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Spin-polarized quantum systems: Internal energies through a lower-bound
formula and the quantum theorem of corresponding states

T. K. Lim'
Physikalisches Institut der Universitat Bonn, Bonn, 8 est Germany

(Received 14 September 1981)

An extension of de Boer's quantum theorem of corresponding states, which yields a relation
between the minimum number of atoms required in a cluster so that it behaves like the bulk

system Nm;„and de Boer's quantum parameter A, is realizable when Hall-Post-Stenschke
lower-bound energies are matched with the experimental internal energies of the condensed
phase of spin-polarized quantum systems and rare-gas atoms. Through it is found evidence that
both forms of spin-polarized deuterium have bound ground states, that spin-polarized helium
has an internal energy of —2.1 K per atom, and that Nm;„ranges from 6 to 19.

The astounding properties predicted to exist in
spin-polarized quantum systems of atomic hydrogen,
its isotopes, and He (labeled Hi, Di, Ti, and He),
respectively) have captured the attention of a large

group of physicists. " Thus the study of these sys-
tems has burgeoned into a highly active area of
research which has brought together in a common
endeavor participants normally separated from each
other in disparate disciplines. Happily too, the in-

tense interest has been sustained by rapid develop-
ments in the experimental stabilization of Hi. 3

Theoretically, while the properties of Hi are reason-
ably well delineated, those of Di and 3Hei fermionic
systems, as opposed to the bosonic Hi, are much less
certain. ' For example, the macroscopic states of the
two forms of spin-polarized deuterium, D I~ and Di2
(corresponding to the two possible nuclear-spin
configurations), and the internal energy per atom of
'Hei, are undetermined.

Hess reports seeing clusters of Di at 1.5 K and in
SO-kG magnetic fields, ' but variational calcula-
tions ' and empirical extensions of the quantum
theorem of corresponding states (QTCS) of de
Boer yield differing "opinions, " an illustration of
how close Di is to the critical boundary between gas
and liquid at low temperatures. Miller and
Nosanow, 4 who used the Bogoliubov-Born-Green-
Kirkwood- Yvon —Kirkwood-superposition-
approximation (BBGKY-KSA) procedure to evaluate
radial distribution functions corresponding to Jastrow
functions and the %u-Feenberg antisymmetrization
expansion, found that D f~ and Di2 have bound
states, but because the energies derived (0.13
K/atom for D'f~ and 0.23 K/atom for D'i2) were very
small, they were justifiably hesitant to make that
claim. The general difficulty of treating fermionic
N-body systems'0 extends also to 'Hei, where the
largest energy obtained is —1.75 K/atom as reported
in Ref. 11, but the authors are chary of having ob-

tained a convergent result.
In this climate of doubt, one is gratified to locate

circumstantial, but compelling evidence which sug-
gests that both Di~ and Di2 have bound ground
states (energies 0.1 and 0.28 K/atom, respectively)
and that Hei has an energy of —2.1 K/atom. Simul-
taneously the analysis reported herein yields another
important number which holds much interest for
researchers in the area of nucleation theory, nozzle
beam work, and colloid chemistry, namely, the
minimum number of atoms in a cluster which makes
it behave like the bulk system. ' For "classical" sub-
stances this number is 19.

This work began as an attempt to update and im-
prove a paper of Etters. " In it, he determined the
absolute Hall-Post-Stenschke lower-bound energy'
for small clusters of Hi and D i, then concluded that,
since at least nine atoms of Hi and five of Df were
needed for binding, a plausible argument based on a
direct comparison of these numbers with that re-
quired to yield the experimentally determined energy
of 'He, N;„('He) =8, implies that Hi is undoubted-
ly gaseous at 0 K. He felt that the existence of liquid
Df is an open question.

Etters's arguments include the following assump-
tions. First, the diatomic potential, required in the
lower-bound formula [E~(m) ~

~ N(N —1)
x E2(Nm/2), where E~(m) is the absolute lower-
bound energy for a cluster of N identical atoms each
of mass m and E2(Nm/2) is the exact energy for a
diatomic pair identical in every way to the atoms in
the cluster but with a mass Nm/2] has now been su-
perceded by more accurate phenomenological
representatives, not all of which have the Morse

. form. 4 "' Second, account must be taken of the re-
quirements of symmetry in the two-body problem.
This implies that the lowest P-wave state must be
used in place of the S-wave ground state for the
description of fermions. ' Third, it should not be
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He alone which serves as the final arbiter of the
macroscopic properties of the other light-element sys-
tems.

