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A theoretical analysis of the helium diffraction experiments performed on the

GaAs(110} surface by Cardillo, Seeker, Sibener, and Miller is presented. Dynamic
scattering calculations for several model potentials approximating that of the surface are
presented. These suggest that the surface is a smoothly corrugated soft wall with a
peak-to-trough distance along the [001] direction of -1 A aud an attractive well depth of
-7 meV. Existing methods for generating van der Waals potentials are reviewed and an

explanation is suggested for their poor performance in the case of hehum. New semiem-

prrical rules fit to the known hehum rare-gas potentials and consistent wth the recent re-

sults of Esjberg and Ngrskov are proposed. These are used to construct an approximate

potential for GaAs(110}, which we show to agree qualitatively with the empirically fit po-

tentiaL The classical turning-point surface of this potential lies 3.5 4 above the As nu-

cleus. Scattering calculations performed on this potential are shown to agree poorly with

experiment. We conclude from this that the scattering is very sensitive to nuances in the

potential, and that very accurate surface charge densities will be required before a poten-

tial capable of scattering in agreement with experiment can be constructed.

I. INTRODUCTION

The diffraction of helium atoms from surfaces is
a powerful new tool for surface structure analysis
still in its infancy. ' At present, its usefulness as

a diagnostic tool is impaired by the difficulty of
interpreting data from highly corrugated surfaces,
notably the semiconductors. ' From a theoretical
standpoint, the most significant source of this dif-

ficulty has been the absence of rules for generating

the scattering potential given the positions of the

target nuclei. In this paper, we attempt to shed

some light on this problem by discussing in detail

the diffraction of helium from the GaAs(110) sur-

face.
The situation in the theory of atom diffraction

from surfaces is well illustrated by the case of LiF.
Like graphite, LiF has been studied extensively

both experimentally and theoretically. Neverthe-

less, scattering calculations based on "realistic" po-
tentials capable of producing good agreement with

experiment have never been performed (although

Wolken has performed dynamic scattering calcu-

lations for an approximate model potential). Gar-
cia has obtained excellent agreement with the dif-

flact1on IIltcllsItlcs fIonl LIF(100) observed by Boa-
to et al. , by modeling the surface as an infinitely

hard wall. The maximum peak-to-trough distance

of th1s wall, 0.3 A in each principal d11ectlon, is
sufficiently small ' ' that the depth of the van der
%Rais attractive well bounding the wall can be in-

ferred from kinematic analysis of the selective-

adsorption resonance positions. This depth (-8
meV) is found ' to be small compared with the
kinetic energy (-21 meV) of the probe. While the
complete scattering potential for LiF(100) is not
known, some information about it has been ob-
tained" from selective-adsorption line shapes and
anticrossing splittings. The latter analysis has been

performed sufficiently thoroughly by Carlos and
Cole" for graphite that the helium-graphite poten-
t1Rl can be said to bc known accurately, up to afb1-

trariness in the location of the origin. This is not
true for any other surface.

Attempts to calculate scattering potentials from
first principles have been discouraging. Freeman'

has calculated the helium-graphite potential using
the Gordon-Kim technique to obtain an attrac-
tive-well depth roughly —, (Ref, 13) of the meas-

ured value Rnd hard-wall parameters agreeing

poorly with the data. Somewhat better results
have been obtained by Tsuchida, ' who has
represented LiF as a sum of known He-Ne and
He-He potentials and obtained attractive well

depth Rnd corrugation parameters agreeing to
within 30% of experiment. Except for the work of
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Tsuchida'5 and that of Esjberg and N@rskov' on
the Al(110) surface, there has been no success at
predicting corrugation parameters. A strong corre-
lation between the attractive depth and the polari-
zation properties of the target is known to exist.

In this paper, we approach the problem of hel-
ium-surface potentials both using GaAs(110) as a
prototype surface on which to test both potential
generation and diffraction from those potentials.
There are two reasons why GaAs(110) is superior
to either LiF(100) or graphite in this regard: (1)
Its structure is well known, so that information
contained in the scattering signal tells us about the
potential rather than the structure. (2) It is non-
trivial topographically, and thus its diffraction in-

tensities are difficult to fit. This topography is il-
lustrated in Fig. 1. GaAs(110) is composed of
zig-zag chains of Ga and As atoms arranged in
parallel rows on the surface. The separation be-
tween the chains is 5.59 k, the repeat distance
along the chain is 3.95 A, and the vertical drop be-
tween surface chains and the floor of the trough
separating them is I.98 A, before reconstruction.

As the Ga dangling bond contains no electrons, the
system reconstructs', . by tipping the chains 27'.
This raises the As atom 0.46 A, lowers the Ga
atom 0.j.9 A, and increases the drop between the
As atom in the surface and those in the second
layer to 2.44 k As we shall show in Sec. III, this
surface has three times the corrugation of LiF in
one dlrectlon.

The plan of the paper is as follows. In Sec. II,
we briefly review the principles of scattering from
hard walls and show how these bear on scattering
from the more realistic potentials suitable for de-
scribing GaAs(110). In Sec. Ill, we review the
GaAs(110) helium-scattering data of Cardillo et
al. , and analyze these using the empirical-madel
poteiltials. Iii Sec. IV, we disciiss tlie pi'obleiil of
generating a scattering potential, and propose ways
of circumventing the difficulties commonly en-
countered when trying to do so. In Sec. V, we dis-
cuss the application of the rules for generating po-
tentials discussed in Sec. IV to GaAs(110). In Sec.
VI, we summarIze our results.
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Following Garibaldi et al. ' and Garcia et al. '

we consider a one-dimensional wall, the height of
which above the surface at x is It (x). We let the
probe atoms impinge on the surface with polar an-
gle 8 and momentum qo, and write for the wave
function

P=e'~exp[i (qo —k~)'~zz]

XexpI —i [qz —(@+6)']'~2z I, (1)

X

FIG. 1. Schematic drawing of GaAs(110) structure.
Atoms (1) and (2) belong to one surface chain. Atom (5)
is the analog of atom (1) on an adjacent chain. Atoms
(3) and (4) form the Aoor of the trough separating the
two chains.

where k=qosin(8) is the component of momentum
in the plane of the surface, and each G is a reci-
procal-lattice vector. The scattering amplitudes,
ao, related to the probabilities IG for adding trans-
verse momentum 6 to the probe by

cos(8')
G=

(8) I G

where 8 and 8' are the angles of incidence and exit,
must be picked to make the wave function zero at
the surface, in the manner
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1 1 in 1 k 6)1]'n jh(x)) .

Th' ' 'ble in general only when the surfa
t

'
1 since the Rayleigh approximation [Eq.

(1)] forces the expansion set to be incomplete.
However, if the surface is weakly corrugated

[~Bh/Bx~ &0.1 (Ref. 18)] one can make the further
approximation that thc QorIDal momentum
transfer is independent of 6,

(qo —k )'n+ [qo —(k +G) ]'~ =q, (4

1n which case thc scattering complltodcs can be
written as a definite integral of the form

h (x)=hocos(60x ),
where Gz ——1.125 A generates the reciprocal lattice

(8)

GaAs(110) is sufficiently corrugated that the eikon-
al appIoxlmatlon dcscribcs scattering from it only
qualitatively. In Fig. 2 we compare intensities o

d ff ted beams as a function of polar an

gle of incidence for 21 meV (A, =0.98 A) helium
atoms scattering from a hard wall of the form

iGx iqh i—x)dxQ ~ e e
n

where 0 is the area of the unit cell. This is the
eikonal' approximation, the hard-wall analog o
the Born approximation, in the sense of being
equivalent to a first-order expansion of the Green's

function, 6, of the form
1
i

i
i

i
I

where 60 is Green's function in the absence of the
wall. Equation (5) is particularly useful for inter-

preting the scattering semiclassically. The in-

tegrant can be seen to be rapidly oscillating, and
thUS lntcgrat1ng to a small vaiDc, cxccpt 1Q those
regl'ons for which

Bh —6
(7)

Bx

Tllus, Rs 111 classical scattering, particles dcflcct
into an angle 8= tan '(26/j) when they strike the
surface at a point where the slope is tan(e/2). At
lar e q, the magnitude of this contribution to
~aG

~
is properly proportional to the radius o cur-

vature of the surface at the classical impact point.
At small q, one has the additional effect of quan-

tum-mechanical interference between reflections
f '

t the surface with identical slopes.
This ives rise to beats in the diffraction pattern
called supcrnumary rainbows. The infin

of curvature Rt the Inflect1on point always glvcs

risc to a laI'gc peak in thc diffraction pattern called
the primary rainbow. This is typically the most
dlstlllct fcRtulc 111 tllc pattern.

