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%e calculate the corrections to the resistance R and Hall resistance RH of a two-

dimensional disordered electronic system due to interactions in the strong-field limit

a,lg eF, e~~ 1 where localization effects are suppressed. &e find that Ao„~=0 for both

to,r ~ 1. With the result that (Mtt/Rn)/(5s/R) =2 /[1 (to, r) ] o—scillating with field be-

cause of the field dependence of w and eventually diverging when (~,v) = 1. M /8 de-

creases with increasing field going through zero when co,g =-1.

I. INTRODUCTIQN simply to renormalize the diffusion constant

Two aspects of clcctIonlc tlansport ln dlsordclcd
systems have been the subject of much discussion
recently. First, the effect of localization'; we use

the term to describe the properties of a single elec-

tron in a random potential. Second, the effect of
electron-electron interaction, which has only

bccn woI'kcd oUt ln thc 11IDlt of weak disorder.
The theories based on localization or interaction
predict similar behavior for the conductivity.

In the localization theory, perturbation theory
based on thc sumIDatlon of maximally closscd di-

agrams ' and field-theoretic methods '

prcdlct R logarithmic corrcctlon to the conductlvlty

ln two d1IDcnslons

60 II
— =(2—2F) incor,

0. 2msma
(2)

where F is the angular average of the statically
screened Coulomb interaction V, ( q ) and D is the
diffusion constant.

A systeIDatic calculation, however, should inves-

tigate thc cffcct of locallzatlon on thc lntcrRct1on

theory. It can, in fact, be shown that the two ef-

fects are additive (see Appendix A for details).
The effect of localization on electronic screening is

e I
5tr =—— ln(rlv' ) .L g 2 p I

w;„ is the inelastic scattering time and s is the elas-

tic scattering time.
In the interaction theory, the dynamically

screened Coulomb interaction was treated to first
order, and the correction to the conductivity 5a.(to),

where m is the frequency or temperature, is given
by4, 5

I~

where to= max(to, kT, v;„') which with Eq. (2)
clearly shows that the effects of locahzation on the
interaction theory are higher order in I/eF&. eF is

thc Fermi cncrgy.
In view of the similarity of the corrections to the

conductivity from each source it is important to
develop techniques which distinguish between the
two phenomena. It has been suggested that this
could be accomplished by carrying out experiments
in weak magnetic fields. First, as the maximally

crossed diagrams responsible for Eq. (1) are sensi-

tive to the time-reversal symmetry breaking due to
thc IIlRgnctlc flcld, locRllzatlon phcnoIDcnR RI'e

sUppIcsscd by very weak magnetic fields, N~v

(1/&y&)(&/'r;„) and a negative magnetoresistance

should be observed. Further, the change in the
Hall constant 5RII/R~, plcdictcd by thc lntcI'ac-

tion theory in extremely weak fields when the mag-

netic field may be considered a perturbation,
should be AH/RH ——2, whereas the localization

thcoIy would pIcdlct no change. Mcasufcmcnt of
this effect should provide a direct check of the

theory. However, as noted, in extremely weak

magnetic fields both effects contribute to the elec-

tronic conductivity of the two-dimensional disor-

dered system. It is also known that in the weak-

field limit the predictions of the interaction theory
are complicated by spin splitting' and Hartree '
contributions to the conductivity. Because of these

diff lcult1cs wc focUs ln this work on the effects of

strong magnetic fields (co,r ~ 1 but to, /eF & 1) on

the conductivity and Hall conductivity of a disor-
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dered two-dimensional electronic system. %e may
therefore concentrate on interaction effects only, as
localization is suppressed under these conditions.

Following Ref. 5 the interaction is taken to be
the dynamically screened Coulomb interaction

Vs(q, ~)= Vs(q)/[I+ Vs(q)II(q, co)], (4)

where Vs(q ) =21re /q is the bare interaction in
two dimensions. As we show in Appendix A the
polarization in the zero magnetic field limit re-
duces to

II(q, co) =sX&Dq /( ico+D—q ), (5)

and hence 1n the small g, N limit and sub)ect to the
condition D~q ~~

~

~
~

where ~=e'sX, is the
screening constant,

2
VH —o(~ )

1 —/Qj+Dq
s

st Dq

where s is the spin degeneracy, Xi ——m/2n. is the
single-particle density of states for a single spin,
and D is the renormalized diffusion constant [Eq.
(3)]. The form of the screened interaction given in

Eq. (6), which is important in subsequent discus-
sion, arises because electron-electron scattering in
the small q, co limit is dominated by the diffusion
pole in the particle-hole propagator. Thus our first
task ls to flild thc residue of tllls pole 111 tllc
strong-field limit. The diffusion propagator will be
derived in Sec. II, the magnetoconductivity tensor
1s given ln Sec. III, and a suQlmafy of this work
and its bearing on experiment is given in Sec. IV.

