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We calculate the corrections to the resistance R and Hall resistance Ry of a two-
dimensional disordered electronic system due to interactions in the strong-field limit
w. < €F, €p7> 1 where localization effects are suppressed. We find that Ao, =0 for both
w.72 1. With the result that (8Ry/Rp)/(8g/R)=2 /[1—(w,7)?] oscillating with field be-
cause of the field dependence of 7 and eventually diverging when (w.7) = 1. 8R /R de-
creases with increasing field going through zero when w7 =1.

I. INTRODUCTION

Two aspects of electronic transport in disordered
systems have been the subject of much discussion
recently. First, the effect of localization"2; we use
the term to describe the properties of a single elec-
tron in a random potential. Second, the effect of
electron-electron interaction,>~® which has only
been worked out in the limit of weak disorder.

The theories based on localization or interaction
predict similar behavior for the conductivity.

In the localization theory, perturbation theory
based on the summation of maximally crossed di-
agrams®’~° and field-theoretic methods®'°~!°
predict a logarithmic correction to the conductivity
in two dimensions

s0p = L otn(r/r,) M
o= 53 n(7/7n)
Tin is the inelastic scattering time and 7 is the elas-
tic scattering time.

In the interaction theory, the dynamically
screened Coulomb interaction was treated to first
order, and the correction to the conductivity do(w),
where o is the frequency or temperature, is given
by4,5

lileg 1
— =(2—-2F)———Ihor, (2)
o 27smD
where F is the angular average of the statically
screened Coulomb interaction V;(q) and D is the
diffusion constant.

A systematic calculation, however, should inves-
tigate the effect of localization on the interaction
theory. It can, in fact, be shown that the two ef-
fects are additive (see Appendix A for details).

The effect of localization on electronic screening is
25

simply to renormalize the diffusion constant

D=D

1+ Inor |, (3)

2mmD

where o= max(w,kT, 7;;)) which with Eq. (2)
clearly shows that the effects of localization on the:
interaction theory are higher order in 1/ep7. €f is
the Fermi energy.

In view of the similarity of the corrections to the
conductivity from each source it is important to
develop techniques which distinguish between the
two phenomena. It has been suggested” that this
could be accomplished by carrying out experiments
in weak magnetic fields. First, as the maximally
crossed diagrams responsible for Eq. (1) are sensi-
tive to the time-reversal symmetry breaking due to
the magnetic field,’ localization phenomena are
suppressed by very weak magnetic fields, w,7
> (1/ep7)(1/73y), and a negative magnetoresistance
should be observed. Further,’ the change in the
Hall constant 8Ry /Ry, predicted by the interac-
tion theory in extremely weak fields when the mag-
netic field may be considered a perturbation,
should be SRy /Ry =2, whereas the localization
theory would predict no change. Measurement of
this effect should provide a direct check of the
theory. However, as noted, in extremely weak
magnetic fields both effects contribute to the elec-
tronic conductivity of the two-dimensional disor-
dered system. It is also known that in the weak-
field limit the predictions of the interaction theory
are complicated by spin splitting'® and Hartree>'®
contributions to the conductivity. Because of these
difficulties we focus in this work on the effects of

strong magnetic fields (w721 but w./ep <1) on
the conductivity and Hall conductivity of a disor-
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dered two-dimensional electronic system. We may
therefore concentrate on interaction effects only, as
localization is suppressed under these conditions.

Following Ref. S the interaction is taken to be
the dynamically screened Coulomb interaction

(@)/[1+Vp(@I(q,0)], 4)

where Vy(q)=2me?/q is the bare interaction in
two dimensions. As we show in Appendix A the
polarization in the zero magnetic field limit re-
duces to

1(q,0)=sN,Dg*/(—io+Dqg?) , (5)
and hence in the small g, limit and subject to the
condition Dkg >> || where k=esN is the
screening constant,

Vs(a,CU):VB

1 —iw+5q2 6)

VI=%4q,0)= =
s (q,0) N, e’

where s is the spin degeneracy, N{=m /2 is the
single-particle density of states for a single spin,
and D is the renormalized diffusion constant [Eq.
(3)]. The form of the screened interaction given in
Eq. (6), which is important in subsequent discus-
sion, arises because electron-electron scattering in
the small ¢, limit is dominated by the diffusion
pole in the particle-hole propagator. Thus our first
task is to find the residue of this pole in the
strong-field limit. The diffusion propagator will be
derived in Sec. II, the magnetoconductivity tensor
is given in Sec. III, and a summary of this work
and its bearing on experiment is given in Sec. IV.

