculations. We interpret
the former as being due to the tendency of a deep
well to dominate the momentum of the probe nor-
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FIG. 9. Solid top: Experimental specular intensity
plotted vs 6;, the polar angle of incidence of the probe,
for ¢=180°, reproduced from Figs. 8(a)—8(d); specular
intensity calculated from potentials of the form of Eq.
(15) with increasing attractive-well depth as described in
the text.
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FIG. 10. Across-trough dlffractlon patterns calculat-
ed for a soft wall described by Egs. (8) and (9) with
a=3 A~ (left) and for the potential generating Fig. 9(d)
(right). The incident energy is 21 meV. Intensity is
plotted vs O, the polar angle of exit of the probe, for
various values of 6;, the polar angle of incidence. In
each case, the arrow indicates the specular beam.

mal to the surface at the classical turning point,
and thus remove the dependence on 6;. We believe
failure to collapse to be caused by the tendency of
the well to refract particles downward so that upon
impact they are traveling at more normal incidence
and thus become shadowed later. As we have
found these calculations to be extremely sensitive
to nuances in the potential, we venture to call
agreement of Fig. 9(d) with experiment fair. More
important are the trends with increasing well depth
which preclude wells much deeper than the 7 meV
of Fig. 9(d).

In Fig. 11, we show data taken with the same
scattering geometry as in Fig. 5, but with a 63-
meV (L=0.57 A) probe. Increased inelastic loss
and instrumental broadening at large deflection an-
gles causes agreement with the soft-wall calculation
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FIG. 11. Experimental in-plane diffraction patterns
for 63-meV helium atoms beamed across the troughs of
GaAs(110). Diffraction along the troughs cannot be
seen in this scattering geometry. Intensity is plotted vs
6, the polar angle of exit of the probe, for various
values of 6;, the polar angle of incidence. In each case;
the arrow indicates the specular beam.

in Fig. 4 to be poor. Even so, vestiges of the rain-
bows seen in Fig. 4 (Ref. 5) can be seen to correct-
ly emerge from the specular beam as the probe is
raised toward more normal incidence. The pri-
mary rainbow can be seen in the left half of Fig.
11 to appear at 6;=60° as a bump a 30°, which
moves to 0° and then out of view as 6; is decreased
to 50° and 40°. In addition, the first supernumary
rainbow may be seen developing at 8; =50°, and
then forming a feature at 15° as 6; is decreased to
40°. Similar behavior is seen in the right half of
Fig. 11 except that rainbows emerge sooner as is
the case in Fig. 6. In Fig. 12 we compare the
specular intensity curve with that calculated using
the potential generating Fig. 4. The calculation
has been multiplied by cos(d;) to account for di-
minution of the detector cross section at grazing
incidence. While passing agreement of the peak
positions at 41° and 54°, the overall agreement is
poor, particularly at lower angles of incidence
where the momentum transfer, and thus the inelas-
tic losses, are greatest. It seems reasonable to
speculate that the features between 60° and 90° are
selective-adsorption resonances; however, consider-
ably more work needs to be done before the 63-
meV data is understood.
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FIG. 12. Solid: Experimental specular intensity plot-
ted vs 6;, the polar angle of incidence of the probe, for
¢=180" (probe beamed across the troughs). The probe
kinetic energy is 63 meV. Dashed: Specular intensity
calculated for a one-dimensional soft wall described by
Egs. (8) and (9) with =4 A-!. This potential also gen-
erated Fig. 4.

IV. GENERATING A POTENTIAL

It has been possible'* for many years to compute
fairly accurate van der Waals potentials between
closed-shell atoms and molecules. In light of this,
it is somewhat surprising that there has never been
a successful first-principles calculation of a poten-
tial between a helium atom and an insulator. In
this section, we examine the reasons for this and
propose methods of overcoming them which are
not unworkably complex, and yet which can pro-
vide a reasonable interpretation of the GaAs data.

Of the equivalent methods presently available
for calculating atom-atom potentials, the simplest
is the Gordon-Kim technique.'* This method is
based on the observation that Hartree-Fock calcu-
lations for the He-He system at typical van der
Waals separations produce a charge density equal
within 10% to a superposition of atomic He
charge densities. The method involves computing
the total electronic energy in the local density-
functional approximation, using the sum of target
and probe charge densities for p, and relying on
the nonlinearities of the functional to provide the
interaction. The local density expression for E
takes the form

E=T+Vei+Vee+Vii+ch’ amn

where

3 ﬁz - -
T=TE(3772)2/3,—n_ fp5/3(r)dr (18)
is the kinetic energy,
V=32 [ —P—(rR—ldr 19)

is the electron-ion interaction, with Z; the charge
on the ion at R

Ve=ste? [ [ (f_’ ‘j dTdr’ 20)
| T—7|
is the electron-electron interaction,
Z.Z!e?
f =‘;' —_.—J—l_:—,—-' (21)
IR;—Rj |

is the ion-ion interaction, and

1/3

=313 | 2 4x7uT - o
V"C_“T | e fp f +fp(r)F(rs)dr

(22)

is the contribution from exchange and correlation.
The small correlation correction on the right of
Eq. (22) is given in terms of r, =me?/#*(3/4mp)!/?
as

F(rs)g*—(—O 4387} +1.3257,73/

—1.47r72-0.4r7%7) (23)
for r;<1, and

4
F(r,)z—’i’ﬁ—i—[o.om1n(r,,)—0.048

+0.0097,In(r;)—0.017,], (24)

for r; > 1. The region of relevant charge densities
spans ‘the region of rg=1. Using Clementi func-
tions?? to generate charge densities for the rare
gases, Gordon and Kim'* succeeded in producing
potentials between rare-gas atoms other than He
agreeing with experiment to roughly 2% in the po-
sition of the potential minimum and to roughly
15% in the depth of the minimum. Potentials in-
volving He typically differed from experiment by
20% in the position of the minimum and 80% in
its depth. These errors were attributed!* to the in-
correctness of statistical exchange and correlation
for atoms with very few electrons. The potential
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minimum for He-He has been reproduced by a
configuration-interaction calculation,?? which au-
tomatically includes correlation energies correctly,
and thus it can be calculated if sufficient effort is
expended. Such a calculation is not practical for
surfaces.