II. THE POLARIZABILITY AND PARTICLE-HOLE DIFFUSION PROPAGATOR

The polarizability of the noninteracting electronic system in the presence of disorder is given by

II(x, x ',~)= . I de[f(e+~) f(e)]II—(x, x ",e+~,e)+ill, (e,),
2&l

where II(x, x ', e+co,e) is the propagator of a particle with energy e+ co arid a hole with energy e in the
presence of disorder:

II(x, x', e+co,e)=(G+(x,x', e+co)G (x', x;e)) .

Here, G+ and G are the advanced and retarded single-particle Green's functions, respectively, and ( ) im-
plies impurity averaging. In the weak-scattering limit the particle-hole propagator H satisfies ihe Dyson
equation

II(x,x ';el) =IIO(x, x ';co)+u +II (x, xi', el)II(xi, x ',r0) .

Here, u is the mean-square impurity potential.
T4e Feynman diagrams correspond1ng to th1s

equation are shown in Fig. 1. The particle-hole
diffusion propagator, on the other hand, is defined
by the Dyson equation

D(x, x';co)=u 5-„

sllowii Bl Fig. 2. Tllc basic blllldlllg block of botll
quantities is the "bare bubble, " II (x, x';ay), the la-
beling of which is shown in Fig. 3.

To evaluate 0 we work in the Landau gauge
choosing a vector potential A (x) such that

A (x)= (O,Hx, O),

+u +II (x, xi,'a))D(xix ';co),
X)

which is illustrated by the Feynaman diagrams

(10) where H is a uniform magnetic field in the z direc-
tion, chosen to be perpendicular to the two-di-
mensional electron1c system; the states are labeled
by Landau level index n and a wave vector k in the

FIG. 1. Diagrams corresponding to the Dyson equa-
tion for the polarizability. The star represents impurity
scattering.

+
X X
IAV iesll

FIG. 2. Diagrams corresponding to the Orson equa-
tion for the particle-hole diffusion propagator.



FIG. 3. Khagram for the bare polarizability. n and k
are the Landau level labels.

II (x, x ';co) =+6++„(x,x',k')6, (x',x;k)
kk'

g @(k'—k Ny -y')

The Green's function 6,+-(x„xz',k) is given by

p„(xl+ka)p»(xl+ka)
6;(xi,xl', k)= — . —. (13)

6 e» +i /2'7—

Here, the P„are harmonic oscillator functions,

e» = (n + —,Nco, „ the cyclotron frequency ai,
= eH/mc, a= 1/mao„and for simplicity the area

of the sample has been set equal to 1. The effect
of impurity scattering is included via a rdaxation
t1IHC WbiCh is CQCfgg dCPCQdent,

1/r(e) =2irNi (e)u

~d iQVCrsebg PI'OPOrtiOQRI tO t4C dCMitg Of States

wllich oscillates Rs a fullctloii of nlaglletlc flleld.

As alI quantitics alc evaluated Rt thc Fcl'ml cncI'gY

the field dependence of the theory is retained if
this relationship is kept in mind; for example,
Ando's' self-consistent calculation of the conduc-

tiVitg is I'CPI'OdUCCd. ACCT'dingle, &9m QO%' OQ %C

set r=r(e~). The detailed field dependence of r
may be obtained from Ando's work'; for examp'le,

when the magnetic field is rather weak, elf & 1„&f
is thc relaxation time obtained assuming the same

As II (x,x', m) is transllationally invariant it is con-
venient to work with its Fourier transform. After
a lengthy calculation, the details of which are

g1VCQ 1Q APPCQdlX 8, %C f1Dd

II (q,co)=pg iF„„(q)i D«, ,

F„„(q)= J dxg*„(x)e'~"p»(x),

I
(@+a) c„+i/—2r)(co e„i/—2r}—'

is thc dcgcncfacp Or thc QumbcI' of states Pcl" LRQ-

dau level and q =(q„+qz )'i .
It is sufficient to evaluate the matrix elements

F„» (q) at small momentum transfer

X2
F»»(q)= Jdxg'»(x) I+iqx ——+. . . ((i„(x) .