II. THE POLARIZABILITY AND PARTICLE-HOLE DIFFUSION PROPAGATOR

The polarizability of the noninteracting electronic system in the presence of disorder is given by

|

(%
%, 21ri

- =

where II(X,X
presence of disorder:

II(X,X e+ w,6)=(GH(X,X ;e+0)G(X",X;€)) .

)= f delf(e+w)—f(]INZ,X’

;€+w,€)+N (), (7

; €+0,€) is the propagator of a particle with energy €+w and a hole with energy € in the

(8)

Here, Gt and G~ are the advanced and retarded single-particle Green’s functions, respectively, and ( ) im-
plies impurity averaging. In the weak-scattering limit the particle-hole propagator II satisfies the Dyson

equation

(X,%0)=1%%,% ;0) +u22n° X)X, 0) . )

kS

Here, u? is the mean-square impurity potential.

The Feynman diagrams corresponding to this
equation are shown in Fig. 1. The particle-hole
diffusion propagator, on the other hand, is defined
by the Dyson equation

D(i’,i”;w):uZS—» 3

+u’STX, ¥ ;0)D(X X 0),  (10)

x1

which is illustrated by the Feynaman diagrams

L@!‘ ) E.OE‘ ¥ 5%5
b

FIG. 1. Diagrams corresponding to the Dyson equa-
tion for the polarizability. The star represents impurity
scattering.

shown in Fig. 2. The basic building block of both
quantities is the “bare bubble,” I1%(X,X";0), the la-
beling of which is shown in Fig. 3.

To evaluate I1° we work in the Landau gauge
choosing a vector potential 4 (x) such that

A(x)=(0,Hx,0) , (11

where H is a uniform magnetic field in the z direc-
tion, chosen to be perpendicular to the two-di-
mensional electronic system; the states are labeled
by Landau level index n and a wave vector k in the

FIG. 2. Diagrams corresponding to the Dyson equa-
tion for the particle-hole diffusion propagator.
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FIG. 3. Diagram for the bare polarizability. » and &k
are the Landau level labels.

y direction:

I%X,X 50)=3G X ,(x,x;k"VG 7 (x",x;k)
kk’

ek =Ky =y (12)
The Green’s function G X(x,x,;k) is given by
n(x1+ka)dy(x,+ka)
+ ) —
Ge (xl,xz,k)——z €—e,+i/27 - (13)

n

Here, the ¢,, are harmonic oscillator functions,
€,=(n+ —;—)ﬁmc, the cyclotron frequency o,

= eH /mc, a=1/maw,, and for simplicity the area
of the sample has been set equal to 1. The effect
of impurity scattering is included via a relaxation
time which is energy dependent,

1/7(e)=2mwN (e)u?, (14)

and inversely proportional to the density of states
which oscillates as a function of magnetic field.

As all quantities are evaluated at the Fermi energy
the field dependence of the theory is retained if
this relationship is kept in mind; for example,
Ando’s!7 self-consistent calculation of the conduc-
tivity is reproduced. Accordingly, from now on we
set 7=7(€p). The detailed field dependence of
may be obtained from Ando’s work'’; for example,
when the magnetic field is rather weak, o7, <1, 7¢
is the relaxation time obtained assuming the same
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scatterers but no magnetic field,

1t 142cos exp | — +]

T Tf c DTy
(15)

On the other hand, for strong magnetic fields,

@ Tp>> 1,

172

RIS U 750 R PO 3 S U

T T T 12 | w.7r ’
(16)

As TT%x,x";0) is translationally invariant it is con-
venient to work with its Fourier transform. After
a lengthy calculation, the details of which are
given in Appendix B, we find

no(a’w):pz ’ an’(q) I 2Dnn’ ’ .(17)
where
Fu( @)= [ dxgr(x)e®,(x), (18)
Do 1

" (et w—€y +i /2T W —€g—i/27) (19)
and
1 1 |eH
P= e " 2 | e 20

is the degeneracy or the number of states per Lan-
dau level and q'—*(q,f-%-qyz)l/z.