The Gordon-Kim method has been used by Free-
man'3 to calculate the interaction between rare
gases and graphite. Using Hartree-Fock charge
densities for the probe and target, Freeman reports
attractive-well depths, for all gases except Xe, 0.5
(He) to 0.25 (Kr) times the value determined from
experiment by Steele.”* Freeman attributes this
disparity partly to absence of dispersion forces (im-
proper estimation of correlation by the density
functional) and partly to inaccuracies in the
graphite charge density far away from the surface.
We note that the error in the well depth is sys-
tematically positive, as would be expected for miss-
ing dispersion forces, while the He-He potential of
Gordon and Kim'* is four times too deep, i.e., the
nature of the error is different in the two cases.
Better agreement with experiment in the case of
He-LiF was obtained by Tsuchida,'> who
represented the potential as a sum of two-center
He-Li* and He-F~ components, estimated to be
identical to the known He-He and He-Ne poten-
tials. Tsuchida reported an attractive-well depth
only 12% deeper than that determined experimen-
tally and a peak-to- valley distance of the equl-
valent hard wall of 0.34 A compared to 0.54 A es-
timated from diffraction intensities by Boato et al.®
Carlos et al.!! have compared matrix elements of
this potential between bound states of its lateral
average to those inferred from selective-adsorption
splittings and found the theoretical values up to a
factor of 2 too large. They attribute this
discrepancy to errors in the sizes of the ions in-
curred in substituting the rare-gas potentials.

The persistent tendency of the local-density-
functional method to underestimate the depth of
the He-target attractive well for both atoms and
solids, while apparently being adequate for other
probes,'* suggests that van der Waals potentials in-
volving helium are significantly different from those
of other closed-shell atoms. The anomalous
behavior of helium is due primarily to the small-
ness of its radius ¢¢=0.313 A. This causes the
major contribution to the interaction energy in
Egs. (15)—(20) to come from the presence of the
tenuous tails of target charge density at the helium
core, rather than from the bonding region, as in
the case'* with other rare gases. Another conse-

quence is that when the probe is within a van der
Waals distance of the target, its electrons are rarely
close to the target, and thus a proper exchange-
correlation hole rarely forms about them.” For
sufficiently large target-probe separations, this
latter effect always causes a breakdown of the local
density expression for the exchange-correlation en-
ergy, manifested as the inability of the method to
correctly reproduce the 1/7° dispersion energy.

In the remaining discussion we shall assume that
local-density approach for helium has only two
faults: (1) The local expression for the correlation
energy is never valid at the separations of interest,
(2) the highly correlated nature of the He ground
state makes the remaining components of the po-
tential difficult to evaluate accurately. Our pro-
cedure for circumventing these problems will be to
parametrize the part of the potential not due to
correlation and then to add this to the ordinary
1/r® nonlocal expression for the correlation energy
at “large” separation. We emphasize that this ap-
proach is valid only because helium is small.

We begin by observing that, in the case of Ar-
Ar, the kinetic, Coulomb, and exchange contribu-
tions to the Gordon-Kim potential are comparable
and tend to scale with one another at interatomic
separations of interest to that the order of the po-
tential can be estimated from the kinetic energy
alone. This observation does not apply at large
separations, where the correlation energy dom-
inates. Since the interaction arises near the He nu-
cleus, one can expand Eq. (18) in the manner

f [(PHe+Ptarget)5 3_/-721/3 ptsa/r;et]
preptaiget , (25)

which in the limit of uniform py,e reduces to a
rule of the form

Ve~ Tptarget ’ (26)

With piaeee; evaluated at the He nucleus and T given
in terms of the He charge density

pHe<r>=—az3 ~2r/ @7
mag
by
T=1 317,2)2/315 f 25 L(gm)/3 7 :
T=7 e =07 me
=9.0%x10* meV A? |
(28)
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where ay,= %(ﬁz/ me?) is the He radius. Equation
(26) is identical to a rule proposed recently by
Esjberg and Ngrskov,® their value of T (1.1X 10°
meV A®) likewise being derived from calculations
of the energy to embed a helium atom in a uni-
form electron gas of density Prarget- For the present
purposes, Eq. (26) with this value of T is meant
only as a rough guide. The approximations in-
volved in obtaining it include ignoring the Cou-
lomb and exchange-correlation contributions [Eqgs.
(19)—(22)], which tends to increase T, and the as-
sumption of uniformity, which tends to reduce it.
To estimate the size of the latter effect, we approx-
imate py,.g; in the vicinity of the probe by

Ptarget~=P0o€ =, (29)
and replace the exponent % in Eq. (25) by 2, to ob-
tain a dilation factor f for T given by

aag

==z

21-2
l =1.65, (30)

for =3 A~ a representative value for solids.
We note that errors in T of this order will affect
the repulsive potential minimally, since the ex-
ponential form of Eq. (29) causes f to displace the
classical turning point a distance Ar given by

Ar=i—ln(f)=0.17 A. 31)

Because of the large size of T, great care must
be taken in Eq. (26) to use a py,,e accurate in the
tails. If, for example, one uses the charge density
of Herman and Skillman?® for atomic Ar, one ob-
tains (with T=1.0% 10° meV A?) a classical turn-
ing point for He-Ar potential of 2.3 A, as opposed
to the experimental value of 2.7 A. The disparity
comes from the use of Slaters’s value of a=1 in
the exchange-correlation potential

l/3l/3

.ol PAE) (32)

2

3

ch<?)=
mw

rather than the Kohn-Sham value of a a= —32-,
which is more suitable for describing ground-state
properties of multielectron atoms. These two
values of @ generate eigenvalues for the Ar 3p state
of E;=0.53 and E,=0.38 hartrees, respectively,
and these give rise to different exponential decays
of the form

p(r)=~pyexp ,—B—;—V 2mEyr ] s (33)
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with B~1.21 arising from the sphericity of the
wave function. Thus, the different classical turn-
ing points R; and R, related by

R, | E,

172
— =0.85. 34
R EI] (34)

We note that the Kohn-Sham value of @ is com-
monly used in electronic structure calculations for
surfaces, in part because it gives better work func-
tions.