Representing x in terms of harmonic-oscillator annihilation and creation operators

I /2

x= — (a+a ),
2

the matrix elements between harmonic oscillator functions are
' 1/2

(n i
x'

i
n'}=V a — 5»» i+

»

(n ixlin}=a(n+ —,),

', I/2
, n'11

(24)
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and we quote for future reference
1/2

n
55,lf—

' 1/2
n +1

&n, a+1 (25)

Given this information we find
P r

@+1 n~
11 (qy)=p+Dgyg' 1 g ~r(n+ g )san'+9 + 5n', a+1+

2
~n', n-1

nn'

(26)

(27)

I's ——g(n + —, )D„„/2,

(29}

n —1
I'D =g

2
(30}

and the D„~ are defined by Eq. (17).
Each of the sums over the Landau levels [Eqs. (27)—(30)j has the form

f(n)
0 (e„a~+i /2—~)(e„e2 i/—2r)

To evaluate the sum consider the contour integral

1 1

c (g 6) +i /2r)(g —62 i /2r)

(31)

(32)

X(z)=
Z —6'~ —l 6 (33)

5 is an infinitesimal. The contour integral may be evaluated by closing the contour in either the upper or
the lower half-plane. 2f we close in the lower half-plane we find

OO f(e~ —i/2r)

0 (e~ e2 i /r)(e~—e„—i /2r)— —

On the other hand, closing the contour in the upper half-plane

f(f2+i /2~) +F.
0 (e2 e&+i lr—)(e2 e„+~/2—r)

Equating the two expressions we find

oo 1 00
13'= f(s2+i/2r) g . —f(e, —i/2r) gE) —6p —l /r

O G2 —E~+l /2P p 61 —6'~ —l /2T

(35)

As an example we examine the term Fz In this ca. se e~ ez, e2 ——ez+——ro, f=1:



1 1 1

fo+I/1 „o Eq —(EF+'fo) I—/2r e~ EF+I/27

HrcRklng thc sUI 1Ilto I'cal Rnd 1IDRglI18+ PRrts» vfc 1ccogmzc thRt thc 1IQRglQRrg Part ls PIQPQrtlon81 to thc
density of states at the Fermi surface. In fact,

(3g)

Thc sccQM, term ls ldcIltlcRIjp zero %hen Q)~0»
RIld hcncc

2n.iX(cp)—+O(fo) . (39)

( iso+—DHfi )

I'(q, fo,e)= ' if e(c—fo) &0
I other's'iSC,

CF 2ffiN(eF)
Ya —— . -- — +O(fo),

CO+ I /1 2CO~ P

cF 2miN{ cf; ) . fo,
Pc —— +0

N~+l jS 2N~ p 6F

CF 2ffiN(ep) OI,
D +0

N& —l/V 2Q)~ p EF

With these fUBctions %e procccd to thc calcU18tion

Qf thc dYQRIDlcal condUctlvltp tcIlsor ln thc next
section.

In this scctiQI1 %'c wi11 determine talc contribU-

tions tQ the magnctoconductivity tensor from

In summary, from Eqs. (26) and (39)—(42) we

find that

11 (q, ol) 2ffN(CF)r[{1+ifor) qDHr] —(43)

in the small q, fo limit. The diffusion constant

equal to u~r/2 when H=O, is in general an oscilla-
tory function of the magnetic field H via r [Eqs.
(14)—(16)j and eF. Knowing II (q, fo) we may
now construct the particle-hole diffusion propaga-
tor D(q) [Eq. (10)]:

D(q, fo) = (45)
DHg —I.QP

Thc scl'ccflcd llltcl'actlofl III thc small-li llflllt [Eq.
(6)j is

(46)

Rnd the impUritp rcnofmRIizatiQD Qf tbc scI'ccned

interaction vertices,

FIG. 4. Diagrams contributing to the conductivity
tensor to first order in the Coulomb interaction (wavy

line). The double vravy line represents the particle-hole
diffusion propagator of I'lg. 2,
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x4 x'4

j„(x)

, k'

j (x')

FIG. 6. Labeling of the diagram of Fig. 4(d).

FIG. 5. Conductivity diagram generated from Har-
tree correction to self-energy.

electron-electron interaction. With the present
technique, in addition to extending previous calcu-
lations to higher magnetic fields, the longitudinal
cr and transverse o„„conductivities may be ob-
tained in parallel. The effect of electron-electron
interaction is considered at lowest order, and im-

purity scattering is treated by the conventional di-
agrammatic technique in the kFl y& 1 limit.