The hard-wall appropriate for describing

I

I

I

I

I
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PIG. 2. Intensities of varioQs diffracted beams for
21-meV helium atoms scattering from a hard mamall

described by Eq. I;8) as calculated exactly (solid) and in
h k l (R f 17) approximation (dashed), plotted

vcrsUs 49;, thc polar angle of 1ncKfcncc of thc probe. The
specular beam is shovvn in (a) the first diffracted beam
(deflected toward 0=0) in (b), ctc.



and Ito ——0.57 A is the corrugation parameter. The
solid curve, calculated both by satisfying Eq. (3) at
30 points on the surface and by performing
dynamic scattering calculatioils (scc tlic Appendix)
on a potential of the form

y(& &) c —a[s —h(s)I (9)

with a=12 A ', compares well with an eikonal
«cuiation, show~ as a dashed line, only for large
deflection angles. The worst agreement is obtained
for the specular beam [2(a)] in which the peak at
45' in the exact calculation is shifted to 55', where
a dip should occur. This would cause a 50% error
if it were used to infer Ito from specular scattering
data. Also missing in the eikonal calculation are
the sharp features at 17.9', 28.3', 40.5', and 55.5',
&which are thresholds or resonances corresponding
to selective adsorption into a state with zero bind-

ing energy, which occur when

sin(8)=1 n — Go —1 0.175—n .—
v'2mE

This discrepancy is less important, since these reso-
nances will always reappear with the addition of an
attractlvc w'cll.

Softness of the wall has a significant effect on
the diffraction pattern. In Fig. 3 we compare
scattering calculations for a potential of the form
of Eq. (9) for a=4.0 and 8.0 A. '. We have plot-
ted scattering intensity as a function of exit angle
for various values of the incidence angle of the
beam. For fairly normal incidence (bottom) the
difference in a has little effect. In both cases one
secs a pr1IQary and a supcrnUIIl~ ralnbo%' d1s-

placed five and two beams from specular, respec-
tively, which track with the specular beam as the
incidence angle is increased. However, at large in-
cidcilcc angles» thc collRpsc of flirst thc supeHlu-

mary and then the primary rainbow into the specu-
lar beam occurs sooner for the softer wall. This
collapse is a consequence of shadowing by the
ridges of the inflection point, the semiclassical
source of the primary rainbow. Softness en-
courages collapse by causing the particle to refract
outward as it skims across the tailing repulsive po-
tential of the ridges, thus preventing it from reach-
ing the inflection point. The tendency of softness
to return intensity to the specular beam has been
noted previously by Armand and Manson. '

One important aspect of rainbow scattering is
that both the primary rainbow angle and the angle
at which collapse occurs are independent of probe
cncI'gy. Thus, IQ Flg. 4 %c scc that thc saIQc sur-

a
-7O-SO-I -1OOe I X V 7O-5O-I -&OOe ' I SO 70

eR(degrees)

FIG. 3. Intensity plotted vs 8~, the polar angle of
exit of the probe, for various values of 0;, the polar an-
gle of lncldences fo1 21-QMV. hehuIB atoIQs dlffract1ng
from R one-dimensional soft wall described by Eqs. (8)
and (9}with a=4K ' ([eft) Rnd a=g A ' (right). In
each case, the arrow indicates the specular beam.

face (a=4) proved with 63 meV atoms also has a
rainbow angle of 50' which collapses by 65' in-
cidence. The fully developed pattern at 24.1' in-
cidence shows three supernumary rainbows at 18;
5, and —12' which coBapse in succession as the
probe so 10%vcred toward glazing 1ncldcncc. Onc
can also see emerging in Fig. 4 the outline of the
U-shaped pattern characteristic's of classical
scattering.

GRAS(110) has a slight asymmetry, due either
to the heteropolarity of the surface or to the recon-
struction, ' which manifests itself most distinctly
as a difference in the left and right rainbow angles.
In Fig. 5 we show the effect on the diffraction pat-
tern of addition to h (x) an asymmetry of the form
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FIG. 4. Intensity plotted vs 4', the polar angle of
exit of the probe, for various values of (9;, the polar an-

gle of incidence, for 63-meV helium atoms diffracting
from a one-dimensional soft wall described by Eqs. (8)
and (9) with a=4 !it '. In each case, the arrow indi-

cates the specular beam.

! ~ ! i '. lLij l i li

hh (x)=lt
~ sin(26ox),

where h1 ——0.08 A. The small skewness this gives

to h, shown to scale with and without hh at the

top, causes the rainbow angle for particles imping-

ing on the steep side of the ridge (right) to be 60',
while that for particles impinging of the shallow

side is 40'. As this is a net difference of 40% of
the original of 50', we conclude that a small asym-

metry can produce large changes in the diffraction
pattern.

III. DIFFRACTION PROM GaAs(110)

Up to effects due to the van der Waals attractive
well on the surface, scattering from GaAs(110)
(Ref. 5) is quantitatively that of the soft wall

described by Eqs. (g) and (11). In Fig. 6 we com-

pare experimental in-plane diffraction patterns
across the troughs for 21 meV the atoms imping-

ing at various polar angles (9;. The left and right
columns, which correspond to particles incident on
the shallow and steep sides of the ridge, respective-

ly, show the similarities and differences visible in

the asymmetric soft-wall calculations of Fig. 5. In
each case, one sees at fairly normal incidence

i! i !!i lW[ i j!. i lli
-M -e -Ro o Ro~w So -so ~~Lpg

eg (dgfeei)

FIG. 5. Intensity plotted vs 0&, the angle of exit of
the probe, for various values of I9;, the polar angle of in-

cidence, for 21-meV helium atom diffracting from a
one-dimensional asymmetric soft wall described by Eqs.
(g), (9) and (11) with a=4 A '. The right column has
been reflected across the center. The top shows draw-

ings to scale of the classical turning-point surface with

(solid) and without (dashed) the asymmetry described by

Eq. (11).

(8; =35 ) a bump at 14', the supernumary rainbow,

which collapses into the specular beam 8;=45',
and the entrance from the left at 8;-50 of a
second featule, the primary ra1nbow, wh1ch col-

lapses by 8;=.65'. Although the collapse of rain-

bows occurs sooner in the left column than in the

right, a result of wall asymmetry, similar behavior

in Fig. 5 shows this asymmetry to be subtle and

described well by Eq. (11). Thus, these data show

GaAs(110) to be a smooth soft wall with a peak-
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FIG. 6. Experimental in-plane diffraction patterns
for 21-meV helium atoms beamed across the troughs of
GaAs(110). Diffraction along the troughs cannot be
seen in this scattering geometry. Intensity is plotted vs

Hq, the polar angle of exit of the probe„ for various
values of Hq, the polar angle of incidence. The left and
right columns correspond to particles impinging on the
shallow and steep sides of the ridge, respectively. The
arrow in each case indicates the specular beam. Note
that data is not taken beyond Hg ———20'.
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to-trough height of 1.1 A and an asymmetry Iiiluch'
is small We em.phasize that total collapse by
8;=65' shows that the surface is soft.