The exponential character of atomic wave func-
tions at typical van der Waals distances is shown
in Fig. 13, in which theoretical charge densities,
calculated using Wigner exchange®’ (a variable and
z% in regions of large charge density) for all the
rate gases except He and for Ga4s24p and
As4s%4p? are plotted. The dashed line indicates
the classical turning point of 21-meV helium
atoms, assuming Eq. (26) with T=1.0% 10°
meV A. These are compared with the experimental

-1

. i |
%0 30 20
r(k)

FIG. 13. Valence-charge density vs distance from the
nucleus for several atoms, calculated using Wigner ex-
change as described in the text. The dashed line indi-
cates the classical turning-point separation for 21-meV
helium atoms, as calculated from Eq. (26) using
T=1.0X10° meV A%, The units of p are A3,
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TABLE II. Distance of closest approach, R °F, for 21-meV helium atoms impinging on
various atomic targets, as calculated using Eq. (26), compared with experimental values of
Chen et al. (Ref. 28). Also shown are the logarithmic derivitive of p at the turning point,
the one-dimensional decay parameter associated with the eigenvalue of the outermost p elec-

" tron, B the ratio of these used in Eq. (33), and f as defined in Eq. (30).

R, RS 9 1n() 2 3mE B 7
or #i
Ga 3.83 2.09 1.7 1.22 1.25
As 3.51 2.87 2.35 1.22 1.56
Xe 3.32 3.17 343 2.93 1.18 1.66
Kr 3.04 2.87 3.70 3.09 1.19 1.84
Ar 2.83 2.72 3.89 3.24 1.20 2.01
2.29
Ne (2.44) 2.27 4.60 3.69 1.19 2.64
28
values of Chen et al.,”® in the left-hand columns of VTprarge—Cs /7%, (35)

Table II. For Ar, Kr, and Xe, the theoretical turn-
ing point is 0.11 to 0.17 A larger than the experi-
mental one, as would be expected in the absence of
dispersion forces. The theoretical Ne turning point
is only 0.02 A larger than the experimental one.
This is probably caused by an excessively negative
Ne 2p eigenvalue, due to the inadequacy of statisti-
cal exchange in an atom with very few electrons,
although a contributing factor may be the inhomo-
geneity factor f approximated by Eq. (32). A
reduction of this eigenvalue from 13.3 to 11.7 eV
or a dialation of py. or T by 2.0 would increase
this distance to 2.49 A (shown in parentheses in
Table I) to be more in line with the other rare
gases.

For all rare-gas targets except He and Ne, the
Ce/r® dipole dispersion energy calculated with pub-
lished®® values for Cg, when added to the repul-
sive potential generated by Eq. (26) in the manner

produces a potential minimum at r,, of depth ém
agreeing with experiments within 4% and to with-
in a factor of 2, respectively. A comparison of the
experimental and theoretical 21-meV classical turn-
ing points and attractive-well parameters is shown
in Table III. Similar agreement may be seen to oc-
cur for Ne if the enhanced repulsion is used (pro-

* ducing the values in parentheses). Even with

enhanced Ne repulsion all four targets may be seen
to have inadequately deep attractive wells. Noting
that the magnitude of the error is the same in all
cases, even though the quadrupole polarizabilities
are known® to vary by a factor of 20 from Ne to
Xe, we postulate that the total missing energy, pri-
marily Coulomb, and exchange-correlation energy
not proportional to Py, OF included in the dipole
dispersion energy, is approximately local, and thus

TABLE III. Separation r,, at the potential minimum, the value €, of this minimum, and
the classical turning-point separation R €™F for 21-meV helium atoms impinging on various
rare-gas targets, as calculated using Eq. (35), compared with experimental values of Chen
et al. (Ref. 28). The Ne values in parentheses are calculated using an enhanced .repulsion, as

discussed in the text.

rtheor rexpt 6_theor 6expt R gr P R CT] E’

m m m m eor exp

Xe 43 4.15 1.04 2.17 3.20 3.17

Kr 3.9 3.75 1.28 2.13 2.92 2.87

Ar 3.6 3.54 1.53 2.08 2.70 2.72
2.9 1.62 2.13

Ne 3.2) 321 (0.97) 1.23 (2.37) 227
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TABLE IV. Separation r,, at the potential minimum, the value €, of this minimum, and
the classical turning-point separation R ™" for 21-meV helium atoms impinging on various
rare-gas targets, as calculated using Eq. (36), compared with experimental values of Chen
et al. (Ref. 28). The Ne values in parentheses are calculated using an enhanced repulsion as
discussed in the text. The Ar value in parentheses is that of Aziz et al. (Ref. 31).

e a REL  RSH
Xe 4.2 4.15 1.89 2.17 3.17 3.17
Kr 3.8 3.75 2.19 2.13 2.90 2.87
2.08
Ar 35 3.54 2.50 (2.59) 2.67 2.72
2.8 2.69 2.10
Ne (3.1) 3.21 (1.80) 1.23 2.37) 2.27
can be included empirically by modifying the func- However, since the remaining error (0.28 meV for
tional in py,ee; t0 include a short-range attraction Xe) is small compared with the kinetic energy of
which does not overwhelm either the repulsion at the probe, and since the Xe polarizability is about
short distances or the dispersion energy at large half that of an atom in a typical semiconductor,
ones. This may be accomplished by subtracting a we argue that this error will be negligible in semi-
term proportional to p,.ee Where ¥ < 1. We find conductors. The difficulty of observing errors of
the value y= % to be adequate, although the exact this order experimentally is demonstrated by the
value is not crucial. Thus, we propose a rule of inability of Keil et al.’? and Aziz et al.’' to agree
the form on the He-Ar well depth to better than 30%.
3 p While the transfer of the local part of Eq. (28)
V =Tparget —Xprarget —C6 /7° (36) to a surface is straightforward, transfer of the

where T=1.0X 10° meV A® and X=40.0 meV A
are universal constants selected to optimize the fit
to the rare gases.