The diagrams that contribute to the magneto-
conductivity tensor are shown in Fig. 4. These di-

agrams are generated in a conserving approxima-
tion from the exchange contribution to the electron
self-energy. There are also contributions to the
conductivity from diagrams generated from the
Hartree contribution to the electronic self-

energy. ' A typical diagram is shown in Fig. 5.
However, as these terms play a role in our calcula-
tion complementray to the weak-field case~ we will

not discuss them further. We will show in detail
in Appendix C that just as in the weak-field limit
the contributions to the conductivity of diagrams
4(a) —4(c) to both o~ and a~& exactly cancel to

O(co, /eF). Further, the "Azlamazov-Larkin" di-

agrams 4(f) and 4(g) exactly cancel. It remains to
determine the contributions from diagrams 4(d)
and 4(e).

The components of the conductivity tensor are
given in terms of the current-current correlation
function. For example,

f &P„(x),J,(x')])(Q)d xd x', (48)o oiO
where the current operators

j~(x)= ———. +e18ex
m i' a

j (x)= ———.
e 1 8
81 l Bx

(49)

(5O)

and Q is the external frequency.
We will now evaluate the contribution of the di-

agram in Fig. 4(d) to the current-current correla-
tion function. The detailed labeling of this di-
agram is given in Fig. 6. We note that in order to
obtain a divergence in the vertex corrections I we
must have e,@+0postitive and @+0+conegative,
or vice versa We co.nsider in detail the first possi-
bility. We have

d++ =M~ (e,Q, r0;q)I'„(q)V„(q)1 (q)D +(nq)M„( , eqo),
where

M~(e, Q,co;q)= ——g G(n, n', n")fdxiP'„(xi+ka2) k+ P„(x~+ka }
k Q

n, n', n"

X fdx2$'„-(x2+(k+q~)a)e ' 'p„(x~+ka)
~ I

X fdxsp'„(x3+ka)e ' 'p„-(x3+(k+qy)a},

M„"(e,Q, co;q) = &G(n, n—', n")fdx, P'„(xi+ka) P„(x&+ka)
171 Bx~

n, n', n"

X fdx2$„(xz+ka)e ' P„-(x2+(k+q )a}
~ /

X fdx3$'„-(xs+(k+qy)a)e " 'P„(xs+ka),

(51)

(52)

(53)
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G(n, n, n )=rr I

(e—e„+i/2r)(a+ 0 e—„+i/2r }(e+0+m e—„i—/2r)

Expanding the current vertices M for small q we find

(54)

M„(q)=—pg ——

I (q~ iq,—)[G(n,n+ l,n) —G(n, n + l, n +1)]
m ~ 2

+(qz+iq„}[G(n+ l, n, n) —G(n + l, n, n +1)]J

M„{q}=—~g I (q, —q„}[G{.+i,n, n)-G{ n+1,...+1)]g Ic 5+I
fthm

+{q +iq )[G(n,n+l, n+1)—G(n, n+l, n)] J . {56)

n+1 n+1 —ep 2iriN(ep)
G (n + l,n, n +1)=g——6{n,n + l,n +1)= —— ir+ ——

Pt pg
2 2mc p mc +i /r

n +1 n + 1 ep 2rci jii(ep)
6 (n + l, n, n) =g G(n, n + l, n) =

z
—ir

2 2m~ p mq —I /r

M„(q)= 2' e~r—2nN—(ez)/[1+(m, r)2]

M„(q ) = 2q„sFr 2m—N(eF—)/[1+ (co,r)2] . (60)

The first thing to note is that these expressions reduce to the correct zero-field hmit [2irX(eF)]{H=0)
=m, in the strong-field case, in addition to the factor 1 /[1+(m, r) ], the density of states, 1/r and the Fer-

mi energy oscillate as a function of H. Perhaps the most significant result is that because of the q depen-

dence of the M's the contribution of these diagrams, and hence of interactions, to the transverse conductivity

Is 1dcQtlc3,HQ zclo.
The calculation of the contribution to the longitudinal current now proceeds as in Ref. 5. We find