Surface corrugation along the troughs has little
effect on scattering across the troughs. This may
be seen by considering a hard wall sufficiently
snlootll that Its 11c1gllt fullct10II contRIIIS 0111y first
harmonics, in the manner

II (x,y) =h„cos(xG„)+II„cos(yG„), (12

where G„and G„are the generators of the recipro-
cal lattice along and across the troughs, respective-
ly. To the extent Eq. (5) is valid, the scattering
amplitudes are redundant, in that they may be
composed in the manner

ei G r
&

—iqh(7)gr
Q

1 LxG~ —lfA~ oe "e cos(xG, )dx
I

X J e ~e "cos(yGy )dy, (13)

and thus characterized by in-plane diffraction
along principal directions only. The data in Fig. 6

8.
,
=so
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FIG. 7. Experimental in-plane diffraction patterns
for 21-meV hehum atoms beamed along the troughs of
OaAs(110). Diffraction across the troughs cannot be
seen in this scattering geometry. Intensity is plotted vs

Hq, the polar angle of exit of the probe, for various
values of 8;, the polar angle of incidence. The arrows in
each case indicates the specular beam.

reflect only the y integral. If we probe the x in-

tegral by rotating the sample azimutha11y 90' and
perform the same experiment, we see, in Fig. 7,
scattering po%'er concentrated in thc immedjatc vi-
cinity of the specular beam, reflectin a corruga-
tion parameter the order of h„=0.1,as is the
case rvith many metals. ' %'hile it may be possible
to ftt tllcsc data with 8 One-d1mcnslonal hard-wall
calculat1011, thc Rppl'oxlIIIRtc nature of tllc Rssump
t1011S Icad1ng to scparab1llty 111 Eq. (13) would
make such a fit unphysical. An experimental ex-
ample of this problem is shown in Fig. 8, in which
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distinct three-peak envelope with maxima at 25',
45', and 70', in good agreement with the correct
(solid line) hard-wall calculation in Fig. 1(a). (The
peak at 8; =58' is a resonance absent at /=0. )

Since the specular scattering arises semiclassically
from regions of the wall with zero slope, this en-

velope may be understood as being due to interfer-
ence between probe particles reflected from the

tops and bottoms of troughs. The dependence on

polar angle 9 occurs through the normal momen-

tum transfer q=2q()cos(8) in Eq. (5). If one ap-
proximates Eq. (5) as

a() ~ cos(qho), (14)
M

Kl
X

$=(77s
LLJI-
x

P=(so

10 20 30 40 50 60
8; (deg)

FIG. 8. Experimental specular intensity plotted vs g;,
the angle of incidence of the probe, for various sample
azimthus P. The probe kinetic energy is 21 meV.
/=180' corresponds to scattering across the troughs
(Fig. 6) and / =0' corresponds to scattering along the
trough (Fig. 7). Note the gradual destruction of the
three-peak envelope as P is decreased.

me reproduce the intensity of the specular beam as
a function of polar angle of incidence for various
saInple azimuths. The evident azimuth dependence
is inconsistent with Eq. (13), which predicts no az-
imuth dependence for 6=0. Variation of the re-
flection coefficient with azimuth involves a break-
down of the eikonal' approximation similar to
that shown in Fig. 2, as well as the presence of
higher fourier components in the height function
absent in Eq. (12).

Each of the plots in Fig. 8 can be seen to have a

onc obtains a spcculaf 1ntcns1ty curve si1Tlilar to-

the dashed line in Fig. 2(a). The presence of an en-

velope in the GaAS data is important in that it in-

dicates a van der %aals attractive mell on the sur-

face shallow compared with the tonetic energy of
thc pI'obc. This 1s signiflicant bccausc a dccp well
tends to exaggerate the rainbow angle, and thus
cause the surface to appear more corrugated tban
it actually is. The well depth is customarily in-
ferred from the positions of the selective-adsorp-
tion rcsonanccs, thc f1nc structure 1n Fig. 8 absent
in Fig. 2(a). However, we have found a self-
consistent kinematic analysis of these data to be
extremely difficult, as our scattering calculations
have shown the resonance positions and intensities
to be extremely sensitive to subtleties in the poten-
tial. We believe that band-structure effects caused
by the unusually large corrugation of this surface
are responsible for the difficulty. Accordingly,
rather than perform possible wrong kinematic
analysis of the resonance positions, we have per-
formed close-coupling scattering calculations (see
the Appendix~ on a series of model potentials and
examined trends with increasing well depth. These-
potcnt1als Bfc of thc ford

y (x y &) ge —a(z —s) ge —u/3(z —s)
(~ —~o j

(15)

II, =h„cos +&icos
2fpx 2&/

a " b

The functional form of Eq. (15) is primarily a
computational convenience. The paraIneters, listed
in Table I, are chosen to optimize the 21-meV
rainbows. The mell depth is adjusted by varying 8
and zo only, as the effects of varying zo and C3 are
identical within the accuracy with which potentials
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TABLE I. Parameters used in Eqs. (15) and (16) to
generate Figs. 9 and 10. Distances are in k and ener-

gies are in meV.

4.7y10' 413 2.9 0.1 0.45 4.0 5.6

of the form of Eq. (15) scatter in agreement with
experiment. In Fig. 9 the experimental (solid, top)
specular scattering intensity of 21-meV He atoms
beamed across the ridges as a function of polar an-
gle is compared with that calculated from model
potentials of the form of Eq. (15). Figure 9(a)
(8=0, C3 ——0) shows the distinct three-peak en-
velope evident in Fig. 2. The 1.5-meV depth of
Fig. 9(b) (8=0, zII ———2.0) can be seen to effective-
ly bind one state giving rise to resonances
corresponding well with features in the data.
While resonances in the data are sufficiently
numerous that this might be fortuitous, we think it
is not, since any potential has one weakly bound
state for which band-structure effects are small due
to its distance from the surface. As the well depth
is increased to 4 meV in Fig. 9(c) (8= 134 and
zII

——1.23) one sees the resonances in Fig. 9(b) mov-
ing to the right as their binding energy increases,
and new resonances emerging at the old positions
as new levels become bound. Band-structure ef-
fects may be the cause in Fig. 9(c) of the reso-
nances at 26', etc. lying to the left of the vacuum

positions. In Fig. 9(d) (8=202 and zII
———0.5) the

attractive potential has been increased to force the
most deeply bound state to resonate at 33'. We
note that the envelope is beginning to be destroyed,
and that there are large numbers of coincidences of
resonance positions between theory and experiment.
The rainbow angles of this potential still agree
with experiment, up to the absence of asymmetry
in Eq. (11). In Fig. 10, we compare across-trough
diffraction patterns for the potentials generating
Figs. 9(a) and 9(d). In each case, at 8;=35' fully
developed primary and supernumary rainbows can
be seen at —20' and 15', respectively. As 8; is in-
creased, there is a definite trend for both to col-
lapse, although in the presence of the attractive
well (right) collapse is somewhat retarded.

The destruction of the specular beam envelope
and the retardation of rainbow collapse are conse-
quences of the presence of a deep attractive well
seen in all our model calculations. We interpret
the former as being due to the tendency of a deep
well to dominate the momentum of the probe nor-

I

I,

I
I I

lcl

'(a)

I I I I I

0 10 20 50 40 SO 60 10 80
e; (deg)

FIG. 9. Solid top: Experimental specular intensity
plotted vs 8;, the polar angle of incidence of the probe,
for Il}=180', reproduced from Figs. 8{a)—8(d); specular
intensity calculated from potentials of the form of Eq.
(15) with increasing attractive-we11 depth as described in
the text.
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FIG. 11. Experimental in-plane diffraction patterns
for 63-meV helium atoms beamed across the troughs of
GaAs(110). Diffraction along the troughs cannot be
seen in this scattering geometry. Intensity is plotted vs

8&, the polar angle of exit of the probe, for various
values of 0~, the polar angle of incidence. In each case;
the arrow indicates the specular beam.
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FIG. 10, Across-trough diffraction patterns calculat-
ed for a soft wall described by Eqs. (8) and (9) with
a=3 A. ' (left) and for the potential generating Fig. 9(d)
(right). The incident energy is 21 meV. Intensity is
plotted vs 8&, the polar angle of exit of the probe, for
various values of 8;, the polar angle of incidence. In
each case, the arrow indicates the specular beam.

mal to the surface at the classical turning point,
Rnd thus rcmove thc dcpcndcncc Gn (9;. %c bc11cvc

failure to collapse to be caused by the tendency of
the mell to refract particles downward so that upon
impact they are trave1ing at more norma1 incidence
and thUS become shadowed 1atcI'. As wc have
found these calcU1Rt1ons to bc extremely scns1tlve

to nuances in the potentia1, we venture to ca11

agreement of Fig. 9(d) with experiment fair. More
important are the trends with increasing weH depth
wh1cll pI'cc1Udc wells n1uch dccpcI' than the 7 mcV
of Fig. 9(d).

