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Dynamical correlations in a two-dimensional electron gas:
First-order perturbation theory
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First-order Feynman diagrams for the proper polarizability of a two-dimensional elec-

tron liquid in the jellium model, valid for arbitrary wave vector and frequency, are
evaluated, their singularities and analytical properties are examined, and a reliable numer-

ical procedure for calculating them is established. Quantities such as the dielectric func-

tion e( k, co), the dynamic-complex-local-field factor 6 ( k, ~), dynamic structure factor
S(k,~), static structure factor S(k), and the pair correlation function g(r) have been cal-

culated and compared with the corresponding quantities in the random-phase approxima-

tion (RPA). Comparison has also been made with the three-dimensional case. A closed

expression for the plasmon dispersion within the RPA has been derived. The first-order

theory interestingly enough predicts a large enhancement of the static polarizability for
k =-2kF, which could play an important role in predicting charge-density-wave instabili-

ties in metallic layered compounds.

I. INTRODUCTION

Over the years considerable theoretical effort has

gone into the calculation of frequency- and wave-

number-dependent dielectric function of a three-
dimensional (3D) electron gas in a jellium model.
Interest in the analogous problem in a 2D case is
of more recent origin. This interest has arisen for
two main reasons: (a) it has been possible to real-

ize in the laboratory 2D or quasi-2D electron sys-

tems with a continuously variable electron density,
and (b) the belief that the 2D systems could exhibit

unexpected behavior in some of their properties not
forseen from our intuition of the 3D world.

Stern' was the first to calculate the lowest-order

polarizability m (k, to) for a 2D electron gas in the

random phase approximation (RPA), the 2D ana-

log of the well-known Lindhard function. He
found the interesting result that the plasmon

dispersion goes to zero as k ' as the wave number

k tends to zero. Since Stern's work some attempts

have been made to improve upon his RPA result.

Of these the most significant ones are those of Ra-

jagopal and Jonson. The former author evaluated

the polarizability, including the exchange processes

only, as a power series expansion in kFk!m~, kF

being the Fermi wave vector. He was thus able to

calculate the correction, arising from exchange

only, to the RPA plasmon dispersion. He also cal-

culated the static polarizability m.(k, O) to order k~.

In a subsequent paper Rajagopal and Kimball cal-

culated the correlation energy in RPA. Jonson ex-

tended the self-consistent scheme of Singwi, Tosi,

Land, andtSjoiander
' (STLS) to the 2D case and

calculated a number of physical quantities includ-

ing the pair correlation function and compared
them with the corresponding quantities in the RPA
and Hubbard approximation (HA}. His main con-
clusion was that the RPA and HA are less satis-

factory approximations for a 2D than for a 3D
case. For a given r, since the ratio of exchange to
kinetic energy is larger in a 2D case compared to
that in the 3D case, correlations are more impor-

tant in the former.

In the calculation of Jonson corrections to the
RPA are incorporated through a static local field

G(k) in the polarization which is a good approxi-
mation so long as one is dealing with frequencies
much less than the plasma frequency ~~. For fre-
quencies comparable to co~ only a dynamical local
field can provide an adequate description of the
system response. As in the 3D case it is essential
to include a dynamical local field G (k, to) if one
were to understand the excitation spectrum S(k, to)

of the 2D electron liquid. A microscopic theory of
dynamical correlations which is physically trans-

parent and at the same time mathematically tract-
able is by no means an easy task. As a first step in

this direction we wish to calculate in this paper the
contribution of the three first-order Feynman di-

agrams to the proper polarizability for arbitrary
wave vector and frequency. As we shall see, this
in itself is a fairly involved calculation. An analo-
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gous calculation in the 3D case was done recently

by Bolas et al.
The plan of the paper is as follows. In Sec. II

we introduce our notation and write down the ex-
pressions for the zeroth-, and first-order polarizabil-
ities. The behavior of the dimensionless polarizi-
bility is examined in Sec. III and the dynamical lo-
cal field G(k, co) is introduced in Sec. IV. We
evaluate the plasmon dispersion and examine the
high- and low-frequency behavior of Q'(k, e) and
the sum rules in Sec. V. In Sec. VI we examine
the behavior of the dynamic and static structure
factors and the static pair correlation function.
Relevant details of the calculations are given in the
Appcndiccs.

II. FIRST-ORDER DIAGRAMS
FOR THE PROPER POLARIZABILITY

(b) (c)

with p =(p,po) and k =(k,co). G (p) is the free-
particle Green's function,

FIG. 1. Diagrams for proper polarizability: (a) the
zeroth-order and (b) the first-order self-energy part; (c)
the first-order exchange part.