2i(2e') de ~ dco ~x~x&' &1's(q m)

i(co+0,)+—DHq ( ko+Dnq ) r— (61)

where the first diffusion pole is due to the impurity ladder and the ( im+DHq') —' comes from the vertex

coITccf10Q V~. SlQcc &c IQtcgx'RQ41 is 1McpI{.McHf, Of 6 lt cGQ bc RI'MHgcQ Rs fGH0%'8:

i z (2@Fr ) [2nX(ep)]~
5o- =—2e

tlat [1+(co r) ]2

i~~dm d q qx 1

2m q —I, @+A +BHq —iu+g)~q~ 2ÃID~q z

Changing variables Dnq r +q, cor~m, Q. =Qr—and evaluating the angular integral, we have

(62)
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;e2 (2e~r ) [2nN(ep)] u 1 i d~ dqi 1

2n' [1+(~,r)~]2 2N&DHr n 2~ o 2& [—i(co+0)+q ]( i—co+q )
(63)

Recalling that DH ——(@+rim)/ [1+(co,r) ] and
I/r=2mN, u, 5o is found to have the same
structure as the weak-field result:

2

5cr = — ln(Qr) .
2m2R

When Hartree' effects are incliided,

(64)

condUct1v1ty obta1ncd by Ando arc reproduced.
Now we consider the additional contributions to

a and o~ discussed in the previous sections. If
we define

(71)

2

5a~ = (1—F)ln(Q~)
2m A

with spin splitting F becomes a function of mag-
netic field.

it follows from Eqs. (67)—(72) that

hi[(a), r) —1]—252(a), w)

Ro 1+ (co,r)

In this section we explore what bearing the re-
sults dcrivcd 1n thc p1cv1ous scct1ons might have
for experimental measurements. The central quan-
tity is the resistivity tensor

r

Pxx PxyP= 0 (66)

The components of p are related to the components
of the conductivity tensor by

Oxx
Pxx

Oxx+Oxy

Thc quantit]les d1rcctly measured by experiment arc
the magnetorcsistance 8 =p and the Hall con-
stant RH =p„~/H. In zeroth order, when only the
simple bubble diagram with impurity-renormalized
single-particle Green's function is used to calculate
o~ and o~, they have the following values:

o 1
RII ——

EfeC

where the carrier density n =N(e~)ez. It is impor-
tant to note that at this level R is field iridepen-
dent, whereas EIJ oscillates inversely with the den-
sity of states. It should be pointed out that if the
field dependence of r and N(e~) are retained as we
have indicated, the self-consistent results for the

and

5RH 25 i+ 52[(a),w) —1]

Rn 1+(co,r)
(74)

The implications of Eqs. (75) and (76) are quite
Unambiguous. First, there is a logarithmic correc-
tion to the resistivity which decreases steadily as a
function of magnetic field through the factor
1 —(co~'r), cliailgiiig slgii at Nq'r= l. Second, lii
contrast to thc localization effects, thcI'c 18 a f101tc
correction to the Hall constant 5RH/RH. The ra-
tio of these two quantities

5R~/RH

5R /R 1 (co,r)—
which is close to 2 for co,r« 1. However, it
diverges as co,w approaches I and then changes

(77)

We note that even when 5o~ and 5o„~ are not ex-
plicitly dependent on the magnetic field, in general
there is a field dependence of the quantities 5R and
5R~ v1a zcroth order quantltlcs o~ and 0'xy.

In the strong-field limit, localization effects are
completely suppressed and we need only to keep
the leading logarithmic contributions to the con-
ductivity stemming from interaction, derived in
Sec. III. The most important point is to note that
Coulomb interaction effects alone lead to 5o.

xy
——0

and as a I"csult,

(1—F)[1—(m, r)'jlnQ,
5R —m

RO 21T' ffn'r

5Ra —2m
(1—F)lnQ .2' fine
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5RII /RH 2 y+y—(«0,r)
5R /R 1+(2y —1)(«o,r)

(78)

sign. It also oscillates as a function of field be-

cause of the intrinsic field dependence of r. Al-

though present experimental data' ' are still lim-

ited to the range ~,~~g 1, these results demon-

strate that a detailed measurement of the magnetic
field dependence of 5R/Ro and (5a /RH )/
(5r/Ro) in the strong-field limit would be an im-

portant test of the Coulomb interaction plus weak

scattering theory.
At very weak magnetic fields where localization

effects are still present and both effects must be in-

cluded, the situation 1s considerably more coIDpll-

CRtcd. Fl'0111 E«ls. (73) Rll«l (74) lt call bc sccil tllat
the ratio

field. We should note that recent experiments' '
appear to give (5RH/RH)/(5R/R) close to 2 in the

weak-field limit. However, it would appear to us

that these experiments, given the disorder of the

samples, are in the region where both localization

and interaction contribute.
In summary, we have considered both localiza-

t1on and Coulomb lrltefact1on effects on the rnag-

netores1stance and Hall constant of a two-dhmen-

sional electron gas.
'