It is sufficient to evaluate the matrix elements
F,,(q) at small momentum transfer

2

Fo(@)= [ dxgtx) 14ige— =4 - 16,(x). 1)
Representing x in terms of harmonic-oscillator annihilation and creation operators

172

X = 5' (a +aT) s (22)

the matrix elements between harmonic oscillator functions are
L 12 . 172
(n|x'|ny=vVa| || Spw_i+ "; Sunr it | (23)
(n|x*|n)=aln+7), (24)
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and we quote for future reference

: 172 1 172
' n n
<n ax n >=“\7—; “2~ Sn,n'—l_ 2 l 8,,,,,'“ (25)
Given this information we find
n+1 n
Ho(q w)—pEDnn l‘q a(n + )ann +q2 2 D) 8n',n-}-l+'i'sn’,n—l J ]
nn’
=p[Y,—2¢’aYs+q’a(Yc+Yp)], (26)
where
Y, =2Dnn » 27)
YB—'Z ”+ Dnn/2 (28)
1
YC=E & —2+_ Dn,n+l ’ (29)
n
YD=2 n—1 Dn,n-l ’ (30)
n
and the D, ,, are defined by Eq. (17).
Each of the sums over the Landau levels [Egs. (27)—(30)] has the form
- f(n)
. 3D
z o (€n—€1+i/27 €, —€y—i/27) (
To evaluate the sum consider the contour integral
1
——1 , 32
I= ZmEI (z—e+i/21N(z—€y—i /27) 32
where
N@=—1 (33)

zZ—€,—ib

8 is an infinitesimal. The contour integral may be evaluated by closing the contour in either the upper or
the lower half-plane. If we close in the lower half-plane we find
® (€,—i/27)
I=- A —. (34)
nooler—e—i/T) e —€, —i/2T)

On the other hand, closing the contour in the upper half-plane
fley+i/27)

I=— S +Y. 35
§ (62—61+1/T)(62—€n+l/27) (35)
Equating the two expressions we find
1 1
U SE— 2 -_ ) S S
Y €1—€— f(EZ_H/ 7)2_:0 €—€,+1/27 —i/ T)nzo €— e,,—t/2r 36)

As an example we examine the term Y,. In this case €;=¢r, =€+ 0, f=1:
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I - 1

Y, =
4 o+i/T /2

€n—(€p+w)—i /21  €,—€p+i/2T

(37)

Breaking the sum into real and imaginary parts, we recognize that the imaginary part is proportional to the

density of states at the Fermi surface. In fact,

1 i - €, —(ep+w) €, —€F
Y = - —2N(ep)+ -~ (38)
AT o+i/r | p F ,ZO €, —(er+0)?+(1/27) (€, —€p)?+(1/27)?
[
The second term is identically zero when w—0, . -1
and hence ’ (—io+Dug")™'r"!
) 2miN(ep) I'(q,w,€e)= if -e(e—co)<0 @7
Y= - Ow) . (39) 1 otherwise .
o+i/T )4
Similarly, With these functions we proceed to the calculation
2miN(er) of the dynamical conductivity tensor in the next
€r 2miN(e .
Yp= 1. F F +0(0), (40) section.
o+i/7 20,
Yoot 6r 2mNER) | 1o ) IIl. THE MAGNETOCONDUCTIVITY TENSOR
W, +i/7 20, p €r
41) In this section we will determine the contribu-
tions to the magnetoconductivity tensor from
- €p 2miN(ep) 1)
Yp= L cr Fio|=
w0, —Ii/T 20, )4 €r
(42)

In summary, from Eqgs. (26) and (39)—(42) we
find that

%4, w)~27N(ep)r{ (1 +iwT)—q*Dyr]  (43)
in the small g, limit. The diffusion constant

EpT/m

= 44
1+(w, 1) 4

H
equal to vAr/2 when H=0, is in general an oscilla-
tory function of the magnetic field H via 7 [Egs.
(14)—(16)] and e€x. Knowing I1°(g,0) we may
now construct the particle-hole diffusion propaga-
tor D(q) [Eq. (10)]:

u2,7_—l

D(G,0)= (45)

Dyq*—iw '

The screened interaction in the small-g limit [Eq.
(6)] is

1 —io+Dgq?
o 2N, DHq2

Vi(q,w) ) (46)

and the impurity renormalization of the screened
interaction vertices,

(a) (b)

(c)

(d) (e)

(f) (g)

FIG. 4. Diagrams contributing to the conductivity
tensor to first order in the Coulomb interaction (wavy
line). The double wavy line represents the particle-hole
diffusion propagator of Fig. 2.
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FIG. 5. Conductivity diagram generated from Har-
tree correction to self-energy.

electron-electron interaction. With the present
technique, in addition to extending previous calcu-
lations® to higher magnetic fields, the longitudinal
0 and transverse oy, conductivities may be ob-
tained in parallel. The effect of electron-electron
interaction is considered at lowest order, and im-
purity scattering is treated by the conventional di-
agrammatic technique in the kp/ >> 1 limit.