The lowest-order diagrams for the proper polari-
zability m(k) are shown in Fig. 1. The zeroth-
order contribution m (k) is

, g=o+
po co-—iris—gn(kF

~ p ~

)

(2.2)

o 2 dp om'(k)= —f, G'(p)G (p+k),
(2m) i

(2.1)

where p is the 2D counterpart of the 3D 4-vectors

where co- =Pip /2m and kF is the Fermi wave

vector.
The first-order diagrams contribute the self-

cncI'gy part K Rnd thc exchange-energy part K

sE 2 d 5' o
m (k)= —f 3

G (p)G (p+k)[X (p)G (p)+X (p+k)G (p+k)],
(2m) i

(2.3)

d3'&()= ~( ' — )G(')e 'P=
~ (2 )3. ~P P P (2A)

~'"(k)= f, , G'(p)G'(p+k)U(p —p')G'(p')G'(p'+k) .cx 2 dp dp 0

(2m) i (2m) i

U (p ) =2rre /
~ p ~

is the 2D Fourier transform of the electron-electron interaction potential.
The frequency integrals in (2.1) and (2.3)—(2.5) can be done by contour integration. We define the dimen-

sionless polarizability by

Q(k, co) = —U(k)n(k, co) (2.6)

and measure wave vectors in units of kz and frequency in units of 2'/4 After simplification, the zeroth-
order contribution (RPA) can be written as

Reg (k,co)= [k+sgn(v+)8(v+ —1)(v+ —1)'~ +sgn(v )6(v —1)(v —1)' ]k
(2.7a)

Img (k, co) =
2 [8(1—v~)(1 —v+)'~ —6(1—v )(1—v )'~ ], (2.7b)
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wllCIC LID =1'g/v 2IT,

(2.8)

l, x)0
8( )= '() ()

The first-order contribution can be written as

Q'(k, N) = — [F (kN, )+F ('"kN, )],

F (k,N)= ——,

F'"(k,N)= —, I

(n n+ k
—)(n -, n—.+ I, )0 0 0 0

P P+ P &+

I p —p I
(N+N-, —N", + ~+'&}

0 0 0 0
(n - n-—- }(n-, n-—, - )

p p+] p' p'+ k

~ p p ~

(N+N~ N~+ k +LY]){N+N~.—N + k +LE�)

(2.9)

(2.10)

N-= —,p, n-„=8(1—p ) .

The functions F and F'" are complex. ImQ' is evaluated first and ReQ' is then obtained by taking the
Hilbert transforIn. The Iesult is

ImQ'(k, N)= [8(1—v+)P(k, v+) —8(1—v )P(k, v )], (2.11)

where

L))(k, v) =Li'L (k, v)+p'"(k, v) . (2.12)

(2.13)

For the details of the evaluation of ImQ' see Appendices A and B.
It can be seen from (2.7) and (2.11) that ImQ and ImQ' are nonzero in the N-k plane where at least one

of the 8 functions is nonzero [the region of the electron-hole (e-h} excitation]. This region is bounded by
the lines v+ ——1 (e-IL edges) as shown in Fig. 2. Q'(k, N) is singular at the e-h edges, except Q'(2, N), which

has a spike of finite height. Q (k,N) has cusps at the e-h edges.

The integrals in q5 (k, v) and P'"(k,v) are calculated numerically [see Eqs. (A15) and (812)] with care tak-

en to accurately account for the contributions from the unpleasant but integrable singularities in the in-

tegrands. Q'(k, N) is analytic in the complex upper-half N plane. This and the fact that the ReQ' varies as

N for large N justifies the use of the Hilbert transform to numerically calculate ReQ' from ImQ',

I(k )
1 I+" ImQ'(k, N')

d
17 ~ (N —N)

III. BEHAVIOR OF THE FUNCTION Q'(k, N)

ImQ' and ReQ' as functions of N show many qualitative similarities with the corresponding functions in

the 3D case. However, the nature of the singularities is different. The singularities occur at the frequen-

clcs N, N (Flg. 2), Rnd N =0 ls RII 111tclcstlllg polllt. Thc bchRvlor of tllcsc funct1ons about these poIIlts Is

summarized below:
(a) For k(2
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Img' —+. +Pox +~x lnx, x =(co;+—co)~0+'vx
cz'vx +p'vx lnx, x =(co—co, )~0+ .

(b) For ky2

Img'~ +pvx+yvx lnx forx=(co,+ —co)~0+ orx=(co —co, )—+0+ .vx

The most prominant singularity is of the type
I/v x, which produces a similar singularity in
Reg'(k, co). Reg' also has the Inx type of singu-
larity. Q' and Q for k =1 and r, =0.5 are shown
in Fig. 3. Even at this relatively high density, the

Q contribution is quite large compared to Q .
+The singular portions of the plots close to co; are

omitted, because as discussed in Ref. 6 perturba-
tion theory cannot be trusted in this region.

For k =2, there is a cancellation of the singular-
ities of Img

' close to co=0, which makes the func-
tion finite but with very large slope. This produces
a sharp finite spike in Reg' at co=0 (Fig. 4). This
effect is due to the finite-order perturbation theory.

IV. THE DYNAMIC LOCAL FIELD G(k, ce)

The dielectric function is defined as

e(k, co) =1+Q(k,co) .