At weak magnetic fields both

effects are present and a complicated temperature

and ITlagnetlc field deperldence results. However~

for strong fidds, because of the result that there

are no logarithmic corrections to the Hall conduc-

tivity o „,the present theory provides strong pred-

ictions for both the magnetoresistance and Hall

constant. It also poses the intriguing question as

to how to construct a scaling theory of the resis-

tance and Hall resistance in view of' the completely

dlffcrcllt behavior of 5«T„~ Rlid 5«r„y

The zero-field limit of this ratio is

2 —y=(2 —2+)/(2 —F), (80) ACKNO%LEDOMENTS

which varies from the value 1 when I' =0 ( in the

limit kz/I« —+ Go, I« is the inverse Thomas-Fermi
screening length) to the value zero for I' =1
(kF/l«~0). For small but infinite fields, the local-

ization, and spin-splitting contribution to the Har-

tree term do not have a pure lnO or lnT form. A
fomiulR sllcli Rs Eq. (80) is less useful ill t11is case
than a direct fit of 5R or 5RH with the known

dependence on both temperature and magnetic
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APPENDIX A: THE EFFECT OF DISORDER ON THE POLARIZASILITY
OF AN ELECTRON GAS IN ZERO FIELD

A basic component of the theortical work in this paper is the dynamically screened Coulomb interaction

in two dimensions, which may be written when H =0

where the dielectric function e is given in terms of the polarizability II as

«q, «0) =[1—II(q, «0)2Ire /q] .

Ill thc prcscilcc of lmpuritles wc Illllst Rvcragc over all possible «hs'trlblltlolls of the disorder, which if we

neglect impurity correlations between different polarization bubbles amounts to replacing II(q, «oo) by its

1mpuflty average

( (q o(=((xJxd Ch xx*x' 'xG+(x, ()G (0,0(),
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where (1I(q,co) ) indicates the impurity average.
Our goal is to calculate the polarization bubble in
the presence of disorder.

The Dyson equation for the single-particle
Green's function is written as

(A4)

(a)

(b)

I

l

1

I

where at lowest order in the impurity scattering

X,( p ) = ——r sgne
] l

+ + ~++ + ++
1 ~ l l ~]~I

(A6)

The polarizability (11(q,co) ) can be written in

general

FIG. 7, Corrections to polarizability {above) arising
from the particle-particle diffusion propagator {below).
The first diagram has a subtraction to prevent over-
counting.

co&0. (A7)

Here, P; is the irreducible part of the electron-hole
bubble, that 18, that part of the part1cle-hole propo-
gator that cannot be broken into two by taking out
a single impurity line. At the level of approxima-
tion of Eqs. (A5) and (A6), t)); is simply the "bare
bubble"

P;(q, e,co)=I G,++„(p+q)G, (p),
(2n )

The constant Xi arises because the integral over gz
in the simple bubble P; is not convergent in the re-

gion assumed. This is corrected by doing the in-

tegral over e first for the simple bubble. All in-

tegrals involved in extensions of this approxima-
tion are convergent.

This simple approximation is easily generalized
to include localization effects. In a conserving ap-
proximation the corrections to the bare irreducible
polarizability in a consistent expansion is 1/kF/ are
given by the three diagrams shown in Fig. 7. In
these diagrams the double wiggly line is the
particle-particle diffusion propogator in zero field

(A9)

u'v-'
D(q)=

Dog —16)
(A13)

(A10)

This expression is easily computed in the small-q
and -co limit,

where Do vFr/2. The fi——rst diagram, Fig. 7(a),
has a subtraction term; otherwise, overcounting of
terms would result. Expanding each term for
small momentum transfer and frequency we find

in agreement with Ref. 5. Thus

2m%)r
1I(q,co) = i — —iE& .—"2~ (ql) /2 ia)r—

] (x)

(A12) FIG. 8. Labeling of the diagram of Fig. 4{a).
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Pg(q, co}=4mN)r f [D(q )—u ] 1 — — +3E~&
d'q', 2 (q/)' (q'/)'