The first two deficiencies are rectified by using
Morse fits to the potential of Kolos and %olniewicz'
for the hydrogen isotopes and to that of Aziz et al. "
for the He isotopes. The prescription selected for
this procedure is that the maximum depth (e), its lo-
cation (r;„),and the zero-potential point (o) of the
accurate potential are exactly yielded by the Morse
potential,

V~(r) =e(exp[ —2a(r —r;„)] (1)

E„/N

[K}
-1

9 N

—2exp[ —a(r —r;„)]]

This decision to stay with the Morse potential as the
common denominator for the systems studied lies
not only in its computational simplicity —S states are
exactly evaluated while an excellent perturbative ap-
proximation exists for the P states" —but also in its
accurate description of the bowl region, the region of
greatest importance in the binding-energy calcula-
tions. The role played by other well known systems
in expiicating the macroscopic properties of D [ and
'Het [well known in the sense that their true internal
energies are accurately pegged, as in 'He-B —'He
atoms treated as bosons —and T t (Refs. 19 and 20)]
is not easily clarified. Ho~ever, there is a suggestion
when one develops the Ey/N vs N curves for 3He-8,

T[, He, D-8—deuterium atoms treated as bosons-
and H[, and evaluates N;„ for 'He-8, Tt, and 'He
(where the energy for 3He-8 is given in Ref. 19, that
for T[ is on Table III of Ref. 20 and that for ~He is

quoted in Ref. 21). Then if one checks these values
off on the energy versus N plots (see Fig. 1), one can
discern the makings of a universal curve passing
through the three points. In Ref. 9, de Boer had em-

pirically shown a curve for U0, the internal energy in

reduced energy units, versus A" [where A'=2m''~'
- (/r'/m so') '~' is the quantum parameter], on and
astride which sit the points extracted from the inter-
nal energies of a number of elements in their con-
densed phases. It becomes conceivable that N;„
and A" can also be closely correlated. A plot of these
two quantities for 'He-8, Tt, 4He, and the heavier
rare-gas atoms [for these the same procedure as for
the light elements is folio~ed and the parameters
quoted in de Boer's work are used (see Table I)], is

sho~n in Fig. 2. Indeed, there materializes a univer-
sal curve for these bosons from which one can reli-

ably extract the value N;, (D-8) =6.4. Returning
then to Fig. 1 and checking this number off on the
D-B curve indicates an internal energy of 0.65
K/atom for D-B. More interestingly for the rnatter at
hand, one finds that a smooth curve passes through
these four N;„points, intersecting the 0 line at
N = N~„& =6.3. This latter curve is nowhere near the
the H[ line (the arrow in Fig. 1 indicates where the

H[ curve meets the 0 axis). Accordingly, Ht does
not possess an N;„value for negative energies and
cannot have a bound ground state, in line with ex-
pectation. Also N„;, =6.3 implies a critical value for
q in bosons, viz. , q~ =0.46 in embarassingly good
agreement with the Miller-Nosanow and Bruch
values. 4 22

Proceeding now to the fermionic systems, one ex-
pects to find a universal curve here for N;„vs A' as
well in both the "totally" fermionic (D[~, 'Het, etc.)
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FIG. 2. Plot of N~;„against the de Boer parameter A"

for rare-gas and other bosonic atoms.

FIG. 1. Plot of E~/N against N for a number of bosonic
systems. N~;„ is obtained by locating the positions of the
"true" energies of the elements on the appropriate Hall-
Post-Stenschke curves. The dashed line is the boson univer-
sal curve.
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TABLE I. Table of potential parameters, Nm;n (the minimum number of atoms in a cluster to
yield macroscopic energies), and Uo (the reduced internal energy in the condensed phase) for vari-
ous elements. (The values of Uo in the last four lines of this table were obtained through methods
described in this paper. )