The defining equation for the local field G is

Q (k, co)
e( k, co) =1+—

1 —G(k, co)g (k, co)

k = I.cl

rs =0.5

0.5 1.0

I

~'/
I
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I

1.5 2.0

I.O—

3

0.5
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I

I

\
k = I,0
rs = 0.5

/j
I

/

FI(G. 2. The electron-hole excitation region and the
e-h edges co,

+—{k). The first-order polarizability Q '( k, co)
is singular at m,

—+(k) except at k =2 and co=0. Both
ImQ' aud ImQ are uouzero only within the e-)i excita-
tion region (shaded region). The RPA plasmon disper-
sion curves (thick lines) ~~~(k) in relation to the e-h
edges for r, =0.5 and 1.0 are shown. The cross on
~+(k) is at k, given by Eq. (5.8). ~ is in units of 2EF/h
and k is in units of kF (here and elsewhere).

-0.5
0

l

0.5
I

1.0
I

1,5 2.0

FIG. 3. The dimeusionless polarizability Q(k, co) vs
co at k =1.0, r, =0.5. ————Q (k, co),0

Q'{k,co), aud —————Qo(k, co)+Q'(k, co). The ar-
rows point to the singularities of Q

' at co,
+—. (a) Real

part; (b) imaginary part.
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k = 2.0
r =05
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FIG. 4. D1IIIC11810111ess polarlzablllty g (k, a7) vs r0 at
k =2.0 and r, =0.5. For aI =0, Reg' has a finite spike.

Reg, —————Img .1 1

3

0.5—
E

In the RPA 6 =0. In the present approxima-
tion Q =-Q'+Q', and therefore

G (k,al) =-. Q'(k, al)

Q (k,co)[Q (k, r~)+Q'(k, co)j

(4.3)

Both ReG and ImG as functions of ~ have a
qualitative similarity to the corresponding func-
tions in the 30 case. ReG and ImG are plotted in
Fig. 5 for k = 1.0 and r, =0, 0.25, 0.5, and 1.0.
RcG va11cs stI'ongly and attains R maximum close
to the upper e-h edge, drops sharply to negative
values, and finally approaches the (positive) asymp-
totic value. ImG is very small in the (O,co, ) range,
varlcs stl'ollgly ltl tllc (Co, ro ) 1'cgloll, alld ls zero
foI co p Ng of for 6) g6)g Rnd k p 2.

The static local field divided by k, G(k, O) jk, is
shown in Fig. 6. The peak at k =2 is due to a
similar peak in Q (k, O). The origin of this peak
was explained in Sec. III. In the limit k~0, Q
and Q'~k ' and in the limit k~ ee, Q
=2v'2r, /k, and Q'= 4r, lk' Thus-.

lim G(k, O)—iO,
k~0

-0.4 2.0

V. PLASMON DISPERSION, HIGH- AND
LOW-FREQUENCY BEHAVIOR OF g '( k, ro),

AND SUM RULES

In the RPA, the dielectric function is

e(k, al)=-l+Q (k, co) .

I I

0.5 I.G ).5

FIG. 5. The dynamic local field G(k, m) vs u for
k =1.0, —.—.—r, =0, r, =0.25, ""-r, =0.5,

r, =1.0. The arrows point to the singular points
of G. (a) Real part; (b) imaginary part.

lim G(k, O)~ —,

k —+ oo

This leads to a considerable change in screening
at small distances as compared to the RPA. The
undamped plRsIIlons ln thc pI'cscnt approximation
can be traced to the absence of the long-wavelength
tail of ImG(k, al).

FIG. 6. Static local field G(k, 0) divided by k vs k
for r, =0.5. The dashed curve shows the asymptotic
behavior of the function. The spike at k =2,0 is remin-
iscent of a slmllar spike ln K (k,0).
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The condition for the existence of the plasma os-
clllatlons 1s

e(k, co) =0, (5.2)

which leads to

1+ReQ (k,co)=0,

ImQ (k, co) =0 .

(5.3a)

(5.3b)

where 8 = I /2IraD.
Equation (5.4) gives the following RPA plasmon

dispersion relation:

For co & co@+ [co&+——(k +k /2)], ImQ (k, co)=0,
and thus the condition (5.2) reduces to

(v' —1)'"—(v' —1)'"=—k(8k+1), (5.4)

where x =k, /r,
The root of Eq. (5.10) gives k,; there is only one

such roo, For example, k, =1.02, 0.74, and 0.27
for r, =1.0, 0.5, and 0.1, respectively. The func-
tion b,co (k) approaches the k axis parabolically,
hence the plasmon and e-h lines do not intersect,
but are tangential at k, . For k & k„Eq. (5.2) has
no solution. The plots of (5.5) are shown in Fig. 2.

In the first-order theory, the dispersion relation
cannot be expressed in a closed form; nonetheless
the long-wavelength form can be evaluated. The
long-wavelength expansions of ReQ and ReQ' are

0- —r.k 3 k'
ReQ (k,co)= I 1+— 2+O(k )

2co co

k ( I+8k)'(I+ —,Bk'+ —,8'k')
[co@I(k)] =

28 1+—,Bk
(5.5)

5rs k3
ReQ'(k, co)= +O(k ) .