The diagrams that contribute to the magneto-
conductivity tensor are shown in Fig. 4. These di-
agrams are generated in a conserving approxima-
tion from the exchange contribution to the electron
self-energy. There are also contributions to the
conductivity from diagrams generated from the
Hartree contribution to the electronic self-
energy.>® A typical diagram is shown in Fig. 5.
However, as these terms play a role in our calcula-
tion complementray to the weak-field case® we will
not discuss them further. We will show in detail
in Appendix C that just as in the weak-field limit
the contributions to the conductivity of diagrams
4(a)—4(c) to both o,, and oy, exactly cancel to

dt* =MNe,Q,0;9)To( GV o(G)To(G)D 1 0@ MR (e, Q059)

where
e

m
nn',n"

M, Qw;d)=—— 3 G(n,n’,n")fdx,d):'(x]+ka2)
k

Xa w Xa
e+ .k €+ ,k
%) i (X)
€,k €,k
AAAVAAVAVAVAY
X3 L+ X3

FIG. 6. Labeling of the diagram of Fig. 4(d).

O(w,/€r). Further, the “Azlamazov-Larkin” di-
agrams 4(f) and 4(g) exactly cancel. It remains to
determine the contributions from diagrams 4(d)
and 4(e).

The components of the conductivity tensor are
given in terms of the current-current correlation
function. For example,

1 oy i :
Op=lim — [ (LX), (X)) d%’ , @8)
where the current operators

(R (L0 ex

Jy(X)= m |7 T |’ (49)

. el d

Jx) == (50

and  is the external frequency.

We will now evaluate the contribution of the di-
agram in Fig. 4(d) to the current-current correla-
tion function. The detailed labeling of this di-
agram is given in Fig. 6. We note that in order to
obtain a divergence in the vertex corrections I" we
must have €,e+ () postitive and €+ Q +w negative,
or vice versa. We consider in detail the first possi-
bility. We have

(51)

X1 2
k+; n(x,+ka?)

X fdx2¢:~(x2 +(k +g, )a)eiqxx2¢n'(x2 +ka)

X [ dxsdnixs+kale " p,lxs +(k +g,)a) , (52)

ie ' )
Mf(e,ﬂ,m;q):; % G(n,n',n )fdx,qS:(x,+ka)—a;¢,,:(x1+ka)

n’"v7n::

X [ dxahixs +kae ™ 2,x, + (k +gy)ar)
X [ dxsdhlxs+(k +g,)a)e ™78, (x; +ka) , (53)
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and
1
G( , r, u)= .
o e ey +i/21) e+ Q—ey+i /27) e+ QO+ —€yn—i /27) (54
Expanding the current vertices M for small ¢ we find
Mf(?]’):;%pzf—;—-—l-{ (gy—ig)[G(n,n+1,n)—G(n,n +1,n +1)]
n
+(qy +ig)[G(n+1,n,n)—G (n +1,n,n +1)]} (55
and v
MA@ =p3 L (g, ~ i [Gn +Lnm) G+ 1myn -+ 1]
+(gy +ig ) [G(n,n +1,n +1)—G (n,n +1,n)]} . (56)
The sum over Landau levels may be evaluated by contour integral as before. The results in the low-
frequency limit are
n+1 oh+l _ —¢€p 2miN(ef) |, 1 -
§ 5 G(n+1,n,n +1)_§ 5 (nn+1,n+1)= 20 " iT+ e (57)
and
n+1 n—+1 €r 2miN(ep) . 1
—_— Ln,n)= G(nn+1,n)= - .
; 5 G(n+1,n,n) § 5 (n,n +1,n) 207 p ir Py (58)
Hence,
MAG)=—2g, i—epq—*zﬂmp)/[ 1+ (7)) (59)
and
.Mx(q)——:——2qx—n76FT32TrN(€F)/[1+(wCT) 1. (60)

The first thing to note is that these expressions reduce to the correct zero-field limit [27N(ep)](H =0)
=m, in the strong-field case, in addition to the factor 1/[1+(w.7)*], the density of states, 1/7 and the Fer-
mi energy oscillate as a function of H. Perhaps the most significant result is that because of the g depen-
dence of the M’s the contribution of these diagrams, and hence of interactions, to the transverse conductivity
is identically zero.

The calculation of the contribution to the longitudinal current now proceeds as in Ref. 5. We find

(61)

2i(2e?) pede ¢ do M M, u’ iVy(g,0)
80, = 2L fe

iQ Yo 2rYe-02r _i(04 Q)1 Dyq? (—iw+DygT

where the first diffusion pole is due to the impurity ladder and the (—ie +Dyg?)~? comes from the vertex
correction V. Since the integrand is independent of € it can be arranged as follows:

i ,Qepm)? [27N(ep)]?
2e

00, =—
o m o [+
Urdo ¢ d’q 4 1
2 q Ax
Xu fg D) f 2 271 2 : 2 2.3 " (62)
T Y 2w) q° [—ilwo+Q)+Dyq°(—iw+Dyq 2N Dyq*r

Changing variables Dyq*r—>q?, oT—w, & =Qr and evaluating the angular integral, we have
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(2ep7*V[2mN (ep)Pu? ldo 1
80 = 72 2 3 f f 2 29 _; 2) (63)
277' [1+(w.7)] 2N, D T [—il0+Q)+¢*(—io+g?)

