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A two-dimensional model is used to describe spin relaxation of H j on the surface which takes
into account both binary collisions as well as hydrodynamical modes. The relaxation rates show

a strong anisotropy with respect to the orientation of the magnetic field. This anisotropy might
be very important for the stabilization of high-density H j.

It has recently been shown that atomic hydrogen
can be stabilized against recombination up to densi-
ties of -5 x10' cm '." The necessary experimen-
tal conditions are a high magnetic field (-10T) at
low temperatures (-0.3 K) to polarize the electronic
spins, and the coating of the walls with superfluid
He, or a mixture of 'He-'He, to suppress condensa-

tion and recombination on the surface. One of the
most interesting features of this new quantum gas is
the possibility of Bose-Einstein condensation (BEC)
which is expected to occur at densities —10' cm '
for currently available temperatures. Considerable
progress has recently been made in identifying and
understanding the various decay channels of atomic
hydrogen. ~ From these works and from the calcu-
lation of adsorption isotherms" it is clear that both
the low-temperature thermodynamics and kinetics of
spin-polarized atomic hydrogen (H j) are affected cru-
cially by the presence of container walls. At present
the creation of densities of H j required for BEC
seems rather difficult to achieve. '

An interesting suggestion for achieving high densi-
ties was made by Statt and Berlinsky, who proposed
that H j might be stabilized in one of its hyperfine
states: the pure electronic spin "down" and nuclear
spin "down" ( ~ jj) ) the "b" state. Long nuclear re-
laxation times Tt (of the order of hours) would
prevent rapid thermalization of the "b" atoms (which
are relatively stable against recombination) with the
ground hyperfine "a" state (—~ jj) +a~tj)), which
has a small admixture e of reversed electronic spin
and recombines at a much higher rate. Similar
results were also found by Siggia and Ruckenstein. '

However, in the latest experiments a surprising
value of T~ ( 10 s was found under conditions where
theory predicted Tj -20000 s in the gas phase,
rendering the suggestion of a nuclear-spin-relaxation
bottleneck useless.

It is the purpose of this Communication to investi-
gate whether the observed relaxation times can be
explained on the basis of a two-dimensional (2D)

model in which adsorbed H j atoms interact through a
dipolar interaction and relax on the surface. It will be
shown that the relaxation times on the surface are
much shorter than those in the bulk, and indeed can
be as short as 0.1 s. However, the relevant kinetic
quantity for the instability of b atoms in the bulk due
to surface relaxation and recombination is the surface
nuclear relaxation rate times the probability that a b
atom sits on the surface, and this number turns out
to be much smaller than the experimental found
lower bound of -0.1 s '. It will be demonstrated
that the geometry of the hydrogen-stabilization cell,
and its orientation with respect to the confining mag-
netic field will be very important in reducing the sur-
face nuclear relaxation rates. The results might have
important consequences for achieving high densities
of Hj.

In a simple weak-coupling approach the relaxation
rate is the product of a second moment and a nar-
rowing factor: (Tt) =Mzr(Q), in which M2 is the
second moment (the "average" dipolar interaction
squared), and 7(Q), the narrowing factor, is the fre-
quency Fourier transform of a correlation function of
a bath variable. " The translational degrees of free-
dom of the H j atoms form the bath, and 0 is a
characteristic angular frequency associated with the
magnetic degrees of freedom (typically a Larmor or
hyperfine frequency).

The importance of the relaxation processes on the
surface can be understood on general grounds. In
the first place the second moment is much larger in
2D than in 3D because, on the average, the atoms
are much closer to each other, and in the second
place the translational motion is much "slower" in
2D than in 3D. Both these effects reduce T~. Only
the two lowest hyperfine levels will be considered:
the a and b state. The part of the dipolar interaction
(nuclear-electronic and electronic-electronic) having
orientational dependence Yz (rt2) ( r t2 is the inter-
nuclear vector of two interacting atoms) contributes
to the relaxation of H j . The second moment of the
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longitudinal magnetization, M2, in 3D is calculated to
be

M'(3D) =— (la)

in which d is the hard-core diameter, N the number
of particles, Vthe volume, and Q(e) =0 6—y2.yF2h2m

&& (1+ey,/y~) . Here e = a/y, hBis the mixing
parameter, a is the isotropic hyperfine interaction
constant, and B is the magnetic field. The second
moment of the longitudinal nuclear magnetization on
the surface is given by

Mq (2D) = — [2(1 —cos'8) +sin'28] (1b)
256 A d4

in which A is the area of the surface and 0 is the an-

gle between the magnetic field and the normal to the
plane. Two important conclusions can already be
drawn from Eqs. (1): (i) for a general orientation of
the magnetic fielda, nd for practical values of W/ V

and N/A, M2 (2D) » M2 (3D), and (ii) if the mag-
netic field B is perpendicular to the surface
(8=0o)M2(2D) vanishes, and there is no relaxation
within this model.

The translational motion of the atoms provide a
narrowing mechanism, and in a simple weak-coupling
approach the actual relaxation rates are obtained by
multiplying the second moments by the narrowing
factors. One must be careful, however, because
breakdown of simple motional-narrowing theory in
reduced dimensionality is possible. This breakdown
will result in strong frequency-dependent contribu-
tions to T~, and diverging contributions to T2, which
can be renormalized with simple mode-coupling
theory

The bath correlation functions relevant for dipolar
relaxation are"

in which

1 1 + 1

? I)cM TDIF (4b)

( TI „) ' denotes the contribution to the relaxation
rate of the YP component, and is given by

= g(.)F.(n),
1,m

(5)

in which F («)) is the Fourier transform of F (t):
F («)) = e'"'F (t)dt, and 0 is the energy differ-
ence between the a and the b state in angular fre-
quency units. Note that F (t =0) is the m com-
ponent of the second moment. Usually F (0) can
be replaced by F («) =0) (extreme motional narrow-
ing), unless there is a zero-frequency divergence.
Taking the co =0 limit in the BCM in 2D does not
give rise to problems, and the results in the low-
temperature region are

ternuclear vectors. So if a surface cannot be parallel
to the magnetic field it should be oriented as well as
possible perpendicular to the magnetic field to
suppress the important m =0 component of the re-
laxation.