12% Qp

(5.11)

(5.12)

Such a closed expression for co„I(k), as far as we
are aware, has not been given in earlier papers. ' '

Thc lcadlng tcrI11 1n the long-wavclcngth cxpRnslon
(k —+0) of (5.5) is e(k, co)=1+Q (k,co)+Q'(k, co)=0. (5.13)

The plasmon dispersion relation is found by solv-

1ng

r, k
cop(k) =

&2
(5.6)

%C thus obtain

[coFI(k)] = c(ok')[l+Pk+O(k )], (5.14a)
The condition for the existence of undamped

plasma oscillations, copI & co, , is satisfied for small
k and finite r, and is valid up to a certain k =k, .
At this wave vector

3v'2
1

10

4r, 9I/ZIr
' (5.14b)

waco (k)=—[copI(k)] —[co,+(k)] =0.
Solv1ng this wc gct thc cquRt10Il

k, k,
v 2r, 4r,'

Introducing the function

X XII (x)= —+
2

coIldlt1011 (5.8) becomes

(5.7)

(5.8)

(5.9)

Equation (5.14a) is the same as obtained by Rajago-
pal. The second term in (5.14b) is the first-order
correction to the RPA and its value is very small
for r, & 1, i.e., in the range of validity of the
present perturbation result.

Before discussing the behavior of Q'(k, co) for
arbitrary k and co, we consider its behavior for
high and low frequencies. For ~ greater than that
of the e-h edge in Fig. 2, ImQ'(k, co) =0; therefore
iI) may be omitted in the denominators in (2.9) and
(2.10). For large co, Q'(k, co) can be expressed as

2

Q (k,co)=—
4 (n- -n+ )k(

—-n, -„n, +)[k(p' —p)—.k] =
4k egg p —p

wllclc GHF(k), aIlalogous to tllc 3D case, Is

1 2 (k.q)GHF(k)=, f d e [~HF(e) —~HF(I k+4I)]2'' q

co~(k)
GIIF(k),

(5.15)

(5.16).
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r

o o
' Sill +

SHp(q)= — d pn-(1 n—- )=p+q
1~ /+2

2 I/2 '

1—
2 I +2

(5.17)

is the Hartree-Pock (HF} structure factor for the
2D electron gas. One of the two integrations in

(5.16) can be done analytically (Appendix C) and
we get

GHp(k) = f dq q [1—SHp(q)][Z(q, k) —mq],
1

2~k

(5.18)

Z(q, k) =— [K(q)(q —k)
2 (k+q)

k

(5.22)

The asymptotic expansion of this is

M1 M3—u(k)X(k, co)= + +O(1/ro ),
QP Q)

(5.23)

third-IDomcnt sum rulc was sat1sf1cd to RB accura-

cy better than 0.1%.
The density-density response function. is given by

~(k )
—1 Q ( k, ro)

u(k) 1+Q(k,~)

+E(q)(5k —q }],
Ml ——— dco'ru'ImX(k, rtl') =cop(k)

u(k}
CN

I/2
4qk

(q+k)

In thc limit k —+0, thc fc1Ilaining intcgfat1on cRn

be done analytically and we obtain

u(k )
Ms —— de'ro' Imp( k, co')

GHp(k)= k+O(k )
6m

(5.20)
= —ro (k} —+-k

E,

(5.21a)

and Q'(k, co) is given by (5.12). For arbitrary k,
the integration has to be done numerically.

Now expand the right-hand side (rhs) of the
dispersion relation (2.19) for large co and compare
it with the left-hand side (lhs). Since Img'(k, ro) is
an odd function of ~, the even moments are zero.
Using (5.15},the first and third moments are

(0), gI—=f dcorolmg'(k, tu)=0,

(ru ), &l= f druro Img'(k, co)

+ cop(k)[1 —G "(k)], (5.25)

w11ele cop(k) ls glvell by (5.6). (El,;„) ls tile aver-

age kinetic energy per particle of the interacting
electron gas, and G "(k) is given by (5.16) with

(5.21b)= ——ro (k)GHp(k) .

Forsmallk, & ), =——„k»gue7
shows the plot of the third moment versus k for
r, =1.0. The accuracy of the numerical results of
Img' was tested by (5.21). To check whether

(5.21a) is satisfied, the first moment values were

div1dcd by thc VRlUcs of thc anRlogoUs intcgrRl of
the absolute value of ImQ', for all wave vectors of
1nterest the quotients were less than 10 . The

FIG. 7. Third moment of Img'(k, ro) times ( —k ')
vs k for r, =1.0.
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SHF(q) replaced by the true structure factor S(q).
The derivation of the first moment is the same as
in the 3D case, ' but in the derivation of the third
moment the 20 nature of the system manifests it-
self. While evaluating the commutators in (co )
(see Ref. 10) one averages over the angles; here
(cos 0)zD ———,, while (cos 0)3D—

3 This is the

origin of the factor —, in the second term in (5.25).
In the present approximation the density-density

response function is

—1 Q (k,co)+Q'(k, co)

v(k) 1+g (k,co)+Q'(k, co)

(5.26)

Expanding this for large co and comparing the
moments with the exact ones, one finds,

where

M3"= cop(—k)[-;k + —,k +co~(k)[1—GHF(k)]) .