Recalling that Dy = (epr/m)/ [1+(w,7)?] and
1/7=27Nu?, 80, is found to have the same
structure as the weak-field result:

2

i

When Hartree® effects are included,

o, = i
xx
21T2

In(Q7) . (64)

S0, =

(1—-F)In(Q7) (65)

with spin splitting F becomes a function of mag-
netic field.

IV. MAGNETORESISTANCE
AND HALL CONSTANT

In this section we explore what bearing the re-
sults derived in the previous sections might have
for experimental measurements. The central quan-
tity is the resistivity tensor

- Pxx Pxy

(66)
Pyx  Pyy

The components of p ate related to the components
of the conductivity tensor by

Oxx
=—, (67
Pex a'yzcx +0£y
ny
=_p, =T, (68)
Pxy Pyx 0_’2“ +U§y

The quantities directly measured by experiment are
the magnetoresistance R =p,, and the Hall con-
stant Ry =p,,/H. In zeroth order, when only the
simple bubble diagram with impurity-renormalized
single-particle Green’s function is used to calculate
0xx and o,,, they have the following values:

RO=— (69)
ne-r
1
Ry=—, 70
H nec ( )

where the carrier density n =N (ep)ep. It is impor-
tant to note that at this level R is field indepen-
dent, whereas R oscillates inversely with the den-
sity of states. It should be pointed out that if the
field dependence of T and N (ef) are retained as we
have indicated, the self-consistent results for the

[

conductivity obtained by Ando'’ are reproduced.

Now we consider the additional contributions to
0x and oy, discussed in the previous sections. If
we define

Ay=804, /0%, (71)
and

By=80y, /0% » (72)
it follows from Egs. (67) —(72) that

SR Ail(@7)—1]—2Ay(w,7)? -
Ry 1+ (0, 7)?
and
8R 2014+ Ay[ (w72 —1
n_ 28+ A7) ~1] . —

R} 1+ (w,7)?

We note that even when 8o, and 8o, are not ex-
plicitly dependent on the magnetic field, in general
there is a field dependence of the quantities SR and
SRy via zeroth order quantities 0%, and agy.

In the strong-field limit, localization effects are
completely suppressed and we need only to keep
the leading logarithmic contributions to the con-
ductivity stemming from interaction, derived in
Sec. ITI. The most important point is to note that
Coulomb interaction effects alone lead to 8oy, =0
and as a result,

S8R —
= (1—F)[1—( 211 Q
Ro 21:2%’” N1 —(w,7)*]In (75)
3Ry —2m ~
= 1—-F)nQ .
Y 2172hn1'( )n (76)

The implications of Egs. (75) and (76) are quite
unambiguous. First, there is a logarithmic correc-
tion to the resistivity which decreases steadily as a
function of magnetic field through the factor
1—(w,7)% changing sign at w,7=1. Second, in
contrast to the localization effects, there is a finite
correction to the Hall constant 3Ry /RY. The ra-
tio of these two quantities

SRy /R D)
S8R/R°

which is close to 2 for w,7 << 1. However, it
diverges as w7 approaches 1 and then changes

’ 77
1—(w,7)? a7
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sign. It also oscillates as a function of field be-
cause of the intrinsic field dependence of 7. Al-
though present experimental data'®!® are still lim-
ited to the range w,7 << 1, these results demon-
strate that a detailed measurement of the magnetic
field dependence of 8R /R, and (8g,, /R 0/

(87 /R,) in the strong-field limit would be an im-
portant test of the Coulomb interaction plus weak
scattering theory.

At very weak magnetic fields where localization
effects are still present and both effects must be in-
cluded, the situation is considerably more compli-
cated. From Egs. (73) and (74) it can be seen that
the ratio

SRy /Ry 2—v+Yw.T)?