We note that Eq. (36) is automatically consistent
with Tsuchida’s'® result for LiF, since atomic
charge densities and polarizabilities are known to
be approximately additive in ionic solids, and since
p:a/,ée, is usually dominated by one atom or the oth-
er, and is thus also additive. The agreement be-
tween potentials generated by Eq. (36) for rare-gas
targets and the experimental potentials of Chen
et al.” is summarized in Table IV. For all targets
except Ne, 7,,, €, and R agree to within 1.5%,
18%, and 2%, respectively, tolerances similar to
those obtained by the Gordon-Kim technique'* for
heavier rare-gas probes. Tolerances for Ne are
somewhat poorer (3.5%, 17%, and 4%). Consider-
ably better agreement (1%, 1%, and 3%) is ob-
tained for Ar if the experimental potential of Aziz
etal.® is used for comparison. We note that the
experimental trend for the well depth to increase
with the atomic number of the target is not ob-
served in the theory. This suggests that the attrac-
tion absent from Eq. (35) is not completely local,
but tends to increase with the target polarizability.

dispersion energy is subtle. Unlike a rare-gas tar-
get, a solid is much larger than the target-probe
separation, it has a continuous distribution of elec-
tronic levels, and its charge is inhomogeneously
distributed. Assuming for the moment that screen-
ing is negligible (this is not generally the case), we
write for the interaction energy A€, due to correla-
tion as

TABLE V. Values of Cg calculated using Eq. (40)
compared with those reported by Dalgarno (Ref. 29).
E"™"™ is the first ionization energy and £ "*™ is the
single-oscillator excitation energy calculated from Cg

(Ref. 29) using Eq. (40).

b‘ ion C6 ization Clgalgamo E—Dalgamo
Xe 12.1 1.11 1.12 12.0
Kr 14.0 0.93 0.77 16.2
Ar 15.8 0.80 0.57 20.2
Ne 21.6 0.52 0.18 44.8
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2
(T (1)
Aec=e42 ff I/}f ¢ :/}’) ¢ drdr’l/(Ef-—E,)—HEf:—E,:)], (37)
fi f"
target probe

where the sums run over filled and empty states of the target and probe separately. Equation (37) can be
evaluated conveniently using the single-oscillator approximation, valid to the extent that the excitation ener-
gies contributing significantly lie near one value. Approximating Ey—E; by E for these transitions, we have

2

et 1 [ wfr>¢,*vwﬂrm
Aee~———— (Ef—E;(Ep—E; (38)
< ( E + E I) E E ’ fi jzl' f 1 f f f r [
target probe
This may be evaluated using the f sum rule to obtain
2 (7) (r”)
AGL.__6 ﬁ2e _ 1_ _1_ f Ptarget 'Pprobe r , (39)
2m | (E4+E’) EE’ |T—7"|°
which is the well-known London formula.! The integral in Eq. (39) is divergent if there is any nonzero
overlap of piyreer and pyrope If there were none, and if the target and probe were well separated, then we
could write
ﬁzez 1 ]
A€, ~6 — — (40)
Tl 2m | (E+E") EE’ ‘?’ 6

where N3 =2 is the number of electrons in the probe and N; is the number of valence electrons on the jth
target atom separated from the probe by distance r;. Assumlng that Eq. (40) is approximately correct, it
may be tested against the rare-gas targets using the empirical observation® that most of the dipole-oscillator
strength for the p electrons resides near the atom’s ionization energy. Thus, in Table V, we compare Cg, the
coefficient of 1/, as reported by Dalgarno® with the value calculated from Eq. (40) using the ionization
energy for E, a value of 34.6 eV for E’, picked to given the correct” value of C¢ for He-He, and N=6 p
electrons. Agreement for all targets except Ne is within 30% and that for Ne is within a factor of 2. The
noticeable tendency of the theory to overestimate Cg, particularly for smaller atoms, derives from the crude-
ness of the estimate for E, which tends to be slightly higher than the ionization energy. For example, the
known*? He dc polarizability a(0) is 0.195 A3, compared with values of 0.188 and 0.095 A3 calculated from
the single-oscillator model in the manner

e’

mE?’

with E ' set equal to 34.6 and 24.6 eV, the ionization energy, respectively.
The divergence in Eq. (39) is a pathology of the single-oscillator approximation stemming from its tenden-

cy to overemphasize high-energy excitations of the target. This tendency is not important when the dipole

approximation is valid because the dipole matrix element cuts out high-energy contributions to Eq. (38) suf-

ficiently rapidly to nullify the effect of multiplying by €. The full Coulomb interaction does not have this

property, however, and thus Eq. (39) is a bad approximation, in that it tends to exaggerate the severity of
singularity at T=T7". In a better approximation, we replace the excited states by plane waves |q) of excita-

tion energy E + #%q 2/2m, we write
1 1 1
= q> = 22 <q H,— >
—71'| E+#°q°/2m r—1'|

(e bl =30
Y. @

1 <
==\!
E
where II is a smoothing operator given by

a(0)~2 (41)

1

- —»,l

|T—T

__I_HZH___I_____
=g =
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E lg){q]| . 43)

E+#4q*/2m

-3

Since IT commutes with the kinetic energy operator T, and since

M|iy~]i), (44)
one has
i——m |y, —— |\~ (| Im——n ||, -—— > 45)
|T—T"| | T—1"| |T—7"| |[T—7"|
Thus, we modify Eq. (39) with the substitution
A T=T|
I p—1 pl==""" (46)
A
with
242
L (47)
2m
to obtain
2
#e? 1 1 . - o g g
Aecorrelation36 m (E—+E—,) EE’ f fptarget(r)Pprobe(r )L6F()\,|r—1' ‘)drdr ’ (48)
where
a3 [1—e!?1 )]
F(|T)==3 |->=% |—4— (49)
I ‘ 6j2k BXj ox; |f’

A comparison of x2F(x) and 1/x* is shown in Fig. 14. We note that F(x) converges to 1/x° at large x, but
that it diverges only as 1/x? for small x, and thus does not produce infinite interactions.
To test Eq. (48), we adopt a rare-gas potential analogous to Eq. (36) of the form

#2e? ?