(5.27)

This differs from M3 in having the average
kinetic energy of the noninteracting gas —,EF in-

stead of (Ez;„) and GHF(k) instead of G "(k).
Let us consider the static Q'(k, co). Img'(k, co)

being an odd function of co is zero at ~=0 and
Q'(k, O) is given by

—aD d& d& ' (n n-+ z )(n— , n, +p—)
2 0 0 0 0

'(k,O)=, [( — ') k]'
4k

~ p —p'~ [kz/2+p k] [kz/2+p'k]z
(5.28)

It is more convenient to work in terms of proper
polarizability m(k), defined by (2.6). In the long-
wavelength limit (k~O), Q'(k, O) can be evaluated
analytically and we have

mv 2r-,
m'(0, 0)= (5.29)

Also in the small-wavelength limit (k~ ac),
Q'(k, O) can be evaluated and we obtain

hm [g'(k, o)k'] =4»,'. (5.30)
kazoo

For arbitrary k, the integrations in (5.28) have to
be done numerically. To maintain the symmetric
structure of the integrand, no partial and analytic
integration is attempted; instead some ideas of Gel-
dart and Taylor" are exploited to transform (5.28)
into a four-dimensional integral over the unit cube.
The singularities of the integrand are practically
removed, so that exact numerical integration is
possible. The results in the limiting cases agree
with (5.29) and (5.30) to a high accuracy. This
rather complex integration process has been out-
lined in detail in Ref. 12. The values obtained are
close to those given by Maldague, ' with some
quantitative differences. We get
m'(2, 0)/~'(0, 0)=2.832 instead of 2.5 obtained by
Maldague, and

In the "linearized vertex function formalism" of
Rajagopal, Eq. (3) of Ref. 2 can be solved exactly
in this approximation and we have found that

—Pl 1
m(0, 0)=

mA' 1 —(~2/r»)»,

mv 2r,=
2

— 22'=~'+~ (5.32)

5.0—
2.85—

O
2.0—

~w

O

" LO

for r, g~ 1. There is a difference of a minus sign
in the definition of ~ between Rajagopal's and
ours. Our result (5.29) coincides with (5.32) for
r, p& 1. The polarizability n of (5.32) diverges for
r, =m/v 2=2.22, which may be interpreted as the
radius of convergence of the perturbation expan-
sion, or one may speculate about the instability of
the system for low densities.

n. (2,0)+m'(2, 0)= ——(0.32+0.41r, ) .
$2

(5.31) I.O 2.0 5.0

The plot of n'(k, O)/n'(0, 0) versus k is given in
Fig. 8.

FIG. 8. The ratio m'(k, 0)/m'{0, 0) vs k. Note the
spike at k =2.0.
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VI. DYNAMIC AND STATIC STRUCTURE
FACTORS, SUM RULES, AND PAIR

CORRELATION FUNCTION

first-moment sum rule is

(ro), =f dcoroS(k, ro)=
0 2&i

(6.2)

The differential inelastic-scattering cross section
for x rays and electrons is proportional to the
dynamic structure factor S ( k, ro). The fluctuation
dissipation theorem in the 20 case is

where X is the number of electrons per unit area,

(ro '), —= f S(k,ro) =— X(k, O)

1S(k,ro) = Im (6.1)

1 Q(k 0)
2u(k) e(k, 0)

In the limit of long wavelength

(6.3)

S(k,ro) has qualitative similarity with that in the
30 case, especially for large k s. Our CRlculatcd

values of S(k, ro) are plotted as a function of ro for
k =1.0, r, =0.5, in different approximations in

Fig. 9. The peak position (ro= l. 1) in the present
approximation [first order (FO)] occurs at a much
lower frequency compared to that in the RPA
(co=1.4); and the free-electron peak [Hartree-Pock
approximation (HFA)] occurs at a still lower fre-

quency (ro=0.5). S(k,ro) is more symmetric in

first order than in RPA or HFA.
The peak positions of S(k,ro) for various

momentum transfers in the different approxima-
tions are plotted in Fig, 10 for r, =0.5. For A; g k,
(point marked by a cross on the ro,

+ curve), both
the plasmons and the electron-hole excitations con-
tribute to the total intensity. The plasmons pre-
dominate for k g0. 5 and the electron-hole excita-
tions predominate for k & 0.5. For k & k, only the
electron-hole excitations contribute. The FQ and

RPA plasmon curves are almost indistinguishable

in the present case. The FO peak always lies be-

tween the RPA and free-electron peaks.
Let us consider the sum rules of S(k,ro). The

lim (ro '), = 1

k —+0 2u k

(ro),
lim

)
——roq(k) .

k~0

S(k)=—f S(k,ro)dro . (6.4)

The sum rules (6.2) and (6.3) are useful as checks
of the numerical results of Q'. The static struc-

ture factor is defined by

3
0.5—

I

1

I

/

/

/

/

/
k =1.0
rs =0.5

II

/ I

I

I

I

I

I

I

I

I

II
I

'0 I

0.5 1,0 2.0

FIG. 9. Energy loss function Irn[ —I/e(k, ro) j vs cu

for k =1.0 and r, =0.5; .———free-electron gas;
RPA; present approximation.