In Fig. 11, we show data taken with the same
scattering geometry Rs 1n Flg. 5~ but w1th R 63-
meV Q, =0.57 A) probe. Increased inelastic loss
and instrumental broadening at large deflection an-

gles causes agreement with the soft-wall calculation

in Fig. 4 to be poor. Even so, vestiges of the rain-
bows seen in Fig. 4 (Ref. 5) can be seen to correct-
1y emerge from the specular beam as the probe is
raised towRfd morc norIHR1 1nc1dcncc. Thc pri-
mary rainbow can be seen in the left half of Fig.
1I to appear at 8;=60' as a bump a 30', which
moves to 0' and then out of view as 8; is decreased
to 50' and 40'. In addition, the first supernumary
rainbow may be seen developing at (9; =50', and
then forming a feature at 15' as 8; is decreased to
40. Similar behavior is seen in the right half of
F1g. 11 cxccpt that ra1nbows emerge sooncf Rs 1s

the case in Fig. 6. In Fig. 12 we compare the
specular intensity curve with that ca1culated using
the potentia1 generating Fig. 4. The calculation
has been multiplied by cos(8;) to account for di-
m1nUt1on of thc dctccto1 cross scct1on Rt gfazlng
1nc1dcnce. While pass1ng Rgrccmcnt of thc pcRk
pos1t1ons Rt 41 and 54, thc ovcfa11 Rgfccmcnt 18

poof', particu1af1y Rt 1owc1 angles of 1ncldcncc
where the momentum transfer, and thus the inelas-

tic losses, are greatest. It seems reasonable to
specu1ate that the features between 60' and 90 are
selective-adsorption I'esonanccs; howcvcf, cons1dcf-

ably morc %'ork nccds to bc done bcfoI'c thc 63-
meV da.ta is understood.
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18 thc k1nctic cncigy,

VqI= —QZI'e f ~ — dr
ir —R; f

18 thc clccti'on-1on intcfaction, %ith ZJ the chafgc
on the ion at RJ.,

p(r )p(r ) dme= ge f 1

is the electron-electron interaction,

FIG. 12,. Solid: Experimental specular intensity plot-
ted vs 8~, the polar angle of incidence of the probe, for
/=180' (probe beamed across the troughs). The probe
kinetic energy is 63 meV, Dashed: Specular intensity
calculated for a one-dimensional soft mall described by
Eqs. (8) and (9) with a=4 A '. This potential also gen-
erated Fig. 4.

ZJZJ 8'

Vjj =
,I' )R; Rj )—

is the ion-ion interaction, and

(21)

1/3

V„,= — e f p
i'' ' '+ f p(r)F(r, )dr

4 m

(22)

E =T+~eI+~ee+ ~is+ ~~ (17)

It has been possible' for many years to conpute
fairly accurate van der %aals potentials between
closed-shell atoms and molecules. In light of this,
it is somewhat surprising that there has never been
a successful first-principles calculation of a poten-
tial between R llcllu111 Rtolll Rnd Rll lllsulatol; Ill
this section, we examine the reasons for this and
propose methods of overcoming then which are
not unworkably complex, and yet which can pro-
vide a reasonable interpretation of the GaAs data.

Of the equivalent methods presently available
for calclllRtlng Rtolll-Rtolll potclltlals, thc sllllplcst
is the Gordon-Kiin technique. This nlcthod is
based on the observation that Hartrce-Pock calcu-
lations for the He-He system at typical van der
%aals separations produce a charge density equal
within 10% to a superposition of atomic He
charge densities. The method involves computing
the total electronic energy in the local density-
functional approximation, using the sum of target
and pfobc cha1ge densit1cs f01 p, and fclying on
the nonlinearities of the functional to provide the
interaction. The local density expression for E
takes the form

ls tllc contrlblltlon froln cxcllallgc Rnd correlation.
The small correlation correction on the right of
Eq. (22) is given in terms of r, =me jlrI (3/4Irp)'~

Pl8F(r, )=- I ( —0.438r, +1.325r,
A'2

—1.47r, 0.4r, i )—
+(r, )= . [0.03111B(r,)—0.048

+0.009r,ln(r, )—0.01r,], (24)

for r, & 1. The region of relevant charge densjtics
spans the region of r, =1. Using Clementi func-
tions to generate charge densities for the rare
gases, Gordon and Kin succeeded 1n producing
potentials between rare-gas atoms other than He
agreeing with experiment to roughly 2% in the po-
sition of the potential minimum and to roughly
15% in the depth of the minimum. Potentials in-
volving He typically differed from experiment by
20% 111 tllc posltlon of thc BlllllnlllIll RIld 80% In
its depth. These errors were attributed' to the in-
correctness of statistical exchange and correlation
for atoms with very few electrons. The potential
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minimum for He-He has been reproduced by a
configuration-interaction calculation, , which au-

tomatically 1ncludcs corI'clat1on cncI'g1cs coI'Icctly,
and thus it can be calculated if sufficient effort is
expended. Such a calculation is not practical for
surfaces.

The Gordon-Kim method has been used by Free-
man to calculate the interaction between rare
gases and graphite. Using Hartree-Fock charge
densities for the probe and target, Freeman reports
attractive-wdl depths, for all gases except Xe, 0.5
(He) to 0.25 (Kr) times the value determined from
experiment by Steele. Freeman attributes this
disparity partly to absence of dispersion forces (im-

proper estimation of correlation by the density
functional) and partly to inaccuracies in the
graphite charge density far away from the surface.
We note that the error in the well depth is sys-

tematically positive, as would be expected for miss-

ing dispersion forces, while the He-He potential of
Gordon and Kim is four times too deep, i.e., the
nature of the error is different in the two cases.
Better agreement with experiment in the case of
He-LiF was obtained by Tsuchida, ' who
represented the potential as a sum of two-center
He-Li+ and He-F components, estimated to be
identical to the known He-He and He-Ne poten-
tials. Tsuchida reported an attractive-well depth
only 12% deeper than that determined experimen-

tally arid a peak-to-valley distance of the equi-

valent hard wall of 0.34 A compared to 0.54 A. es-

timated from diffraction intensities by Boato et al
Carlos et a/. "have compared matrix elements of
this potential between bound states of its lateral

average to those inferred from selective-adsorption

splittings and found the theoretical values up to a
factor of 2 too large. They attribute this

dlscrcpaIlcy 'to errors 111 tllc slzcs of tllc 101ls 111-

curred in substituting the rare-gas potentials.
The persistent tendency of the local-density-

functional method to underestimate the depth of
the He-target attractive well for both atoms and

solids, while apparently being adequate for other

probes, ' suggests that van der 8'aals potentials in-

uoluing helium are significantly different from those

of other closed shell atoms. The a-nomalous

bchav1or of helium 1s duc primarily to thc small-

ness of its radius ao ——0.313 A. This causes the

major contribution to the interaction energy in

Eqs. (15)—(20) to come from the presence of the
tenuous tails of target charge density at the helium

core, rather than from the bonding region, as in

thc case w1th othcI I'RI'e gases. Another conse-

~—Tptargct ~ (26)

with p, ,&„evaluated Rt thc Hc nucleus and T g1vcn

1n tcfms of thc Hc chaigc dcns1ty

PH, (r)=- —e
&ao3

=9.0X10 meVA

(28)

quence is that when the probe is within a van der
Waals distance of the target, its electrons are rarely
close to the target, and thus a proper cxchange-
correlation hole rarely forms about them. 5 For
sufficiently large target-probe separations, this
latter effect always causes a breakdown of the local
density expression for the exchange-correlation en-

ergy, manifested as the inability of the method to
correctly reproduce the 1/r dispersion energy.

In the remaining discussion we shall assume that
local-density approach for helium has only two
faults: (1) The local expression for the correlation
energy is neuer valid at the separations of interest,
(2) the highly correlated nature of the He ground
state makes the remairung components of the po-
tential difficult to evaluate accurately. Our pro-
cedure for circumventing these problems will be to
parametrize the part of the potential not due to
correlation and then to Rdd this to the ordinary
1/r nonlocal expression for the correlation energy
at "large" separation. We emphasize that this ap-
proach is valid only because helium is small.