2m

1 1
(E+E') EE’

V(T")= Tptarget(?,)"Xptla/réet(?,)_6 2)\'6 f /:’target(?,)F(}L | r—r’ ' )’ (50)
with E chosen to given the correct value of Cg and with A treated as a variable into which to absorb approx-
imation errors from Eqs. (42)—(45). Agreement is optimized with X set to 30 meV A. We take Prarget
within the integral to be of the form

Ptarget(?’)=Ae —BITI » (51)

with B and 4 chosen to agree with Fig. 13 at |¥'| =3.5 A and to normalize the total charge to six electrons.
With this approximation we find that the values of A (1.8 A~! and larger) given by Eq. (47) are too large,
but that essential agreement with Eq. (36) can be obtained using the universal value of A=1.35 A~!. The
agreement with experiment of potentials generated using Eq. (50) with this value of A is summarized in
Table VI, which is the analog of Table III.

The removal of the 1/7° divergence in Eq. (39) is intimately related to the momentum-dependent nature®*
the dielectric function of the target, its inability to screen at short distances for frequencies #w < E. In par-
ticular, the potential at T’ resulting from injecting unit charge at T’ at frequency o, given by

2 > <i f> <f i>, (52)

¢ (fiw)—€5

1
|—> —»,I

r—r

1

|~—> —»,l

can be evaluated at w=0 as
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TABLE VI. Separation r,, at the potential minimum, the value €,, of this minimum, and
the classical turning-point separation R € for 21-meV helium atoms impinging on various
rare-gas targets, as calculated using Eq. (50) with X=30 meV A compared with experimental
values of Chen et al. (Ref. 28). Note the similarity to Table IV.

e O A
Xe 4.15 4.15 1.90 2.17 3.18 3.17
Kr 3.75 3.75 2.22 2.13 2.90 2.87
Ar 3.50 3.54 2.51 2.08 2.69 2.72
Ne 2.85 3.21 2.37 2.13 2.14 2.27

2 /.
ZT<I e
f Efi

The trace of the dielectric tensor €,,(w,7,T’") is then given approximately by

: - e 1 pon loeMT-T1 1 _-MT-T
T 2€ (O,f;r’)’_\_’s(?‘“?’)—f— — ——VV> (1)d7, (54)
3 2 (/e 2 (447) f |f’_f>!| lf»_fn| P

and may be averaged over a unit cell to obtain the
usual expression

2
€(0)~1+ —_”| , (55)
where
, |12
©0,= bae” (56)
m

is the plasma frequency. The inability of the elec-
trons to respond to low-frequency perturbations
over distances shorter than 1/A is potentially im-
portant in reducing screening at surfaces. van der
Waals potentials are known' not to be additive, as
a result of higher-order diagrams (n-body forces)
omitted in Eq. (37). When the probe is far from
the surface, these give rise to a van der Waals at-
traction of the form

V(z)=—Cy/(z —2)* (57)

with z —z, the distance to the surface and C;
given by>
FIG. 14. Comparison of approximate van der Waals
Cy= 2 f E(lw)li alio)do . (58) kemel(;czF(x) with 6/x* Note that the former is finite
m Y -w elio at x=0.
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Screening, which is accomplished by the denomi -
nator in Eq. (58), is due physically to the ability of
the dielectric to expel low-frequency electric fields.
The unscreened version of Eq. (58), obtained by re-
placing the denominator with 2, gives a value for
C; for GaAs of ~400 meV A%, as opposed to the
value calculated by Vidali and Cole36 using Eq.

(58) of ~160 meV AS. However, Eq. (58) is valid
only to the extent that the vacuum-solid interface
is infinitely sharp. In practice because of momen-
tum dependence of € (Ref. 34) this interface has a
width 1/A at low frequencies, and thus the fields
felt by the surface atoms have values between those
immediately inside and outside the surface. Tak-
ing as a guess the average, we find that

BB 1ic

Eatomz —
2 2

in__ yrunscreened
EM=FE} .

(59)

Thus, when the probe is very near the surface, the
unscreened van der Waals potential, as manifested
in Eq. (54), may be more correct that Eq. (59).

The success of Tsuchida'® in predicting the He-LiF
potential from a pairwise sum suggests strongly
that this is the case.

V. APPROXIMATING THE GaAs(110)
POTENTIAL

In principle, the formalism outlined in the
preceding section, particularly Eq. (50) and the
simpler Eq. (36), should enable one to generate a
scattering potential given a charge density for the
surface. However, charge densities accurate to
10~> A2 are rarely calculated and do not present-
ly exist for the relaxed GaAs(110) surface.’” The
best available charge density for this surface, that
of Chelikowsky and Cohen’® is reproduced in Fig.
15. The outermost charge contour, which may be
seen to lie roughly 2 A above the surface As atom,
corresponds to a density®® of 7 102 A~3. By ex-
ponential extrapolation of this, we conclude that
the charge contours most relevant to a 21-meV
helium atom lie at the edge of the figure. Since
the calculation of charge densities accurate in this
region is difficult, we shall concentrate at this
stage on determining whether the formalism is ap-
proximately correct, and whether the experiment is
sufficiently sensitive to nuances in the potential
that a simple extrapolation of the pseudopotential
results will not do.

We note firstly that Fig. 15 is reminiscent of a
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GaAs (110)

Valence Charge Density

i

FIG. 15. Total valence pseudo-charge-density for the
relaxed GaAs(110) surface as calculated by Chelikowsky
and Cohen (Ref. 38). These are cuts through (110)
planes other than the (110) plane of the surface. The
charge contours are on a linear scale.

superposition of atomic-As charge densities in that
(1) most of the charge resides in spherical domains
centered on the As nuclei, and (2) the outermost
charge contour corresponds to a density roughly
twice that of atomic As, as can be seen from Fig.
13. The factor of 2 reflects the double occupancy
of the As dangling bond. Secondly, we note that
the dangling-bond band lies®® at the valence-band
edge, and thus tails out into the vacuum more
slowly than do any other occupied wave functions
in the solid. Since the energy of the dangling bond
(5.7 eV, the work function of p-type GaAs) is by
accident nearly identical to the 4p eigenvalue (5.4
eV) of atomic As, the two tail similarly into the
vacuum. Therefore a superposition of atomic-As
charge densities should be a good approximation to
the charge density of the surface in the region of
interest. It should be emphasized that this substi-
tution will not work for the Ga atoms, because the
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FIG. 16. Potential contours of the model potential constructed from atomic As charge densities. Right-hand side: a

plane normal to the surface passing through two As nuclei in adjacent chains. Left-hand side: same as right except
with the plane displaced along the chains so as to pass through two Ga nuclei. The units of potential are meV.