FIG. 10. Plasmon dispersion curve up~(k} and peak
positions of S(k,m } for I;=0.5. The RPA and first-
order plasmon dispersion curves are the same within the
accuracy of the figure. The cross on m,+(k} is at k, .
Peak positions of S(k,e) .—- —- —in the free-electron

gas, —————1n the RPA, ———m fj.rst-order theory.
About k =0.5 the plasmon and the electron-hole contri-
butions to 5{k}are nearly the same.
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In the long-wavelength 11mlt lt 1s reasonable to
assume that the major contribution to S(k,co) is
from the plasmons. ' In that case the form of the
structure factor S ~(k,co) is

Sp)(k, co) = N—A«5(co c—o«) . (6.5)

Using the sum rules (6.2) and (6.3) in the k~0
11mlt, we obtMn

(6.6)

Using co~(k) of (5.6) we have

2
—3/4 —1/2k 3/2 (6.7)

Using the e( k, co) of RPA in (6.1) and (6.4), the
e-h contribution is found to be S, «(k)
=(3rrr, ) 'k and using the e(k, ~) of FO,
S,'«(k)-k in the long-wavelength limit. This jus-
tifies the assumption made above.

In the small-wavelength limit, according to Ref.

A'k

2mcoq(k)

lim S(k)=1+ C
k

Using (4.1) and (6.1) in (6.4) we find C to be

(6.8)

1

1+g (k, co)

The above integration can be done in this limit
(Appendix D) and we get

C =v 2r, [—1+—,], (6.10)

where the first term in the square bracket is the
RPA contribution, and the second term is from
FO, similar to the 30 case.

For intermediate values of k, S(k) is calculated
numerically and the result is shown in Fig. 11.
The values of S(k) in the present approximation
lie between the HFA and RPA values.

The pair correlation function g (r) is given by

g(r)=1+ J"dk kJO(kr)[S(k) 1], —(611)

where r is in units of k~
' and Jo(kr) is the Bessel

function of the first kind of order zero. At r =0

g(0) =1+I dk k[S(k)—1] .

The integration is done numerically and Fig. 12
shows g(0) as a function of r, . The region where

g (0) ~ 0 in the first-order approximation is almost
double that in the RPA. The Hubbard and STI.S
approximations seem to be even better.

Using the large-k expansion of S(k) [Eq. (6.8)]
in (6.11) we find that

(6.12)

dg (r)
dI'

0
(6.13)

This is similar to the corresponding relation in
the 3D case. The only assumption used in the
derivation of (6.13) is the asymptotic behavior of
S(k) given by (6.8). Therefore (6.13) must be satis-
fied by an approximate theory and is a good check
of the numerical calculation of g (0). It is fulfilled

0.5

0

0.5
r,

].0

FIG. 11. Static structure factor S(k) vs k:
free-electron gas, —————RPA, first-order
theory.

FIG. 12. The value of the pair correlation function at
zero interparticle separation vs r, : —————RPA,

first-order theory. The points are the results of
STLS O, Hubbard K (Ref. 3).
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satisfactorily by all the approximations, There is
another relation satisfied by the derivative of g (r):

1 dg(r)
V 2' dr

I
r-+0

{6.14)

which is valid for particles interacting via the
Coulomb law.

In an approximate theory (6.14) will be fulfilled
only approximately. In the first-order approxima-
tion the Ihs of (6.14) gives 0.5 which is the value of
g(0) at r, =0.0. Thus (6.14) is satisfied with the
accuracy to the leading term in r, of the rhs. The
RPA does not satisfy {6.14) at all, since the lhs of
{6.14) gives 1.0.

The free-electron correlation function is

Ji(r)
r 2

FIG. 13.

,.l
I

I
l

lt t t ~ OQ9O
4 6 8 iO

2 5 4 5

The pair correlation function g (r) vs r:
free-electron gas ————RPA for

irst-order for rs ——0, 5. r ls &n unjts o

where Ji is the Hessci function of the first kind of'

order one. The pair correlation function in dif-

ferent approximations is shown in Fig. 13. The
"dectrostatic correlation hole*' of the RPA is
much deeper than that in HFA. This hole is rc-
ducixl in the first-order approximation. In the
first-order theory g (r) & 0 for r, &0.5 and becomes

slightly llcgativc for rg =1.0. gHF(r) RIid gapg(r)
never exceed 1. In the present approximation g (r)
docs cxcccEi I vcrJJ shghtly, although much 1css

than in the 3D case. The extrema of g(r) are

shifted between the different curves (r, =0.5, 1.0)

Unhke in the 30 case.

VII. CONCI. USIONS

» this paper the contribution of the fiist-order
Feynman diagrams to the proper polarizability
valid foi Riiy WRvc Ilin11bc1' and frequency, has
been evaluated for t11c fii'st time. A comparison of
the results obtained here with the corresponding re-

sults in the 30 case shows that there are many
qualitative similarities but some important differ-
ences too. The latter lie mainly in the nature of
singularities of Q', e.g., in the 3D case ImQ' has

)Ump dlscontlnuit1cs Rt thc chRI'Rctcflstlc frc-
qucncics whcfcRs 1n thc 20 CRsc lt 1s singular.