8R/R 14+Q2y— w7’ 78
where
y=20,/4. (79
The zero-field limit of this ratio is
2—y=(2-2F)/(2—F), (80)

which varies from the value 1 when F=0 (in the
limit kp/k— o0, K is the inverse Thomas-Fermi
screening length) to the value zero for F=1
(kp/k—0). For small but infinite fields, the local-
ization, and spin-splitting contribution to the Har-
tree term do not have a pure InQ or InT form. A
formula such as Eq. (80) is less useful in this case
than a direct fit of 8R or Ry with the known
dependence on both temperature and magnetic

field. We should note that recent experiments'®!’

appear to give (8Ry /Ry)/(8R /R) close to 2 in the
weak-field limit. However, it would appear to us
that these experiments, given the disorder of the
samples, are in the region where both localization
and interaction contribute.

In summary, we have considered both localiza-
tion and Coulomb interaction effects on the mag-
netoresistance and Hall constant of a two-dimen-
sional electron gas. At weak magnetic fields both
effects are present and a complicated temperature
and magnetic field dependence results. However,
for strong fields, because of the result that there
are no logarithmic corrections to the Hall conduc-
tivity oy, the present theory provides strong pred-
ictions for both the magnetoresistance and Hall
constant. It also poses the intriguing question as
to how to construct a scaling theory of the resis-
tance and Hall resistance in view of the completely
different behavior of 8o, and 8o,.
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APPENDIX A: THE EFFECT OF DISORDER ON THE POLARIZABILITY
OF AN ELECTRON GAS IN ZERO FIELD

A basic component of the theortical work in this paper is the dynamically screened Coulomb interaction

in two dimensions, which may be written when H =0

2me?

Vi(q,0)=2me?/[q +11(q,w)2me?]=

qlelq,0)] ’

(A1)

where the dielectric function € is given in terms of the polarizability IT as

e(q,0)=[1—T1(4,0)2me*/q] .

(A2)

In the presence of impurities we must average over all possible distributions of the disorder, which if we
neglect impurity correlations between different polarization bubbles amounts to replacing I1(q, ) by its

impurity average

(N(G0)) ={ [ dxdre! TG (7,06(00))

(A3)



where (I1(q,w)) indicates the impurity average.
Our goal is to calculate the polarization bubble in
the presence of disorder.

The Dyson equation for the single-particle
Green’s function is written as

CGINBI=I6UIT 26 P) s (Ad)
where at lowest order in the impurity scattering
S{P)=— éf sgne (AS)
and
1/7=2nNu?. (A6)

The polarizability (I1(q,»)) can be written in
general

R .0 de ¢i(q,60)
(1(q,0)) =2i f_w;m’

0>0. (A7)

Here, ¢; is the irreducible part of the electron-hole
bubble, that is, that part of the particle-hole propo-
gator that cannot be broken into two by taking out
a single impurity line. At the level of approxima-
tion of Egs. (A5) and (A6), ¢; is simply the “bare
bubble”

- d’ o oo
$0G,e0)= [ “LGL, B+DCI(B),

(2m)?
(A8)
where
. —1
GeP)= |e=g— 27| (A9)-
E,=p*/2m—p . (A10)

This expression is easily computed in the small-¢
and -w limit,

Ad,6,0)=2aN7[1—(g)*/2+iwr], (Al1)
in agreement with Ref. 5. Thus

0 de 27N T

I(q,0)=—i ———————_IN, .
e -0 21 (ql)?/2—ioT e

(A12)
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D
e

(c)

@

ANNRNANN J(_ + % *+*|E* - ——-
i Ly J l_>_1_>.l

FIG. 7. Corrections to polarizability (above) arising
from the particle-particle diffusion propagator (below).
The first diagram has a subtraction to prevent over-
counting.

The constant N arises because the integral over §,
in the simple bubble ¢} is not convergent in the re-
gion assumed. This is corrected by doing the in-
tegral over € first for the simple bubble. All in-
tegrals involved in extensions of this approxima-
tion are convergent.

This simple approximation is easily generalized
to include localization effects. In a conserving ap-
proximation the corrections to the bare irreducible
polarizability in a consistent expansion is 1/kpl are
given by the three diagrams shown in Fig. 7. In
these diagrams the double wiggly line is the
particle-particle diffusion propogator in zero field

uZT——I

D(q) (A13)

- Dyg’—iw ’

where Dy=vg7/2. The first diagram, Fig. 7(a),
has a subtraction term; otherwise, overcounting of
terms would result. Expanding each term for
small momentum transfer and frequency we find

"

ix) i(x)

€

FIG. 8. Labeling of the diagram of Fig. 4(a).
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g aq’ o (g? (g1
¢a(q,w)=47TN11'3f(2:)2[D(q )—u’]|1--L= - 3ior | (A14)
dz‘]' 2
b 1o(d0)=—4mN,7 [ 2 )ZD(q’)[l-(ql)z——(q’l) +dior] . (A15)
) 7
Thus to this order the irreducible bubble is given by
bi=di+A7d; , (A16)
b d o 2 (gD* (q'D*