n

FIG. 17. Potential contours of the model potential constructed from atomic As charge densities. Right-hand side: a
plane normal to the surface and passing through two As atoms in the same chain. Left-hand side: Same as right, ex-
cept with the plane displaced across the troughs so as to lie midway between As atoms on adjacent chains. The units

of potential are meV.
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Ga4p energy is not representative of any energy of
the solid. In particular, one can see from Fig. 13
that the Ga4p wave function tails into the vacuum
so slowly that atomic Ga actually appears larger
than atomic As to a 21-meV helium atom, even
though As has the same covalent radius and more
electrons. An attempt to superimpose atomic Ga
and As charge densities to simulate that of the
solid would therefore produce the incorrect result
that the He atoms were being repelled entirely by
the Ga atoms. The case of Ga is a useful coun-
terexample to the notion that the van der Waals
potentials of surfaces should be determined simply
from properties of the atoms comprising them.

In accordance with these arguments, we take as
an approximate GaAs(110) charge density a super-
position of atomic As charge densities, multiplied
by 2.4 to account for the double occupancy of the
dangling bond. Since Eq. (50) is equivalent to the
simpler Eq. (36) for atoms, we evaluate the poten-
tial using the latter, with Cg taken to be that cal-
culated from Eq. (40) with E=5.2 ¢V taken to be
the GaAs Penn gap.*®* For convenience, we place
all eight electrons on the As atom to obtain values
of C¢=3.5%10* meV A® (N, =8) for He-As and
C¢=0 for He-Ga. The principle effect of associat-
ing all the oscillator strength with the As atom is
to reduce by ~10% the depth of the attractive
well above the trough.

In Fig. 16 we show contours of this potential in
planes normal to the surface and perpendicular to
the troughs. As in Fig. 15, the plane passes
through two Ga atoms (left) and two As atoms
(right) on adjacent chains. The origin of the hor-
izontal coordinate is the surface plane of the As
nuclei after reconstruction (the As atom rotates up-
ward by 0.4 A upon reconstruction.) One can see
that the classically forbidden region is very nearly
a superposition of spheres of radius 3.5 A about
the As centers, a result consistent with observa-
tions made in Sec. IV about additivity of poten-
tials, as well as the 3.5 A-turning-point radius list-
ed in Table II. The large magnitude of this radius
causes the potential to have three qualitative attri-
butes consistent with the data analysis of Sec. III:
(1) The peak-to-trough distance of the classical
turning-point surface is approximately 1 A, as op-
posed to the 2.4 A one would guess from the verti-
cal separation of the first and second layer As nu-
clei. (2) The maximum attractive-well depth lies
between —5.0 eV and —9.0 eV, values bounding
the 7 meV guessed from the calculation of Fig. 9.
(3) The corrugation along the trough is roughly 0.3

A. This latter effect can be seen more clearly in
Fig. 17, in which the observation plane has been
rotated 90° in the surface so as to bisect a trough
(left) or a ridge (right). The corrugation of the
trough is slightly larger than 0.3 A due to the
failure of the As core to effectively fill in the bot-
tom. The ridge corrugation is the 0.2 A indicated
by the experiment.

With the qualitative aspects of the potential ac-
counted for, we turn to the question of how well
these crude approximations can account for the
scattering signal. In the left column of Fig. 18 we
show 21-meV across-trough diffraction patterns for
the potential of Figs. 16 and 17. The agreement
with experiment is clearly not good. However, we
note that the rainbow is properly collapsed at
0;=61°, in agreement with Fig. 6, and that at
0;=45°, a very small rainbow can be seen four
beams to the left of specular, at 6z =0°. This is
consistent in location with that of Fig. 3 (five

AS CORE ONLY
9i=613°

WITH Ga CORE

INTENSITY (ARB UNITS)
T

L
»
I
—
I
-
I

FEEES N 1[111J>|L ITJ!J.I L 1
©60-40-20 0 | 40 60-60-40-20 O | 40 60-60-40-20 O | 40 60
8g (degrees)

FIG. 18. Across-trough diffraction patterns calculat-
ed for the model potential discussed in the text without
(left-hand column) and with (right-hand column) a Ga
core. The incident energy is 21 meV. Intensity is plot-
ted vs O, the polar angle of exit of the probe, for vari-
ous values of 6;, the polar angle of incidence. The mid-
dle and right columns correspond to particles being in-
cident on the side of the ridge with and without the Ga
atom, respectively. Note that the presence of the Ga
core restores power to the primary rainbow.
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beams away, rather than four) but obviously not in
magnitude. At 6; =32°, this small rainbow has
moved to 8z = —20°, and a new rainbow appears
to be emerging from the specular beam. There is
no evidence of this new rainbow at 8; =21°, howev-
er. We interpret these results as implying that the
rainbow pattern characteristic of the corrugation
is, in fact, reproduced by this potential, but that
the scattering power into the rainbows is insuffi-
cient.

In light of the semiclassical interpretation of
beams powers as manifestions of the radius of cur-
vature of the surface at the classical impact point,
lack of intensity can easily be attributed to the
presence of cusps in the sides of the ridges where
the As cores come together. These may be seen in
the left half of Fig. 19, in which potential contours
in a plan parallel to the surface and 3.5 A above
the As nuclei are plotted. The repulsive cores, lo-
cated at the corners may be seen to form wasp-
waisted ridges which have no characteristic slope
across the trough except at symmetry points. This
potential therefore scatters extensively out of plane
at the expense of rainbow intensity. The inadequa-
cy of this potential is most likely due to an unfore-

seen tendency of the real charge density to smooth
and mend itself at these distances. One mechan-
ism by which might be accomplished is the forced
orthogonolization of the As dangling-bond states
to the Ga states involved in bonding. This would
tend to make the charge avoid the Ga atoms and
bulge out slightly above the Ga sites, thus tending
to smooth the cusp on one side of the ridge.