RcQ is singuia«n both cases but in the 2D case
the singularity is much stronger. A detailed
analysis of the behavior of Q' near the singularities
has bccn glvcn.

One of the more interesting results in the 2D
electron gas first pointed out by Maldaguc' is 8
large enhancement of the static polarizability m'(k)

at k 2kF (see Fig. 8) which could lead to a
charge-density wave (CDW) instability in layered
transition-metal dichalcogenides. Although
higher-order corrections to the polarizability could
reduce this enhancement, for values of r, ( 1, the
region of interest in these compounds and where

the first-order result should be a reasonable ap-
proximation, we tend to believe that this enhance-
ment would persist.

In contrast to the 3D case, the validity of the
present perturbation results is confined to the den-

sity region r, & 1, since already at ~, =1 the pair
correlation function has become slightly negative
for small interparticle separation. This reficcts the
IRct that tlic cffcct of coiTclatloiis fo1 R glvcil rg Is
much stronger in a 20 than in a 30 case.

To pursue the perturbation approach beyond
what has already been accomplished ln this paper
seems to be a difficult if not an impossible
mathematical task. For the present a more fruitful
approach would be a phenomenological one in
which onc constructs 8 dynamical complex local
field 6 (k, co) keeping in mind its general behavior
as revealed by thc first-older pcrturbat1on theory
and making use of the sum rules. Unfortunately,
thcrc ls no cxpcrlIQcntal data avallablc on thc
dynamical structure factor S(k,co) for a 2D elec-
tron liquid to offer some guidance in fixing the
parameters of a phenomenological theory. An 81-

tcrnatlvc course is to adopt thc equation of Inotlon
approach' which has had some success in the 30
case.
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APPENDIX A: EVALUATION OF ImEs~

We first evaluate the imaginary part of the function

0 0 0 0

FSE(k )
i P P+ P Pd pd p' (n~ —n~ i, )(n~~ n~~ —+i)

i p —p i
(co+co

p
—co + i, +cri)

(Al)

where n - =e(1—pz) and

1 ~2
N =2pp 2

Using the identities

1 1

(co+z) Bco (co+x)

1 1=I' i ir5(co—coo), —
(co coo+—i ri) (co —co,}

and changing p+k~ —p and p'+k~ —p', (Al)
can be written as

ImFsE(k, co) = 1m[Ed (k,co)+Fs (k,co)]

—Im[F„(k, co)+F~ (k,—co)],—

I (q) = IC (1/q)+qE (1/q),
1 —

g (A8)

where K(x) is the complete elHptic integral of the
first kind.

Now consider the function

Let p —q=p; then

I(q) = , f —fdP e(1—(p+ q)')

=-,' f dy f -"dp, (A.6)

where p» is determined by (p+q) =1. For
q g 1, we find

I(q) =E(q),
where E (q) is the complete elliptic integral of the
second kind. For q & 1, we find

ImF„(k,co)= — n -n -,
2 Bco

~ p p'j

J(k, co) = d p n 5(co+co- —co- )p p p+k

& kpXf co~p p (A9)

X5(co+co —co- )p p+k Remembering the definition of v [Eq. (2.8) of the
text] we have

1 2m'

J(k,co)=—f pdp f d$5(v —p cos{{))

l~sE(k )
ir c) f d p d p 0 0

I
p+p'+k

I

X5(co+co —co p) .
p p+k

(A4)

Xf(co,p,p cosp) . (Al{))

Performing the 6 integration and introducing a
new variable Z =[{p —v )/{1—v )]'~, we have

J(k co)= —e(1—v ){1—v )'
k

Consider the function X f dz f(co,v +(1—v )z,v) . (Al 1)

d ppf~
I(q)=-, f

I p —ql
(A5) On using (A5) in (A3) and (A4) and then using

(A9) and (All) we find
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T

Im[F„(k,co)+F~ (k, ro)]= e(1—v ))(1fdz[1(p)) —I(p2)]

where

p) ——[(v+k) +(1—v )z ]' =p(k, v, z)

(A12)

p2=p(0, v,z) .

Performing the v differentiation in (A12) and using the relationd, (1—v')z
I(P (k, v, z) ) =I'(p)—

ck p

and integrating the result by parts, then using (2.8) and (A2) we find

l~sE(k, ~)=e(1—v', )y"(k,v, ) —e(1—v' )y"(k,v ),
where

(A13)

(A14)

(k v)= [I([(k+v) +(1—v )]'~ )—I]

I'(p~)» (p2)
+ (1—v2)'i (k+v) f dz —v f dz

0 p] 0 p2
(A15)

APPENDIX B: EVALUATION OF IIE'"

Here we wish to evaluate the imaginary part of the function

0 0 0 0
ex ' dpdp (n- n-+—

q )(n-„, n-„,+ k )—
F'"(k,a)) = —,

p —p CO+CO~ —CO~+ k +ltd N+N~ —N~ + k +l Y/

Following the procedure adopted in the calculation of F, (81) becomes

ImF'"( k, co) =1m[Ed"( k, co)+Fq"( k, ar )]—1m[Ed"( k, co) +Fg ( k, —co)], —

(81)