(2n )

y„+,(q,~)= 4—mN, r' f q D(q')[1 (q—/)' (q—'/) +4i~&]
(2 }2

Thus to this order the irreducible bobble is given by

4 =0'+~4

~P; =P,'+P;+P;'=4&N~& f [D(q ') u—] 1 — — +3imr
d'q', q (q/) (q'/)

(2m) 2 2

(A16)

—D(q')[1 (q/} —(q'/) —+4icor (A17)

The first point to notice is that the leading terms cancel exactly. Now consider
h

dI= ;f -(q'/) D(q')=u f -
2 1+—

z{2'�) (2m ) Dq' iro—
We notice that the leading teil is cancded by the subtraction term from P, and the frequency-dependent

part is canceled by the explicit frequency dependence in hP. Thus we are left at this order with

P;=P +&/=/ +4~N r f D(q')=2~N~r 1 ——1—2r f D(q'), +icoso 0 3 (q/)' d'q' (q/)' d'q'

(2n ) 2 (2~)'
(A19)

II(q,ay)=i f 2WN~r 1—2r fo de (q/)' d q
—op 2~ (2m )

=N~Dq /(Dq ice) „—
D=(uFr/2) 1—2v f 2D(q')

(2m)'

Integration gives Eq. (3).

{A21)

I" is clear from Eq. (12) that II is translatlonally invariant ln the y direction. Taking the Fourier
transform with respect to the y variable integrating over y, y' and summing over k' we find

II ( x, x '; q~q~;ro) =5(qz +qz )QG~++„(x,x', k+qz )6, (x',x;k } .
k

It is evident from this equation and the form of the Green's function Eq. (13) that a shift of variable

makes the translational invariance of Il manifest. Thus

II (q, ru) =5(qz+qz )fdx fdx'e * * gD«P'„(x+(k+q~)a)P„(x'+(k+q~)a)
k

XP*„(x+ka)P„(x+ka),

where D„„ is defmed in the text [Eq. (19}].Carrying out the shift of variable x +ko,'~ka we have



Il (q,co)=5(qy+qy') fdx fdx'e " " QD„„P*„((k+qy)a)P„(ka)

XQ„(x'—x+(k~qy)a)P*„{x'—x ~ka) . (83)

X+V„„(t)*„((k+qy)a)(I)„(ka)P„(x')P„(x'+qya). (84)

IIO(q, q', a)) =5(q ~ q')IIO(q, a)),

+an'( q }=fdx e g (x)p„(x +qua) =fdx (I)„(x)e ' e y —(t)„(x) .
i ()x

Using the identity

(8&)

{8&)

we have

(i/2)s&—syaf d ~ { }
iq&x+iy g ((/i)(s/Bx)~ (89

As we are concerned with
~
F„„(q }

~
we will ignore the prefactor from now on. Decomposing x and

(1/ i){()/()x) in terms of the harmonic oscillator anmhilation u and creation at operators we have up to the
prefactor

} i(s„i') aN/~-2+i(q„+iq&)v NN M2~ (

g~+/gy =pe E$

0 =(Vx+9y }2 2 j/p

F,(q)—fdx P+,(x}&f~c+ ~o/)/2+i~agt'ietMzy

Again, as we are only concerned with
~
F«(q) ( the factor e' is irrelevant and in effect

F„„f q) =fdx())*„(x)e'&"P„(x),

proving Eq. (17).

APPENDIX C: CANCELLING OF CONTRIBUTIONS TO (j„,j„}AND (j„,j„)

(813)

(814)

In this appendix we show that the contributions to {j~, j ) and (jy, j ) from diagrams 4(a), 4(b), and 4(c)
cancel among themselves. %e represent the contribution from the diffusion pole in (a), (b), and (c) by



V, ( q, co)
f(~)=

(2n )' ( I'e—l+Dnq')

c can break up the contributions according to thc sigils of e and &+Q ~c de»o«by u++(»x) t"c
contribution of {R) to (j j ) when e~ 0 and e+Q yO. u++(x&x) ls tllc colYcspo11diIlg diagram& with thc
self-energy insertion in the hole line, Rnd so on.