A¢,:¢7+¢,+¢f:41TN1T3 (21_)2 —Uu ] 1—' D) 2 +3l(0

—D(q')[l~(ql)2——(q'l)2+4icor] . (A17)

The first point to notice is that the leading terms cancel exactly. Now consider

d '
—~—f q l ZD(q zf 2 )2

We notice that the leading term is canceled by the subtraction term from ¢, and the frequency-dependent
part is canceled by the explicit frequency dependence in Ag. Thus we are left at this order with

g

io
12

(A18)

1—

2
b =¢"+Ad=¢"+ 47N, (gl qu D(g")=2mN7 q') |+ior (A19)

2 Y I—ZTZI

1)’
2 Qr )2

—1
')]'—in] —iNI}

=N,Dq¢*/(Dg*—iw) , (A20)

and therefore

(g1)? d’q’
127
2 f (2m)?

0
I(q,w)=i [f_w—gi‘ZwNﬁ

where
=(v27/2) [1-2#[ o q)J. (A21)

Integration gives Eq. (3).
APPENDIX B: DERIVATION OF EQUATION (17)

It is clear from Eq. (12) that I1° is translationally invariant in the y direction. Taking the Fourier
transform with respect to the y variable integrating over y, y’ and summing over k&’ we find

N%%,X 59,9, ;0)=58(g, +qy )EGW, x,x k+qy) e (x',x;k) . (B1).
It is evident from this equation and the form of the Green’s function Eq. (13) that a shift of variable
ka+x;—ka
makes the translational invariance of I1° manifest. Thus

11°(q,0) =5(q, +q;) [ dx [dx'e TSI S D b (% (K gy ) (x' + (K +y )
k

’

nn
X du(x +ka)p,(x +ka) , (B2)
where D, is defined in the text [Eq. (19)]. Carrying out the shift of variable x +ka—ka we have
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10(q,0)=5(g, +q;) [ dx [dx’e ™ %% 3 D, 4% ((k +g,)0)by(ka)
k

nn'

Xy (x'—x+(k +g,)a)dy(x'—x +ka) . (B3)

A further shift x'—x +ka—x' gives

—i(gy +qy )X —igy x"+ikag,

1°%(q,0)=>8(q, +q, )fdx dx’e

X 2 Dunbn((k +qy)a)p,(ka)n(x" ), (x'+gyat) . (B4)
n’rcr'

Integrating over x we find

n%4,q,0)=8(G+4"M%4,0) , (B5)
where

Ho(?l',w)‘—‘PE(a) | 2Dnn' ’ (B6)

nn'

and

F’m:(q’)zt fdx eiqxx¢:’(x)¢"(x +qya)= fdx ¢:,(x')eiQxxeiqya_%__5§_¢n(x) . (B7)

X
Using the identity

edeB—eA+B+4B12 (B8)

we have
—(i i, % +ig,x X171 v
anl(_q.)_:e ( /2)qquafdx ¢"(x)ethx+ q,% (1/:)(a/ax)¢"(x) ) (B9)

As we are concerned with | F,,(q)|? we will ignore the prefactor from now on. Decomposing x and
(1/ i)(d/3x) in terms of the harmonic oscillator annihilation @ and creation a operators we have up to the
prefactor

Fpp(q)= f dxg(x)e’ = Waar iite i, )VEa'f/t/i‘ﬁ"(x) . (B10)
Writing

qx+iqy=qei¢ , (B11)

q:(qf+q'3)1/2 ’ (B12)
then '

Ful @)= [ dx gh(x)eVase™a/Vi4iVagealVag (1) (B13)

Again, as we are only concerned with |F,,(q)|? the factor e’® is irrelevant and in effect
Fo @)= [ dxgi(x)e®,(x) , (B14)
proving Eq. (17).
APPENDIX C: CANCELLING OF CONTRIBUTIONS TO ({j,, jx ) AND {j,, jx)

In this appendix we show that the contributions to {jy, j, ) and { Jy» Jx ) from diagrams 4(a), 4(b), and 4(c)
cancel among themselves. We represent the contribution from the diffusion pole in (a), (b), and (c) by
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dzq Vs(a’w)
. 1
(2m)? (—io+Dyg*? D

flo)=[

We can break up the contributions according to the signs of € and e+£. We denote by a_  (x,x) the

contribution of (a) to {jy, j,) when €>0 and €+Q>0. a’, . (x,x) is the corresponding diagram, with the
self-energy insertion in the hole line, and so on.