I now come to the actual calculation of T~. Two
model contributions have been taken into account:
(i) the effect of binary collisions (BCM), using a
hard core, and (ii) the relaxation due to collective,
hydrodynamic modes using a diffusion model (DIF),
so (TI) =(T ) +(T ") . In both models
the contributions can be partitioned in m-dependent
components, ( TI ) ', in the following way:

1 1= —, (1 —cos 8) + —, sin 28, (4a)4 1 3 . 2 1

Tj T1,2 T& p

Y ()gr( ))'0Y ( y2( )))
)t)', (~i) r(~(0) rj(t)

(2)

F" (~=0)=—d (k, )-'(0.9g~'-2. 2a') (6a)
A

and

in which the spherical harmonics are described in a
reference frame in which the magnetic field defines
the z direction, and the double brackets indicate ther-
mal averaging. For the description of surface relaxa-
tion" it is more useful to transform the spherical har-
monics to a frame in which the z direction is normal
to the plane. The correlation functions in this frame
will be denoted by F (t), and the relevant relation-
ship for HJ is, neglecting small imaginary parts,

f, (t) =
2 (1 cos"e)F,(t) + —, si—n'2e Fo(t) (3)

Equation (3) shows an important feature of the
present model. On general grounds one expects that
F2(t) decays much faster than Fo(t), because in the
latter there can be no decay due to loss of correlation
in the direction of the internuclear vectors, but only
due to loss of correlation in the magnitude of the in-

F («) =0) = itd (ks T) (0—.33a —0.55ns)N
A

where the expansion parameter o. is given by

u=(mksTd it )' '

(6b)

(6c)

More terms in the expansion in o. are easily obtained.
One cannot overlook the possibility that collective

modes make a contribution to the relaxation rates.
In the non-Bose-condensed phase these can only be
of hydrodynamic nature, and I will assume a simple
diffusion model. The concept of self-diffusion in
dense 2D fluids is still a controversial issue, and is
far from being settled. ' However, for our purpose it
is more than sufficient to use the first Enskog ap-
proximation in 2D, because the logarithmic correc-
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tions will be very small for the actual surface cover-
ages of HJ. The result is

rot" (~=0) =O.3O-N 1

A Dd2
(7a)

lim FP" (co) =0.31— ln —2.2 . (7b)~ Dd o)d

All my results were obtained using a correlation-
function formalism, and agreed exactly with the ap-

in which D is the diffusion coefficient in the first En-
skog approximation in 2D. '3 As FP" (co =0) diverges,
the frequency dependence has to be retained, giving

proaches using the Boltzmann equation for the
three-dimensional case. The 3D results were in exact
agreement with the work of Siggia and Ruckenstein,
who also used a hard-core potential, and differed by
approximately a factor of 2 from the work of Statt
and Berlinsky, who used a more realistic potential.
For the 2D calculations suitable ultraviolet cutoffs
had to be introduced. The advantage of the
correlation-function approach is the ease with which
the flequency dependence of the relaxation rates can
be calculated.

The relaxation rates can now be evaluated and the
results are

p.53 x lp &2N 0.63 x1() )2N T)/'2 1+ 16.68
TBcM B

t 1 'I

1 0.51 x1p ~3 N T p.44 x lp ~3 N T3/'2 1+ 16.68
TB(M B

1 1 1

5 xlp ln p11 x10&5 N T&]2 22 N T ' 1+ 1668
TP[F

'

A A B

(8a)

(gb)

(8c)

=0 15 x lp N T qi2 1+ 16 68
T DIF B (8d)

In Eqs. (8) N/A should be in cm 'and Tin kelvin.
The magnetic field B should be in tesla. Let us cal-
culate the various contributions for experimental con-
ditions similar to those used in Ref. 6: N/A =10'2
cm ', T=0.1 K, and B =10 T. One obtains
T s =04s T $ =38s T '"=Ss and T '"
=30 s. It is clear that these T~'s are much shorter than
the bulk (3D) relaxation times. However, if an ef-
fective T~ of bulk atoms would be calculated due to
surface relaxation, Eqs. (8) should be multiplied by
the probability for an atom to be on the surface.
This would increase the relaxation times by several
orders of magnitude. It is clear that these effective
relaxation times will be much longer than the experi-
mental bound of Van Yperen et al. : T~ &10 s. This
means that either a different, much more effective,
relaxation mechanism is operative, or that the inter-

pretation of the experiments should be reconsidered.
Another point is that the adsorbed atoms will have
some freedom to move perpendicular to the surface.
It is extremely difficult to take this effect into ac-
count in a satisfactory way since one needs anisotro-
pic two-particle correlation functions. For this reason
the T~'s calculated in this paper should be considered
as lower bounds for adsorbed H).

Note added in proof Very recen. tly Cline, Greytak,
and Kleppner" observed nuclear spin relaxation rates
of the same order of magnitude as those being calcu-
lated in this paper.
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