We begin by observing that, in the case of Ar-

Ar, the kinetic„Coulomb, and exchange contribu-
tions to the Gordon-Kim potential are comparable
and tend to scale with onc another Rt 1ntcI'Rtomlc

separations of interest to that the order of the po-
tcnt1al can bc estimated from thc kinctlc cncrgy
alone. This observation does not apply at large

separations, where the correlation energy dom-

inates. Since the interaction arises near the He nu-

cleus, one can expand Eq. (18) in the manner

5/3 5/3
t (PHe +Ptarget ) PHe Ptarget )

2/3
pH. pt-g. t

wlllcll Irl thc 111111tof urllfolnl Ptarget 1cdllccs 'to a
rule of the form
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where ao ——„—(fi lme ) is the He radius. Equation
(26} is identical to a rule proposed recently by
Esjberg and Ngrskov, ' their value of T (1.1 X 105

meV A. ) likewise being derived from calculations
of the energy to embed a helium atom in a uni-
form electron gas of density p«,s„. For the present
purposes, Eq. (26) with this value of T is meant
only as a rough guide. The approximations in-
volved in obtaining it include ignoring the Cou-
lomb and exchange-correlation contributions [Eqs.
(19}—(22)], which tends to increase T, and the as-
sumption of uniformity, which tends to reduce it.
To estimate the size of the latter effect, we approx-
imate p„,s« in the vicinity of the probe by

I target —Poe (29)
5

and replace the exponent —, in Eq. (25) by 2, to ob-
tain a dilation factor f for T given by

'2 —2

(30)

with P=1.21 arising from the sphericity of the
wave function. Thus, the different classical turn-
ing points R~ and R2 related by

Z, 'E, ""
=0.85 .

R2 Ej
(34)

We note that the Kohn-Sham value of a is com-
monly used in electronic structure calculations for
surfaces, in part because it gives better work func-
tions.

The exponential character of atomic wave func-
tions at typical van der %aals distances is shorn
in Fig. 13, in which theoretical charge densities,
calculated using Wigner exchange (a variable and
=—, in regions of large charge density} for all the
rate gases except He and for Ga4s 4p and
As4s24p are plotted. The dashed line indicates
the classical turning point of 21-meV helium
atoms, assuming Eq. (26) with T= 1.0)&10'
meV 4 These are compared with the experimental

for a=3 A ', a representative value for solids.
We note that errors in T of this order will affect
the repulsive potential minimally, since the ex-
ponential form of Eq. (29) causes f to displace the
classical turning point a distance Ar given by

b,r= —ln(f)=0. 17 A. .1

Q

(32)

Because of the large size of T, great care must
be taken in Eq. (26) to use a p«,s«accurate in the
tails. If, for example, one uses the charge density
of Herman and Skillman for atomic Ar, one ob-
tains (with T= 1.0X 105 meVA. 3) a classical turn-
ing point for He-Ar potential of 2.3 k, as opposed
to the experimental value of 2.7 k The disparity
comes from the use of Slaters's value of a= 1 in
the exchange-correlation potential

'
~y31/3

V„,(r ) = — p'i'(r),
2

I

2rather than the Kohn-Sham value of a a = —,,
which is more suitable for describing ground-state
properties of multielectron atoms. These two
values of o, generate eigenvalues for the Ar 3p state
of E, =0.53 and E2 ——0.38 hartrees, respectively,
and these give rise to different exponential decays
of the form

-2

4

r(A)

FIG. 13. Valence-charge density vs distance from the
nucleus for several atoms, calculated using %igner ex-
change as described in the text. The dashed line indi-
cates the classical turning-point separation for 21-meV
helium atoms, as calculated from Eq. (26) using
T 1.0X10 meVA. 3. The umts of p are A
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TABLE II. Distance of closest approach, 8 ~P, for 21-meV helium atoms impinging on
various atomic targets, as calculated using Eq. (26), compared with experimental values of
Chen et al. (Ref. 28). Also shown are the logarithmic derivitive of p at the turning point,
the one-dimensional decay parameter associated eath the eigenvalue of the outermost p elec-
tron, P the ratio of these used in Eq. (33), and f as dcfmcd in Eq. (30).

3.83
3.51
3.32
3.04
2.83
2.29

(2.44)

3.17
2.87
2.72

2.09
2.87
3.43
3.70
3.89

1.71
2.35
2.93
3.09
3.24

1.22
1.22
1.18
1.19
1.20

1.25
1.56
1.66
1.84
2.01

values of Chen et a/. , in the left-hand columns of
Table II. For Ar, Kr, and Xe, the theoretical turn-

ing point is 0.11 to 0.17 A larger than the experi-
mental one, as would be exptx:ted in the absence of
dispersion forces. The theoretical Ne turning point
is only 0.02 A larger than the experimental one.
This is probably caused by an excessivdy negative

Net clgcnvRluc, duc to thc lnadcquacy of statlstl-

cal exchange in an atom with very few electrons,

although a contributing factor may be the inhomo-

geneity factor f approximated by Eq. (32). A
reduction of this eigenvalue from 13.3 to 11.7 CV

or R dlalatlon of pNC 01 T by 2.0 would 1ncrcasc

this distance to 2.49 L (shown in parentheses in

Table I) to be more in line with the other rare

gases.
For all rare-gas targets except He and Ne, the

C6/r dipole dispersion energy calculated with pub-

lished values for C6, when added to the repul-

sive potential generated by Eq. (26) in the manner

~—TI target

produces a potelltlal mlnlmum at r of depth e
agrcclIlg wltll cxpcrlllMIlts wit1llll 4%% and to with-
In a factor of 2, respectively. A comparison of the
experimental Rnd thcolctlcal 21-meV classical tun-
ing points and attractive-well parameters is shown
in Table III. Similar agreement may be scen to oc-
cur for Ne if the enhanced repulsion is used (pro-
ducing the values in parentheses). Even with
enhanced Ne repulsion all four targets may be seen
to have inadequatdy deep attractive wells. Noting
that the magnitude of the error is the same in all
cases, even though the quadrupole polarizabilities
are known to vary by a factor of 20 from Ne to
Xe, we postulate that the total missing energy, pri-
marily Coulomb, and exchange-correlation energy
not proportional to p,artcc, or included in the dipole
dispersion energy, is approximately local, and thus

TABLE III. Separation I' at the potential minimu, the value e of this minimu, and

the classical turning-point separation R ~ for 21-meV helium atoms impinging on various
rare-gas targets, as calculated using Eq. (35), compared vrith experimental values of Chen
et Ql. (Ref. 28). The Ne values in parentheses aie calculated using an enhanced .repulsion, as
discussed in the text.

theor g CTP
expt

4.3
3.9
3.6
2.9

(3.2}
3.21

1.04
1.28
1.53
1,62

(0.97)

2.17
2.13
2.08

3.20
2.92
2.70
2.13

(2.37)

3.17
2.87
2.72
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TABLE IV. Separation r at the potential minimum, the value e of this minimum, and

the classical turning-point separation R for 21-meV helium atoms impinging on various
rare-gas targets, as calculated using Eq. (36), compared with experimental values of Chen

et al. (Ref. 28}. The Ne values in parentheses are calculated using an enhanced repulsion as

discussed in the text. The Ar value in parentheses is that of Aziz et al. (Ref. 31).

4.2
3.8

3.5

2.8
(3.1)

4.15
3.75

1.89
2.19

2.69
(1.80)

2. ]I.7
2.13
2.08

(2.59)

3.17
2.90

2.10
(2.37)

can be included empirically by modifying the func-
tional in p„,~„ to include a short-range attraction
which does not overwhelm either the repulsion at
short distances or the dispersion energy at large
ones. This may be accomplished by subtracting a
te~ proport on j to ptarget where y& & We f&nd

1

the value y= —, to be adequate, although the exact
value is not crucial. Thus, we propose a rule of
the form

r/3 6p' = ~pterget +ptarttet CS~r (36)

where T=1. )0&1 OmeVA. and X=40.0 meVA.
are universal constants selected to optimize the fit
to the rare gases.

We note that Eq. (36) is automatically consistent
with Tsuchida's' result for LiF, since atomic
charge densities and polarizabilities are known to
be approximately additive in ionic solids, and since

p,'„z„is usually dominated by one atom or the oth-
er, and is thus also additive. The agreement be-
tween potentials generated by Eq. (36) for rare-gas
targets and the experimental potentials of Chen
et til. s is summarized in Table IV. For all targets
except Ne, r, e, and 8 agree to within 1.5%,
18%, and 2%, respectively, tolerances similar to
those obtained by the Gordon-Kirn technique'" for
heavier rare-gas probes. Tolerances for Ne are
somewhat poorer (3.5%, 17%, and 4%). Consider-
ably better agreement (1%, 1%, and 3%) is ob-
tained for Ar if the experimental potential of Aziz
et aI. ' is used for comparison. %e note that the
experimental trend for the well depth to increase
with the atomic number of the target is not ob-
served in the theory. This suggests that the attrac-
tion absent from Eq. (35) is not completely local,
but tends to increase with the target polarizability.