System (K)

fmin

(A) (A) (A) +min U +
0

Kr
Ar
Ne
4He

Tt
3He-B
3He

D-B
3Het

Dlt
Dt2

201.9
142.1
42.0
10.85
6.462

10.85
10.85

6.462
10.85
6.462
6.462

4.004
3.760
3.372
2.968
4.153
2.968
2.968

4.153
2.968
4.153
4.153

3.569
3.351
2.764
2.643
3.69
2.643
2.643

3.69
2.643
3.69
3.69

1.59
1.69
1.89
2.02
1.46
2.02
2.02

1.46
2.02
1.46
1.46

2.251-4
7.616-4
7.498-3
0.1599
0.183
0.2122
0.2122

0,274
0.2122
0.274
0.274

0.094
0,173
0.542
2.50
2.69
2.89
2.89

3.28
2 ~ 89
3.28
3.28

17.9
17.4
16.0
7.3
6.9
6.8

6.4
7.9
7.6

8.1'
7 7'
64'
0.66b

0.50'
033
0.23d

0.10
0.19
0.016
0.043

'Quoted from Ref. 9.
Computed from the experimental internal energy per atom quoted in Ref. 21.

'Computed from the variational internal energy per atom listed in Table III of Ref. 20,
Computed from the calculated value of Ref. 19.

and "mixed" fermionic (Dt2, 'He, etc.) systems but
one is thwarted since there are no Uo values avail-
able to fix N;„. However, the recent work of Lee
et al. ' on 'He and He-8 does suggest an "experi-
mentally determined" energy of 'Het. By appropri-
ate spin weighting, ' one sees that to a good approxi-
mation

=3 1

He 4 Het 4 He-B (2)

Thus, since E3„=—2.47 K/atom and E3„B= —3.54

K/atom, E3 =2.1 K/atom. This value is probably

closer to the "true" energy of 3Het then the varia-
tionally determined —1.75 K/atom calculated by
Lhuillier and Levesque" since Eq. (2) is a reliable re-
lation and the energy values used in it are very accu-
rate. In fact, Clark et al. have also suggested a value
around —2.0 K/atom. Going to Fig. 3, where the
EIv/N vs N curves are plotted for fermions and with
—2.1 K/atom as the fix for the totally fermionic
curve, one can draw a line with the same slope as for
bosons through it. This curve intersects Dt t at
N;„=7.6 suggesting an energy of 0.10 K/atom for
this system. One can also use a similar spin-
weighting estimate to find the energy for D t2 since
one already has the energies for D-8 and D tt. In
fact

The universal curve for the totally fermionic species
crosses the 0 axis with N„;,just a shade under 7.6,

FT
thus giving q, =0.29. These values for the totally
fermionic systems are again in excellent agreement
with the values of Miller and Nosanow. 4 For the
mixed fermions, the projected universal curve yields

c T=0.27

The numerical predictions of this analysis should
not depend sensitively on any of the assumptions
made. D 8is definitely b-ound and Eq. (3) implies
that D t2 is bound irrespective of whether D t t is or is

EM/N

(K)

-3

-7

2 1

EDt2 3 EDt] 3 D-B

yields an internal energy of —0.28 K/atom for Dt2.

(3) FIG. 3. Plot of E~/N against N for a number of bosonic
and fermionic systems. The dashed lines are the universal
curves mentioned in the text.
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not itself bound. As to the 1atter point, it would take
a large shift of the totally fermionic curve to make
Dt~ unbound. This is possible but not likely.
Another reason why one expects no dramatic change
in the totally fermionic curve is that the boson and
two fermion curves must almost coalesce as W;„
grows and the systems become more classica1. In
fact, there is a limiting value for N;„. From Fig. 2

this is 19, which is to be contrasted with a value
between 6 and 8 for a quantum-mechanical system.
These numbers compare favorably with those ob-
tained by Sinanoglu. '

To conclude there exists an extension of de Boer's
QTCS which embodies a direct relationship between
the parameter A" (and thus also q) and W;„(the
quantity obtained from matching the Hall-Post-
Stenschke lower-bound energy to that experimentally
determined) for rare gases and spin-polarized quan-
tum systems. This connection implies bound ground

states for D t t and D t2 and predicts an acceptable
internal energy for Het. It would be interesting to
repeat the analysis of this paper for two-dimensional
systems. Work in this direction is in progress.
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