To investigate this possibility, we have per-
formed scattering calculations on the potential of
Figs. 16 and 12 modified to include a Ga core.
Since use of the atomic Ga charge density would
not be physically sensible, we have taken the Ga
charge density to be that of As, multiplied by a
factor y=0.68, picked to give optimal agreement
with experiment. The results of the scattering cal-
culations performed on this potential are shown in
the right two columns of Fig. 18. As in Fig. 6 the
two columns correspond to particles impinging on
the shallow (middle) and steep (right) sides of the
ridge. Both sides shown resurrected rainbow
power and a slightly reduced (three beams from
specular, as opposed to four) rainbow angle. The
shallow side, which is made so by the presence of
the Ga core’s puffing out the side of the trough,
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FIG. 19. Potential contours of the model potential constructed from atomic As charge densities without (left) and with
(right) a Ga core. This is a plane parallel to the surface 3.5 A above the As nuclei. The As repulsive core can be seen
encroaching at the corners. Note the cusp in the side of the ridge where the As cores come together. The units of poten-
tial are meV.
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FIG. 20. Comparison of empirical potential (left)
described Eq. (15) and producing Fig. 9(d) with the
model potential (right) constructed from atomic As
charge densities with no Ga core. These are plots of po-
tential vs height above the surface at symmetry points in
the surface unit cell. The origin of z for the model po-
tential is the center of the As atom before reconstruction
(it moves upward 0.4 A upon reconstruction). The ori-
gin of z for the empirical potential has been adjusted to
obtain agreement with the model potential.

shows a fully developed rainbow at 6; =45°, 32°,
and 21°, and complete collapse of this rainbow by
6;=61°. The steep side shows similar behavior, ex-
cept that the degree of resurrection is smaller. We
- note that an attempt to make the core larger re-
stores more power to the steep rainbow while
simultaneously reducing the rainbow angle for both
sides. Making it smaller robs power from the
steep rainbow. It therefore seems clear that while
the addition of a Ga core is helpful in explaining
smoothing in qualitative terms, it is not a good
procedure for producing potentials which can
scatter in quantitative agreement with experiment.
A contour plot of the potential generating these
columns of Fig. 18 is shown on the right of Fig.
19.

While it is possible that a simple way to generate
surface charge densities to sufficient accuracy may
yet be discovered, it seems more likely that the evi-
dent sensitivity of the scattering signal to nuances
in the potential will require that a thorough sur-
face charge-density calculation, capable of taking
band-structure effects in the solid, and possibly
self-consistency, into account, be performed before
one can calculate diffraction intensities reliably.
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To illustrate the sensitivity to aspects of the poten-
tial of little interest in structural analysis, we com-
pare in Fig. 20 the potential generating Figs. 16
and 17 (which does not give good intensities) with
the empirical potential generating Fig. 9(d) (which
does). The four curves in each case are potential
as a function of distance above the surface at sym-
metry points in the surface unit cell. The curves
on the right are a reproduction of Figs. 16 and 17
with the origin of z now the center of the As atom
in the unrelaxed position. The curves on the left
are those generated by Eq. (15), up to an arbitrary
adjustment of the origin of z to bring the two sides
of the figure into registry. These sets of curves are
identical in the sense that they reflect a peak-to-
trough distance of roughly 1 A, a corrugation
along the troughs of % of this, and an attractive-
well depth of approximately 7 meV. Nevertheless
they scatter very differently. From comparisons of
this kind we come to the unpleasant conclusion
that subtle errors in a potential can completely des-
troy its ability to scatter in agreement with experi-
ment.

V1. SUMMARY

In this paper we have attempted to shed some
light on the generation of helium-surface potentials
by investigating, in detail, diffraction from a high-
ly corrugated surface with a known structure.’ We
have shown that GaAs(110) scatters quantitatively
as though it were a soft wall sinusoidally corrugat-
ed across the trough with an effective peak-to-
trough distance of 1.1 A. We have performed
close-coupling scattering calculations on a sequence
of model potentials with successively deeper attrac-
tive wells and have found trends in the results
which suggest that the depth is 7 meV. We have
reviewed the problem of first-principles generation
of scattering potentials and have suggested that ex-
isting methods'* will not work for helium, as op-
posed to larger closed-atoms, because of its small
size. We have proposed new procedures for gen-
erating these potentials consistent with the recent
work of Esjberg and Ngrskov,'® and have shown
these to work effectively for rare-gas targets. We
have then applied these rules to GaAs(110) and
have shown them to be consistent with our empiri-
cal fits, up to inaccuracies in the GaAs(110) charge
density. These rules show the classical turning
point surface lying 3.5 A above the As nucleus.
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APPENDIX: COMPUTATIONAL TECHNIQUE

The method outlined below for solving the
single-particle Schrodinger equation in the presence
of a potential V(x,y,z) periodic in x and y and in-
finitely repulsive as z— — o is a Green’s-function
technique similar to that used by Mele and Joanno-
poulos* for calculating surface electronic struc-
tures in a tight-binding basis. The primary advan-
tage over shooting'"*! methods is that the system
satisfied Dirichlet boundary conditions at every
stage of the integration so that inaccuracies result-
ing from exponential divergences do not occur.
Another advantage is that a simple sum rule forces
the scattering to be unitary so long as the potential
is real.

Following Wolken,” we first exploit surface
periodicity by transforming to the Laue representa-
tion.*! Letting T denote the position coordinate in
the plane of the surface and z the normal coordi-
nate, we write the wave function in the form

Wy, )=3 Adgz)e! K+ ST (A1)
g

where K is the crystal momentum in the plane of
the surface and G is a surface reciprocal-lattice
vector. We collect the coefficients 4 g into a vec-
tor |4 (z)), the components of which are given by

(G|A@2)=A43(2), (A2)

and write the wave equation in the form
#  3*
—E;{?IA(Z)>=[E—T—V(Z)]|A(Z)> s
(A3)

where

= = ﬁz T2 4

<G|T‘G>=5n—1|k+6|8_d_d' (A4)

and

-

<GIV(Z)|G’>='§)1*fV(?,z)e‘i(a“ﬁ'O'rd?