TABLE V. Values of C, calculated using Eq. (40)
comyared with those reported by Dalgarno (Ref. 29).
E "

is the first ionization energy and F. is the
single-oscillator excitation energy calculated from C6
(Ref. 29) using Eq. (40).

—ionization ~ionization Dalgarno

12.1
14.0
15.8
21.6

1,11
0.93
0.80
0.52

1.12
0.77
0.57
0.18

12.0
16.2
20.2
44.8

However, since the remaining error (0.28 meV for
Xe) is small compared with the kinetic energy of
the probe, and since the Xe polarizability is about
half that of an atom in a typical semiconductor,
we argue that this error will be negligible in semi-
conductors. The difficulty of observing errors of
this order experimentally is demonstrated by the
inability of Kcil et al. and Aziz et al. ' to agree
on the He-Ar well depth to better than 30%.

While the transfer of the local part of Eq. (28)
to a surface is straightforward, transfer of the
dkspersl. on energy rs subtle. Unhke a rare-gas tar-
get, a solid is much larger than the target-probe
separation, it has a continuous distribution of elec-
tronic levels, and its charge is inhomogeneously
distributmi. Assuming for the moment that screen-
ing is negligible (this is not generally the case), we
write for the interaction energy Le, due to correla-
tion as
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gf (r ')P; (r ')ff(r)g;(r)
ae, =e' dr dI'

f fi i

target probe

E.) +(Ef, E., )] (37)

where the sums run over filled and empty states of the target and probe separately. Equation (37) can be
evaluated conveniently using the single-oscillator approximation, valid to the extent that the excitation ener-

gies contributing significantly lie near one value. Approximating Ef E; b—y E for these transitions, we have

T

be, = g g (Ef E){E—f E) —I I—
(g+g ) EE

target probe

(38)

This may be evaluated using the f sum rule to obtain

fPe
he, 6 2'

1 1 Ptarge» r Pprobe r

(g+g') gg'

which is the well-known London formula. The integral in Eq. (39) is divergent if there is any nonzero
overlap of p„,s„and p~„b,. If there were none, and if the target and probe were well separated, then we

could write

{39}

he, =6
24e'

2m (g+E'} EE' p.
(40)

where Xz ——2 is the number of electrons in the probe and XJ is the number of valence electrons on the jth
target atom separated from the probe by distance r/. Assuming that Eq. (40) is approximately correct, it
may be tested against the rare-gas targets using the empirical observation that most of the dipole-oscillator
strength for the p electrons resides near the atom s ionization energy. Thus, in Table V, we compare C6, the
coefficient of I/r, as reported by Dalgarno with the value calculated from Eq. (40) using the ionization

energy for E, a value of 34.6 eV for E ', picked to given the correct 9 value of C6 for He-He, and %=6p
electrons. Agreement for all targets except Ne is within 30% and that for Ne is within a factor of 2, The
noticeable tendency of the theory to overestimate C6, particularly for smaller atoms, derives from the crude-

ness of the estimate for E, which tends to be slightly higher than the ionization energy. For example, the
known He dc polarizability a(0) is 0.195 A, compared with values of 0.188 and 0.095 A calculated from

the single-oscillator model in the manner

2

a(0) 2
mE'

(42)

with E ' set equal to 34.6 and 24.6 eV, the ionization energy, respectively.
The divergence in Eq. (39) is a pathology of the single-oscillator approximation stemming from its tenden-

cy to overemphasize high-energy excitations of the target. This tendency is not important when the dipole

approximation is valid because the dipole matrix element cuts out high-energy contributions to Eq. (38) suf-

Gciently rapidly to nullify the effect of multiplying by ef;. The full Coulomb interaction does not have this

property, however, and thus Eq. (39) is a bad approximation, in that it tends to exaggerate the severity of
singularity at r = r '. In a better approximation, we replace the excited states by plane waves ~q }of excita-
tion energy E+ fFq /2m, we write

;( -, -'-. )( -, '-. )=;(;--'; )-.—,.'.";( -, '-, )
1 . 1

i —--- -II H, — l

where H is a smoothing operator given by
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II= g E+iri q /2m
I e&&e I (43)

Since II commutes with the kinetic energy operator T, and since

11~i&=~i&,

one has

Thus, we modify Eq. (39) with the substitution

1 A[ r —r'/
—+II -II=

/
r —r'[

/

r —r'[
with

)

(44)

(46)

(47)

to obtain
r

f282
~~1:orrelation —6

2m

where

f fp„,g„(r )p~„b,(r ')A, F(A,
~

r —r '
~

)dr dr,(g+gr) gE r
(48)

(49}

2A, f pi„g«(r ')F(A,
i
r —r '

i
)d r '

(E+E') EE'

with F. chosen to given the correct value of Cz and with A, treated as a variable into which to absorb approx-
imation errors from Eqs. (42}—(45). Agreement is optimized with X set to 30 meV4 We take p„,g«
within the integral to be of the form

piaig«( i ):Ae (51

with P and A chosen to agree with Fig. 13 at
~

r
~

=3.5 L and to normalize the total charge to six electrons.
With this approximation we find that the values of A.. (1.8 A. ' and larger) given by Eq. (47) are too large,
but that essential agreement with Eq. (36) can be obtained using the universal value of A, =1.35 A . The
agreement with experiment of potentials generated using Eq. (50) with this value of A, is summarized in
Table VI, which is the analog of Table OI.

The removal of the I/r divergence in Eq. (39) is intimately related to the momentum-dependent nature
the dielectric function of the target, its inability to screen at short distances for frequencies fico (E. In par-
ticular, the potential at r ' resulting from injecting unit charge at r ' at frequency co, given by

el &
I

F(
I
r

I
)= 6 X Bxi Bxk

A comparison of x F(x) and 1/x is shown in Fig. 14. We note that F(x) converges to 1/x at large x, but
that it diverges only as 1/x for small x, and thus does not produce infinite interactions.

To test Eq. (48), we adopt a rare-gas potential analogous to Eq. (36) of the form

V(r ') =Tp„,g„(r ') —Xp,'„g„(r ') —6 (50)
2@i

2&fi . 1 1

i ())rr)' —ri; )F—r') )r —r') )
can be evaluated at ~=0 as

(52)
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4.15
3.75
3.50
2.85

4.15
3.75
3.54
3.21

1.90
2.22
2.51
2.37

2.17
2.13
2.08
2.13

3.18
2.90
2.69
2.14

3.17
2.87
2.72
2.27

iF r'i ' " ' )r —r'/

2
i II JI T,

1 —r
(53)

The trace of the dielectric tensor e (ro, r r ' issol' Epp co,r, r ) Is tilen glvell approxlmateiy

1 Ae
—, ~ e„„(0,r, r ')=5(r —r ')+ —7, V-, ,IE2 (4Ir)

e
—A~ r —r'|

ir —r' (54)

Rnd ma bcy e averaged over a unit cell to obtain the

USUR1 expI'css1on

e(0)=1+
ANp

E

is the lasmp asma frequency. The inability of the elec-
trons to respond to low-frequency perturbat1ons
over distances shorter tha 1/A,

'
n ls potcnt1811y 1ID-

%88 s
portant in reducing screenin t rfg 8 su aces. Van dcr

O C 8 1tlVC, RSaa s potentials are known' not to be du' '

a result of higher-order diagrams (n-bod forces
in 'q. ( ). When the probe is far fro

h. ..-'"UH'ace, these g1ve rise to a van der &Rais at-
tlactlon of thc fo~

&(2') =—CI/(~ —~O)'

a

w1th z —zo the distance to the surface and C
given by35

n

c(ia)) 1—
2m —~ e(iru)+1

1r Eco dco .
FIG. 14. Comomparison of approximate van der %aals

kernel~'r(x~ ~ith 6r~'. Note t t h f
at x=0.

o e a t e ormer is finite
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Screening, which is accomplished by the denomi-
nator in Eq. (58), is due physically to the ability of
the dielectric to expel low-frequency electric fields.
The unscreened version of Eq. (58), obtained by re-
placing the denominator with 2, gives a value for
Cs for GaAs of -400 meV A, as opposed to the
value calculated by Vidali and Cole using Eq.
(58) of -160 meVA . However, Eq. (58) is valid
only to the extent that the vacuum-solid interface
is infinitely sharp. In practice because of momen-
tum dependence of e (Ref. 34) this interface has a
width 1/A, at low frequencies, and thus the fields
felt by the surface atoms have values between those
immediately inside and outside the surface. Tak-
ing as a guess the average, we find that

EEN EoUt
x, atom ~ + & 1+& Ein ~IInscrccncdE 4

GaAs ())0)

,.As As

Valence Charge Density

(59)

Thus, when the probe is very near the surface, the
unscreened van der %aals potential, as manifested
in Eq. (54), may be more correct that Eq. (59).
The success of Tsuchida' in predicting the He-Lip
potential from a pairwise sum suggests strongly
that this is the case.