(82)

and

dpn 1
ImF&"(k, ro)= —m. f d'pn-5(~o+~-, —ro-, +p)+ f—

P
i p —p'

i

co+et)~ —co~ + p

d p7f~i
ImF&"(k,co)=m. f d pn &5(co+co~ —

co&+ k )P f IP+p'+kI ~+~&+k —~y

(83)

Let us consider the function

d'p n0-„

(Gg, q, n q)=H f
I
p-q

I
0-n p

We take a coordinate system such that n =(1,0), q =(q&,qz), and p=(x,y). Performing they integration,
we obtain

G(g, q, q~ ) =H [R((x —q~ ),(I x)'~ q2) R((x ——
q~ ),—(—1 —x —)'~ —qz)] .

(g —x)

where

R (a,p) =ln[p+(a'+p')' '] . (87)
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Let us again introduce another function

1 I
S(w, b,c, )=f dzR(w, b —cz)= [H—(w, b) H—(w, b —c)], (88}

H(w y} y ln[y y{ w2yy 2)k /2] (w2yy2)1/2

Usmg {85}m {83)and (84)~ we obtain an expression 'which has the structure of (A9). Following the pro
cedure adopted in Appendix A and after some lengthy algebra we obtain

ImF'"(k, co)=8(1—v+)P'"(k, v+) —8(1—v ){('"(k,v ), (8

p'"(k, v)= — p' f T((k-+-v —x),(1—x )'/, {1—v )'
v+k —x

(812)

(F«»gebraic details see Ref. 12.)

APPENDIX C: EVALUATION OF Gn„{k)

GHp is given by Eq. (5.16) of the text and is

1 2 {k q)GHp(&)=, f d q I~Hp(q) —~Hp( I &+q I }]
2&k q

;f & q- [~Hp(q) —1]+ —,f ~ q [1—~Hp(i&+el)].
1 p (k q) 1 2 (k q)

irk q 2+k

Changing k+ q~ —q in the second term of {C2) we get

{Cl)

(C2}

(C3)

(q cosP+ k)

(q +k2+2qk cog)'/~
(C4)

If we now introduce the new variable x
=sin{//2), (C4) can be expressed in terms of com-
plctc clllpt1c 1Iltcgr818:

Z (q, k) = [E(q )(q —k—)--2 k+g'

oo

GHp(k) = f q c(p [1—~Hp(q)]
2mk

X [Z(q, k) —eq] . (C6)

The q integration in (C6) has to be done numerical-
Iy.
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APPENDIX D: EVALUATION GF
THE CONSTANT C IN THE

SMALL-%'AVELENGTH EXPANSION
GF S(k)

Now

OQ

0 m~s
dco ImQ ==—for k )2

0 v'Zk
(D3)

—= —1+Q'+ Q' —(Q')'+
1+

(Dl)

In the limit k~ co, the relation
~ Q +Q'

~
&& 1

is fulfilled in general except in the narrow frequen-
cy regions close to co;+(k). Thus the integrand in
Eq. (6.9) of the text can be expanded in almost the
whole range of integration as

2

f dcoIm[(Q ) ]= 1+0

lim f dco ImQ'(k, co)=I-„.
k

(D4)

(D5)

dcoIm = f dcoImQ
0 1+Q

To calculate (D5), the methods of A.ppendixes A
and 8 are used. Since

—f dco Im[(Q )']

+f dco Im[Q']+0

Q'(k, co) = [F (k—,co)+F"(k,co)],

Isg +Ie+

I&=—— (n - n- —-)—(n-, n-,—-) —5(co+co- —co- -„)dco=0 .fP ~s lPlP p p p p

mk p —p
I V+k

crfs d2p d2p'' ~& dco 5(co+co-+,—co~,
k )I%= ', — (no- no- k—)(no-, —no-, -)y

P P+" P P +k '
0ip —p i p p+k

r, d2p—d2p (n-„n~+ k )(n—~, —n-„,+-„.)8(P' k+k /2)

27''k p. p' p' k p
~ g

(D7)

The 8 function takes care of the fact that the zero
of the 6 function is in the region of the co integra-
tion. Following the procedure of Appendix A,
(D7) can be written as the sum of four terms.
Three of these terms become zero, and the surviv-

ing term is

d p d p'n -n -,8(p'k+k l2)
(I)'xk =

i
p+p'+k

i
(p+p'+k) k

In the limit k~ bo, (Dg) becomes

lim f dco ImQ'(k, co)=—
& k

Now

, vZkC= l&m k —— de Im
k —+co r,

[See Eq. (6.9) of the text. ] Using (D3), (D4),
(D10), and (D2) in (Dl 1) we obtain

(D10)

2

2m.k

2
1 2 2, m ]"s

k3 f171&~
I r '1&~ 2 k4 '

(D9)

3 +2 k S

vr r, v2k
~"s m' I"s

r

+
2 k4

Therefore C =V 2r, ( —1+—, ) . (D12)
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