(AS5)

are matrices and E is the energy. (Q is the area of
the surface unit cell. This is then converted to a
difference equation in z in the manner

hz lAn+1>+ |An—1>_2 |An>

2m (Az)?
=E~T—-V,)|4,), (A6)

where z=n Az, and rewritten in the form

(E —E,) | Ay)=D(|4y_ )+ |4y ,1)), (A7)

where
<§|D|é'>=—”—28a =, (A8)
2m(Az)? G G
and
E,=T+V,—2D . (A9)

The matrices D and E, are then truncated to a
large but finite number of reciprocal-lattice vec-
tors. In the case of the two-dimensional calcula-
tions of Figs. 9 and 10, convergence was obtained
with an 11X 19 rectangular grid of G, or 209 de-
grees of freedom, when k does not lie along a sym-
metry direction. The step size was typically Az
=0.1 A for the 21-meV calculations. In no case
was a size Az=0.05 A a significant improvement.

Our method of solving Eq. (A7) is the Koster-
Slater technique applied to a one-dimensional chain
with nearest-neighbor interactions. This technique
is based on the observation that if a perturbation V'
commutes with a projection operator II=1II? in the
manner

nmvii=v, (A10)

then the Green’s function G of the system in the
presence of V, written in terms of G, the Green’s
function in the absence of ¥, in the manner

G =G, 3 (VG,)?, (A11)

n

satisfies the equation

NGH=(IIG,I1) 3, (VTIG,I1)* . (A12)

In the present case, the perturbation V is the hop-

ping interaction D between the nth and (n + 1)st

links and IT is the projector of these two links.
We consider firstly the situation in which all



25 HELIUM DIFFRACTION FROM THE GaAs(110) SURFACE AND. .. 2245

hopping interactions for links m <n are turned on
while all those for m >n + 1 are turned off. We
have a chain of length n which we will make into
a chain of length n + 1 by turning on D. Letting
F, denote the Green’s function of the chain of
length n confined to the nth link, we have by Eq.
(A12)

FF' p |

neN= |, g g

(A13)

This can be evaluated in closed form in terms of
F, as

f.+F,DXDF, F,DX

where
X=(E —-E,,—DF,D)™'. (A15)

Since this process simply lengthens the chain, we
have

F,;1=(E—E,,—DF,D)~". (A16)

Equation (A16) enables one to calculate F, for
some n outside the surface, where the potential ¥,
has gone to zero, by a sequence of matrix inver-
sions, starting from a known value of F; deep in-
side the classical turning-point surface. This value
is essentially zero, since E, in this region is dom-
inated by the large positive diagonal-matrix ele-
ments of V. The assumption of Fy=0 is physi-
cally equivalent to the assumption that probe parti-
cles do not penetrate to z=0. The iterative pro-
cedure can also be performed for the vacuum, the
case in which ¥, =0 for all »n, provided the vacu-
um self-energy E,,., given by

E,.=T-2D (A17)

is given a small absorptive component in the
manner

Evac—Eyac—i8 . (A18)
The iterative equations, given by

Fype=(E —E ;o —DF,,.D)"", (A19)
may also be solved analytically in the manner

(E “Evac)i[(E '_Evac)z_“-Dz]l/2
2D?

Fvac= s

(A20)

where, in the G representation (in which E,,. and

D are diagonal) the boundary condition equation
(A18) is met by selecting the sign of the square
root for each term which minimizes the magnitude
of the term when real and which makes it absorp-
tive (negative imaginary part) when complex.

We consider secondly the situation in which all
the hopping interactions except that between the
nth and (n + 1)st link are turned on. The chain of
length n is now converted to the complete-scatter-
ing problem by turning on D. Letting G denote
the Green’s function of the complete system con-
fined to the (n + 1)st link, we have from Egs.
(A12) and (A19)

G =(E —E,,,—DF,D —DF,,.D)~'. (A21)
Similarly, for the vacuum we have
Gyae=(E —Ey,—2DF,, D)™
=1/[(E —E,,.)*—4D]"/* . (A22)

G carries information both about the scattering
and about the reactive response of the medium in
the absence of the surface. As the latter is also
carried by G, we have that (G —G,.)|G) de-
scribes the reflected wave at n + 1 resulting from
the application at n + 1 of a point source having
periodicity k + G in the plane of the surface. The
current carried outward by this wave must be cal-
culated using the discreet momentum operator,
which in one dimension takes the form

Pln)=%z—(ln+l)—ln)). (A23)
Since the analog of Eq. (A14) in this case is
G GDF,,,
FyoeDG Foype+FucDGDFy, | (A24)

the current density in the Gth channel is given by

ﬁ = ’ p= ’
J—G' ———~—Elm(G ‘DFvac | G )
X|{G'|G =Gy |G)|2. (A25)
The total current density absorbed by the system is
_given by
20z

=Tlm<é|Gm |G) . (A26)

Since G, is related to F,,. by
—2Im(G | DF ;D |G)=1/Im(G | Gy | G) ,
(A27)

the scattering probabilities I g g . are given by
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|{G'|G —Gy |G)|?

18 8 T (G776, |G M(G 6 |B) A
Unitary of Eq. (A28) may be verified by notiﬁg that

(G"|G =Gy |G)=(G"|G |G)—(G"|G1ocG")b 3 & - - (A29)

Since
# =, U= =\ 2 20z = =

E%Im(c} | DFye |GV (GG [G) |*===Im(G|G |G), (A30)
and

(GGG =—(G |Gy |G, (A31)
so that
[{G |G =Gy |G)|*— [ (G| G |G)|*= | (G| G | G) |*~2Im(G | G\ |G)Im(G |G |G),  (A3D)
one has

ﬁ > - - — 2
S Im(G’|DF,,. |G') [(G'| G —Gyp |G
\ g’l (G| DFyoe |G') | (G'|G =Gy | G |

i

=—_Im(alDFvac | a) l <G|Gvac ‘ a> lzzz_A-{Im(a‘Gvac |a> - (A33)
mlz #i
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