In principle, the formalism outlined in the
preceding section, particularly Eq. (50) and the
simpler Eq. (36), should enable one to generate a
scattering potential given a charge density for the
surface. However, charge densities accurate to
10 A are rarely calculated and do not present-
ly exist for the relaxed GaAs(110) surface. The
best available charge density for this surface, that
of Chehkowsky and Cohen is reproduced in Fig.
15. The outermost charge contour, which may be
seen to lie roughly 2 A above the surface As atom,
corresponds to a density ' of 7X10 A. . By ex-
ponential extrapolation of this, we conclude that
the charge contours most relevant to a 21-meV
helium atom lie at the edge of the figure. Since
the calculation of charge densities accurate in this
region is difficult, we shall concentrate at this
stage on determining whether the formalism is ap-
proximately correct, and whether the experiment is
sufficiently sensitive to nuances in the potential
that a simple extrapolation of the pseudopotential
results will not do.

We note firstly that Fig. 15 is reminiscent of a

FIG. 15. Total valence pseudo-charge-density for the
relaxed GaAs(110) surface as calculated by Chelikowsky
and Cohen (Ref. 38). These are cuts through (110)
planes other than the (110) plane of the surface. The
charge contours are on a linear scale.

superposition of atomic-As charge densities in that
(1) most of the charge resides in spherical domains
centered on the As nuclei, and (2) the outermost
charge contour corresponds to a density roughly
twice that of atomic As, as can be seen from Fig.
13. The factor of 2 reAects the double occupancy
of the As dangling bond. Secondly, we note that
the dangling-bond band lies at the valence-band
edge, and thus tails out into the vacuum more
slowly than do any other occupied wave functions
in the solid. Since the energy of the dangling bond
(5.7 eV, the work function of p-type GaAs) is by
accident nearly identical to the 4p eigenvalue (5.4
eV) of atomic As, the two tail similarly into the
vacuum. Therefore a superposition of atomic-As
charge densities should be a good approximation to
the charge density of the surface in the region of
interest. It should be emphasized that this substi-
tution will not work for the Ga atoms, because the
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FIG. 16. Potential contours of the model potential constructed from atomic As charge densities. Right-hand side: a
plane normal to the surface passing through two As nuclei in adjacent chains. Left-hand side: same as right except
w1th thc plane dlsplaccd Rlong thc cha1ns so as to pass through two GR nuclc1. The un1ts of potcntlal RIc meV.

0
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FIG. 17. Potential contours of the model potential constructed from atomic As charge densities. Right-hand side: a
plane normal to the surface and passing through two As atoms in the same chain. Left-hand side: Same as right, ex-

cept with the plane displaced across the troughs so as to lie midway between As atoms on adjacent chains. The units
of potential are meV.
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GR4p energy is not representative of any energy of
the solid. In particular, one can see from Fig. 13
that the GR4p wave function tails into the vacuum
so slowly that atomic Ga actually appears larger
than atomic As to a 21-meV helium atom, even
though As has the same covalent radius and more
electrons. An attempt to superimpose atomic Ga
and As charge densities to simulate that of the
solid would therefore produce the incorrect result
that the He atoms were being repelled entirely by
the Ga atoms. The case of Ga is a useful coun-
terexample to the notion that the van der %aals
potentials of surfaces should be determined simply
from properties of the atoms comprising them.

In accordance with these arguments, we take as
an approximate GRAs(110) charge density a super-
position of atomic As charge densities, multiplied
by 2.4 to account for the double occupancy of the
dangling bond. Since Eq. (50) is equivalent to the
simpler Eq. (36) for atoms, we evaluate the poten-
tial using the latter, with C6 taken to be that cal-
culated from Eq. (40) with E=5.2 eV taken to be
the GaAs Penn gap. 9 For convenience, we place
all eight electrons on the As atom to obtain values
of C6 ——3.5 X 10 meV A (Nl —8) for He-As and
C6 ——0 for He-Ga. The principle effect of associat-
ing all the oscillator strength with the As atom is
to reduce by —10% the depth of the attractive
well above the trough.

In Fig. 16 we show contours of this potential in
planes normal to the surface and perpendicular to
the troughs. As in Fig. 15, the plane passes
through two Ga atoms (left) and two As atoms
(right) on adjacent chains. The origin of the hor-
izontal coordinate is the surface plane of the As
nuclei after reconstruction (the As atom rotates up-
ward by 0.4 A. upon reconstruction. ) One can see
that the classically forbidden region is very nearly
a superposition of spheres of radius 3.5 A. about
the As centers, a result consistent with observa-
tions made in Sec. IV about additivity of poten-
tials, as well as the 3.5 k-turning-point radius list-
ed in Table II. The large magnitude of this radius
causes the potential to have three qualitative attri-
butes consistent with the data analysis of Sec. III:
(1) The peak-to-trough distance of the classical
turning-point surface is approximately 1 A, as op-
posed to the 2.4 A. one would guess from the verti-
cal scpR1'Rtioll of tllc flllst Rild sccolld layer As Ilu-
clei. (2) The maximum attractive-well depth lies
between —5.0 eV and —9.0 eV, values bounding
the 7 meV guessed from the calculation of Fig. 9.
(3) The corrugation along the trough is roughly 0.3

k This latter effect can be seen more clearly in
Fig. 17, in which the observation plane has been
lotatcd 90 111 tllc slllfacc so as to bisect R trollgll
(left) or a ridge (right). The corrugation of the
trough is slightly larger than 0.3 A. due to the
failure of the As core to effectively flB in the bot-
tom. The ridge corrugation is the 0.2 A. indicated
by the experiment.

With the qualitative aspects of the potential ac-
counted for, we turn to the question of how well
these crude approximations can account for the
scattering signal. In the left column of Fig. 18 we
show 21-meV across-trough diffraction patterns for
the potential of Figs. 16 and 17. The agreement
with experiment is clearly not good. However, we
note that the rainbow is properly collapsed at
8; =61', in agreement with Fig. 6, and that at
0;=45', a very small rainbow can be seen four
beams to the left of specular, at ex ——-O'. This is
consistent in location with that of Fig. 3 (five
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FIG. 18. Across-trough diffraction patterns calculat-
ed for the model potential discussed in the text without
Oeft-hand column) and with (right-hand column) a Ga
core. The incident energy is 21 meV. Intensity is plot-
ted vs 0~, the polar angle of exit of the probe, for vari-
ous values of 0;, the polar angle of incidence. The mid-
dle and right columns correspond to particles being in-
cident on thc side of the ridge with and without the Ga
atom, respectively. Note that the presence of the Ga
core restores power to the primary rainbow.
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beams away, rather thall four) bu't obviously not ln

magnitude. At 8;=32, th1s small rainbow has
moved to og =—20, Rnd a ncw fallow appears
to be emerging from the specular beam. There is
no cv1dcncc of th1s ncw I'Rlnbow Rt 8) =21 ~ howev-

er. We interpret these results as implying that the
rainbow pattern characteristic Qf the corrugation
is, in factr, eproduced by this potential, but that
the scattering power into the rainbows is insuffi-
clcnt.

In light of the semiclassical interpretation of
beams powers as manifestions of the radius of cur-
vature of the surface at the classical impact point,
lack of intensity can easily be attributed to the
presence of cusps in the sides of the ridges where

the As cores come together. These may bc seen in
tile left llalf of Flg. 19, II1 wlllcll poteIltlal coIltoul"s

in a plan parallel to the surface and 3.5 A above
thc As nUclc1 RIc plotted. Thc 1cpU181vc CQIcs, lo-
cated at the corners may be seen to form wasp-
waistcd ridges which have no chafactcflst1c slope
across the trough except at symmetry points. This
potential therefore scatters extensively out of plane
at the expense of rainbow intensity. The inadequa-

cy of this potential is most likely due to an unfore-

seen tendency of the real charge density to smooth
and mend itself at these distances. One mechan-
ism by which might be accomplished is the forced
orthogonolization of the As dangling-bond states
to the Ga states involved in bonding. This would
tend to make the charge avoid the Ga atoms and
bulge QUt slightly above thc GR s1tcs, thus tcnd1ng
to smooth the cusp on one side of the ridge.