First we consider u++(y, x), Figs. $(a) Rud g. Details of tllc cRlclllatloll foI' 'thc &~s Rnd & 8 arc similar.

co ]/2
{y,x)=f de f df{~) y 6+{n)6+(n')6 (n")6+(n"')

I» XI+ C ". + ',
@ X)+ O."

dk —e X)

2m m

X fdxlp„-(XI+ka+qya)e " 'p„{xl+ka)

4

Xfdxlp*„-(XI+ ka)e ' 'iI)„-(XI+ka+q a)

Expanding the matrix elements in powers of q, we need only the leading q independent term. This sets
n'"'= n" = n' The m. atrix elements are easily evaluated and we find

],/2 . e e et+Ia++(yxj= f„deaf drof(al)( i)-- —g —
I 6+(n)[G+(n+1)] 6 (n+1)

6+(n—+1)[6+(n)]6 (n) j .

~ere we set ep+ Q+ro~ ep+ Q~ eir as thc energy ai'gulnen't of thc 6 8 wlllch 18 Justified 811lcc wc Rrc

interested jn thc hmjt Q ~~( '1 jr (& ep. %c obtain 111 a 8111111arway thc colltrlbutlons fl'onl diagrams (R4

(b), and (c) to (j», j„)and (j„,J'„):

2

X' "X 6+ 5 + 5+I yg+]X~y
I

L

+ 6+(n+ l)[6+(n)]'6 (n)

I r

e 6k&u' y' '= fdcfdal ffal) — -X
1 Xg 6+(n)[G (n)pG (n+1)

6+(n+1)[6 (n+1)] 6 (n)

r t

8 N
a y' '= fdeaf da) f(RI) -ry, ' Xg 6 (n)[6 (n+1)] 6+(n+1)

/AX

6 (n+l)[6 (n)PG+(n)

'll r

8 6P

a++ y' ' fdefdrof(r——o) '-X ' "IX--Q — 6+(n+1)[6+(n)] 6 (n)
I

Ã

6+(n)[6+(n+1)] 6 (n+1)
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Q ~' '= 6' N N g'
I

'g Il 6 lt+ 71+1
I N

+ 6 (n+1)[6+(n)pG (n)

2
fX 8 N~

g ~' = dE

draff(N)

-X—+ x,x
6+(n)[6 (n)]'6+{n+1)

5

~ 6+(n ~1)[6-(n +1)]'6+(n)

I"

8 Nc, , X» fd, fd f( )
' X. —' Xy„"+ [6+{n~l)pG-(n) [6+(n)]'6-(n+1)

X/X m +

Xu 2+[6+{m)PG(m),
r W

e co
c ' '= d6' GP N g ' 'X 6 5 6 5+I ' ' 6 If+I 6 5

I
I Jl i.

Xu @[6 (m)PG+(m),

1
'~

8 OP= fdefd~f(~) '
X 1 Xy 6 (n)6 (n+1)6+(n)6+(n~i)

N

6 (n pi)6 (n)6+(n+1)6+(n)

I r

8 QP

N AP
— X' 'g 5 6 5+I 86 Pf+j.

XqX
J

6 (n+1)G (n)6+(n+l)6+(n)+
The suins over n are evaluated easily in the hmit m, ~~ e~. For instance, in a++ we have

6+(n) f6+{n +1)]~G (n +1)
2

+n+1 1 1 1

ez —el+i/2& (ep —e,+~+i/2r)

8 gn~i 1 1 1

Bx I 2 x —ep Egg
—(ep —cog)+{/2'r e~ —x —l/27

I
&e (&z ~e—)+&/2& &n &r &/2& x=e—~-u—

J

Using the results of Sec. II, this reduces to
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G+(n)G+(n +1)G (n +1)=
2

%h1Ic IIl )t. + %'c hsvc

e~ 2??iN(eF )

c P COq +1 /V eF

u QG+(m)G (m)= —u g (e —eF —i/2~)' &~ &F—+&/2&

1 —u 2

Bx e~ —x —1 /2t X =6'F

EVRlllRt111g tlM SUIS 111 tllls WRP WC CR11 1'CWfltC (C4) RS

1=—i~ 1+0 (C7)

a++ ' '=Q'g)X
XqX

VX '=8++ X~X

/~X
X)X

ac «/2 eF 2~N(ep)r
de de f(co)e — —

1 X ' 1/' ',
0 m, 1+~~

eo «/2 1 e?; 2??N(eF)~
f. f,

g, X PXb++ ——b
L

ae «/2 1 ep 2mN(ep)r=f def dcof(co)e 2 x '

m 1+o?

/~X-+ X,X
'=~-+

XqX O (1+~

PqX
+ X~X +

4

which sum to zero.

g, X
X,X

I

Q
2 ep 21?N(cp)r4 2o?c

'= f d&f dco f(co)e — — — x '
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