First we consider a , , (y,x), Figs. 4(a) and 8. Details of the calculation for the b’s and ¢’s are similar.

arsp0)=[Vde [ do flo) T GG ()G ~(n")G (")

1

dk —e X1
Xfa;7¢:r(xl+ka) k+—;~ &, (x, +ka)

X [ dx,h(xs +ka+gyae” i, (x; +ka)

dex3¢n x3+kae i 3¢n (x3+ka+qy a)

x [ dx4-——¢,,(x4+ka) hwrlxatka) . ()
Expanding the matrix elements in powers of g, we need only the leading g independent term. This sets
n"'= n"= n'. The matrix elements are easily evaluated and we find
n+l, 4 + 2
ay (yx)= —{GTM[GT(n+D]*G (n+1)

2

n

—GHn+D[GTMPG—(n)} . (C3)

Where we set €p+ Q+o~ €x+ (O~ €f as the energy argument of the G’s which is justified since we are
interested in the limit Q, @ << 1/7<< €r. We obtain in a similar way the contributions from diagrams (a),
(b), and () to {jy, ji» and {jx, jx ):

—i

-1

n ;_” GHm[GH(m+ DG~ (n +1)

n

; GHn+1D[GHMPG(n) ‘ ,

—i
—1

x3Z "2” iGJ“(n)[G“(n)]ZG’(n +1)

‘; }G*(n +1D[G(n +1)]ZG’(n)] ,

a-- {§Z§}= 1 ,. "j‘ G—(m[G~(n+1)PG+(n +1)
1[G+ DG~ (WG *(n)
a**[yx} X171 X?";’I G*n+D[GHmPG~(n)

; Gtm[GHm+1DPG(n +1)} ,
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in-{-l

n

G~ ([GHn+1]PG(n+1)

a_, [xx } fdefdwf(w)-—x [—i

; G (n +1)[G+(n)]26'(n)} ,

’ —1i + bl
a_, [xx] _; 2" Gtm)[G~(MPGH(n+1) (c4)
1[G+ 1[G (n +11’G*(n)
c_ +{y, } :i x?-n—-';—l [G*(n+1)]’G(n) I [GT(mPPG—(n+1)

XurP[GH(m)PG(m),

[G (n +1)1?G*(n)

[G~ ()]G (n+1)

in+1

)

by, { l fdefdwf(co)-—x

»x|_

The sums over n are evaluated easily in the limit o, << €p. For instance, in a ., we have

Xu?F[G~(m)PG*(m),

n+1
Skt

n

G~ (nG~(n +1G*(n)GT(n+1)

; G~ (n+1)G~(n)G*(n+1)G*(n)

G~(MG~(n+1DG*(nG*(n+1)

c -1 n+1
X114 ><§ 5

LG +1)G~(nGH(n+1)GH(n)

SEELGHMIGHn +DPC(n +1)

-3 n+1 1 1 1
€EF—€n+i/2T (€p—€y 1 +i/27) €F—€xy1—i/27)
d 2 n+1 1 1 1
= ox 2 x—e€p |€,—(er—w.)+i/2T €g—x—i/27

- L 1 . (C5)
€n—(€p—0 ) +i/2T €, —€F—i/27T |xaep—o,

Using the results of Sec. II, this reduces to
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€r 2miN(ep)
2 (n+1DG_(n+1)=——t 7 iio|% ||, (C6)
n 20, )4 o +i/T €r
while in ¢ _, we have
ZEGZ (m)G _ =—u22 1 L
€m—€p—i/27) €m—€p+i/27
d 1 1
=—ir|1—y? |- — =—iT {140 |— C7
ir u axgem_x_i/zr x=e,,‘} iT|{14 - (C7)
Evaluating the sums in this way we can rewrite (C4) as
172 2 €F 27rN(eF) -
X | 4
a4 :)x),x =a._ . } f dé'f d(&) m 1+mc7-2 l/T ’
, X , €F 27N (ep)r* .
a4 ')vc,x =a_ _ } f dEf dwf(a)e _—w«gfz 1/7|°
o 9% © 2 , €r 2mN(ep)r* 0 C8)
biy X,X =b__ x,X =fn defe @ floe 14+ w27 -2/
20N (ep)r* | —0e(3+wer)
I 2 €F FIT
@—+ x,x}_a—+ } f def do f(w)e®— m 1+ 272)2 [ -2/ ’
20
x| x| ® ® EF_ZTrN(cp)fr ¢
¢ +{xx] =C-+ {x,x}"fo dffe do flw)e? (140272 (1——(0372)/7 ’

which sum to zero.
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