To investigate this possibility, we have per-
formed scattering calculations on the potential of
F1gs. I6 Rnd 12 Modlf1cd to 1nclUdc a Ga cofc.
Since use of the atomic Ga charge density would

not be physically sensiMe, we have taken the GR
charge density to be that of As, multiplied by a
factor y=0.68, picked to give optimal agreement
with experiment. The results of the scattering cal-
culations performed on this potential are shown in
the right two columns of Fig. 18. As in Fig. 6 the
two columns corrcspond to pMt1clcs 1mplng1ng on
the shallow (middle) and steep (right) sides of the
fldgc. Both s1dcs shown fcsufIcctcd IRInbow
power and a slightly reduced (three beams from
specular, as opposed to four) rainbow angle. The
shallow side, which is made so by ihe presence of
the Oa core's puffing out the side of the trough,

As CORE ONLY 9I'(TH Ga CORE

0— I

0 3 P 5 4 0 1 2 5 4

x(A) x(A3

FIG. 19. Potential contours of t4e model potential constructed from atomic As charge densities without (left) and wit4
(right) a Ga core. This is a plane parallel to the surface 3.5 A above the As nuclei. The As repulsive core can be seen

encroaching at the corner- Note the cusp in the side of the ridge where the As cores come together. The units of poten-
tial are meV.
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(G~ V(z) ~G')= —I V(r,z)e ' '"dr
0

are matrices and E is the energy. 0 is the area of
the surface unit cell. This is then converted to a
difference equation in z in the manner

~A„+i)+ ~A„ i) —2~2„)
2m (~)2

=(z T v—„)~—~„), (A6)

APPENDIX: COMPUTATIONAL TECHNIQUE

(A 1)

where k is the crptal momentum in the plane of
the surface and G is a surface reciprocal-lattice
vector. We collect the coefficients A o into a vec-

tor iA (z) ), the components of which are given by

(G ~a(z)) =~ -, (z), (A2)

and write the wave equation in the form

8
~A(z)) =[Z T V(z)] ~A(z))—, —2'

The method outlined below for solving the
single-particle Schrodinger equation in the presence
of a potential V(x,y,z) periodic in x and y and in-

finitely repulsive as z~ —ao is a Green's-function
technique similar to that used by Mele and Joanno-
poulos for calculating surface electronic struc-
tures in a tight-binding basis. The primary advan-

tage over shooting" ' methods is that the system
satisfied Dirichlet boundary conditions at every

stage of the integration so that inaccuracies result-

ing from exponential divergences do not occur.
Another advantage is that a simple sum rule forces
the scattering to be unitary so long as the potential
is real.

Following Wolken, we first exploit surface

periodicity by transforming to the Laue representa-

tion. ' Letting r denote the position coordinate in

the plane of the surface and z the normal coordi-
nate, we write the wave function in the form

P(x,y,z)= JAG(z)e" "+

where z=nM, and rewritten in the form

(z —z„)~~„)=D( ~~„,)+ ~~„„)), (A7)

(Gia iG )=-
2m (M)2

E„=T+V„—2B .

The matrices D and E„are then truncated to a
large but finite number of reciprocal-lattice vec-
tors. In the case of the two-dimensional calcula-
tions of Figs. 9 and 10, convergence was obtained
with an 11X19 rectangular grid of G', or 209 de-

grees of freedom, when k does not lie along a sym-

metry direction. The step size was typically M
=0.1 A for the 21-meV calculations. In no case
was a size &=0.05 A a significant improvement.

Our method of solving Eq. (A7) is the Koster-
Slater technique applied to a one-dimensional chain
with nearest-neighbor interactions. This technique
is based on the observation that if a perturbation V
commutes with a projection operator H =II in the
manner

(A10)

then the Green's function G of the system in the
presence of V, written in terms of Go, the Green's
function in the absence of V, in the manner

G =Gp g ( VGp)

satisfies the equation

where

(A3)
IIGII=(IIGpli) g (VIIGpII) (A12)

(G/ T /G')=
/

k+G/ 5o o, (A4)
In the present case, the perturbation V is the hop-

ping interaction D between the nth and (n + 1)st
links and II is the projector of these two links.

%e consider firstly the situation in which all
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hopping interactions for links m & n are turned on
while all those for m ~ n + 1 Rre turned off. We
have a chain of length 8 wh1ch wc wiB make 1nto
a chain of length n + 1 by turning on D. Letting
F„denote the Green's function of the chain of
length n confined to the nth link, we have by Eq.
(A12)

E„' D
IIGII D E En+1

This can be evaluated in closed form in terms of
F, as

X=(E E„+I
—DF„D)—

Since this process simply lengthens the chain, we
have

F„+I (E E„+——I D—F„D)—
Eqllatloll (A16) cllablcs ollc to CRlculatc Fa fof

some n outside the surface, where the potential V„
has gone to zero, by a sequence of matrix inver-
sions, starting from a known value of Fo deep in-
side the classical turning-point surface. This value
is essentially zero, since Eo in this region is dom-
inated by the large positive diagonal-matrix ele-
ments of Vo. The assumption of Fo —0 is physi-—
cally equivalent to the assumption that probe parti-
cles do not penetrate to z=O. The iterative pro-
cedure can also be performed for the vacuum, the
case in which V„=O for all n, provided the vacu-
um self-energy E„„,given by

(A17)

is given a small absorptive component in the
manner

Evac ~Evac

The iterative equations, given by

F„„=(E E„„DF„„D)——

D Rfc dlagollal) fhc boundary colldltloll cquatlon
(Alg) is met by selecting the sign of the square
root fo1 each term wh1ch minimizes thc magnitude
of the term when real and which makes it absorp
tlvc (Ilcgatlvc lmag1nafy paft) wllcll coIIlplcx.

%c consider secondly the situation in which all
tllc llopplllg llltcfRctlolls cxccpt that bc'twccll t11c

nth and (n + 1)st link are turned on. The chain of
length n is now converted to the complete-scatter-
ing problem by tuning on D. Letting 6 denote
the Green's function of the complete system con-
fined to the (n + 1)st link, we have from Eqs.
(A12) and (A19)

6 =(E E„+I ——DF„D DF„„D—) ' . (A21)

Similarly, for the vacuum we have

6yac (E Eyac 2DFyacD )

= le[(E —E„.,P-4D]I" .

6 carries information both about the scattering
and about the reactive response of the medium in
the absence of the surface. As the latter is also
earned by 6„„wehave that (6 —6„„)iG}de-
scribes the reflected wave at n + 1 resulting from
the application at n + 1 of a point source having
periodicity k + G in the plane of the surface. The
current carried outward by this wave must be cal-
culated using the discreet momentum operator,
which in one dimension takes the form

p jn&= . (in +1 &
—in)).

Since the analog of Eq. (A14) in this case is

6 GBI'„„
F„„DG F„„+I'„„DGDI'„„

thc current density 1n th.c Gth channel 18 given by

z-. = "
1 (G iaF„, iG &

(G'
i 6 —6y,c i G} i . (A25)

The total current density absorbed by the system is
given by

may also be solved analytically in the manner lm(Gi 6„., i G& .
fi

(A26)

(E E„„)+[(E—E—„„)—4DI]'i
VRC

2D

(A20)

Since 6„, is rdatcd to E„„by
—2Z (GiaF„.,D iG}=lcm(Gi6„„iG&,

wllcl'c, lll tllc G fcpl'cscIltatloI1 (ill wlllch E„ac RIld the scattering probabilities I6 ~, are given by
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Im(G'
i 6„„

i

G')Im(G
i 6„„i

G)

Unitary of Eq. «28) may be verified by noting that

(Gi 6„,G)= —(Gio„, iG),
so the, t

OIlC ha, S—g im(G im„., [G')
i (G'i 6 —G„„i

G) i'

mM
Im&G ID~-. I

G& i &G
I 6-

I
G& I'= Im&G

I G-. I
G& «3»VSC VIC
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