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Total surface energy and equilibrium shapes:
Exact results for the d -2 Ising crystal
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Explicit relations between the surface tension (interfacial energy density), the equilibrium

shape of a crystal, and the total surface energy are given. For the d =2 Ising model with aniso-

tropic couplings, the exact equilibrium shape is cast into a closed form of elementary functions.

The surface energy is compared with Monte Carlo simulations. A discussion of the solid-on-

solid approximation is presented.

A very old problem —the shape of a crystal (or
droplet) in equilibrium with the vapor —has recently
received considerable attention. Part of this revived
interest is due to the connections between the equili-
brium shape (ES), the surface tension' (ST), and the
roughening transition. '

If the ST is independent of the orientation of the
surface, it is an elementary exercise in the calculus of
variations to obtain the ES which (in any dimension)
is a sphere. For crystals, where the ST depends on
orientation, the problem is less mundane. In particu-
lar, in these cases, the interesting possibility of a
roughening transition exists.

Given an orientation-dependent ST, the problem of
constructing the ES was solved nearly a century ago. '
However, calculating the ST (within the framework
of statistical mechanics) is an extremely hard problem
and at present only for the d =2 Ising model is this
problem solved. Specifically, the asymptotic behavior
of a general two-spin correlation function, for large
separation was calculated explicitly by Cheng and Wu
in 1967.' That o-, the ST, may be obtained by duality
from this asymptotic behavior was possibly known

by 1963 and has been rediscovered many times
since. 7 These facts have all been put together recent-
ly to give the ES of the d =2 Ising model. Both
are short of a number of interesting results which we
wish to report here. First, some general results relat-

ing the ES and the ST in arbitrary d are presented.
Then, specializing to the d =2 Ising case, we give the
exact ES in a closed form of elementary functions.
We also describe formulas for the total surface free
energy, internal energy, the curvatures of the ES and
scaling properties. Finally, we make some comments
on the solid-on-solid approximation to the ST and the
ES.

Let o.(n) denote the ST of a planar interface with
normal'0 n and R (r") the radius of the ES in the
direction of r". Wulff's theorem may be stated analyt-
ically as

AR(r) =min„. o.(n)/(n i)

where A. is just a scale adjusted to yield the volume of
crystal. In regions where a (n) is differentiable, the
(local) minimum is the solution to V;(Ino)

&ikrk/( n r" ) where 7 ik
= 5jk —nink is the transverse

projector and" Vi—=v IkBk. Since it is the global
minimum which enters into (1) some care must be
exercised in using the last formula. With that pro-
viso, R —= Rr" is given by

A.R = n cr + V cr.

It follows that if the ST is stationary at i then
A,R=an and n =r". For completeness we state a
"converse" of formula (2): h, n/a =r/R +D(1/R)
where 0 are the transverse derivatives with respect to
r". Note that o- determines a unique R but the con-
verse is false in general. In general, '0 o may be
discontinuous (kinks in a) and, associated with the
direction in which these kinks occur, the ES can
develop facets. In d =2, a facet is a straight line,
whose length is bounded (from above) by the value
of the discontinuity. '

One useful consequence of Wulff's construction is
a simple formula for the total surface energy X of an
equilibrium crystal with volume V. Let 8'be the
volume bounded by R(r") as given by (1) with ) =1.
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Then

X=dS'~ V

hz coshNz + hycoshcky = ~ »

h» sinha» = (tan@) h„sinhn„,

where

h„= tanh2P J»/cosh2P J„,
h» = tanh2P J„/cosh2P J».

These o.'s enter into the formula for o- via

Po (@)= u„cosQ + a» sin@, (6)

Only the factor d may be a surprise, the others are
expected on dimensional and scaling grounds alone.
This quantity is of interest in some Monte Carlo
studies (see below).

Another consequence is the relationship between
an ES which has been scaled anisotropically and its

. coresponding ST: o.. Consider the anisotropic scal-
ing operation S on a vector: (SA) &

= p, &A& (no sum)
where p, ~ are arbitrary (positive) constants. Let I
denote the inversion operation: IA=A/~A~. Con-
sider o = ISI(on). T.he ES constructed from o. is
S 'R. Thus, if o- were an "inverted ellipse, " the ES
will be an ellipse. This turns out to be the case for
the Ising model near T,.

The curvature at any point on the ES is related to
the matrix 'vr&R& = (r&o + ver»BkB~o)/A. Note t. hat
n&V &RJ =0 so that it is a linear (self-adjoint) operator
on the tangent plane. The other d—1 eigenvalues of
V&R~ are the principal radii of curvature. In d =2,
the only radius of curvature is therefore the trace of
this matrix.

Finally, we remind the reader of one definition of a
roughening transition'. The vanishing of some kink
in o. as T approaches the transition temperature from
below. Since a facet in the ES implies a kink in the
ST, the vanishing of a facet is a signature for a
roughening transition. However, experimentally, it
may be quite difficult to determine unambiguously
whether a facet is flat or one with very low curvature.
Indeed, in two dimensions all interfaces are rough for
T & 0 but are flat looking for small T.

For the remainder of this Communication we spe-
cialize to the d =2 Ising model where the exact ST
and ES may be obtained. A convenient parametriza-
tion of n is Q, where cos@—= n x. The ST will be
denoted by o.(@) and o = Bo/8$.

For the Ising model with nearest-neighbor aniso-
tropic couplings (J„WJ»), on a square lattice, o.(P)
may be extracted from the results in Ref. 5. The
explicit form is not very transparent. It is far better
to start from the defining relations' for the functions
Az and 0!y

where P =1/kT. It is easy to check that, except at
T =0, o has no kinks and that the two-dimensional
version of (2) applies. The result for the equilibrium
shape is remarkably simple (P —=PX):

x —= R„=a„/P, y =—R»= n»/P

Now we can, using (4), dispense with the parameter

$ completely and write a closed form

h„cosh(Px) + h» cosh(Py) = 1.

In the isotropic case (J„=J» =J), (4) and (7) reduce
further to

cosh/ cosh7i =
2 cosh2P Jcoth2P J,

where g, g are the rotated coordinates P(x +y)/2.
Near T =0, the shape is practically a rectangle with

J„/J» being the ratio of the sides. To see how "flat"
the sides are, we compute the radius of curvature
p(Q) at Q =0 and n/2. At these points AR = a. so
that p/R =1+a/o which is y/x and —x/y, respec-
tively. The result at /=0, e.g. , is

p/R = (sinhA )/A e "/4P J„,T~0
(10)

where A =cosh ' [(I—h»)/h„]. For the equal cou-
plings case, this is identical to those in Ref. 8. From
the graphs of the ES, it is clear that for Twell
above zero, the roughening temperature, the faces
look flat. The exponential growth of the radius of
curvature (coshP ~00) reflects the exponential
growth9 of o. which shows how a kink develops as
T ~0.

One could also ask how the radii of curvature van-
ish at the "corner, " i.e., where the maximum of
R(Q) occurs The resu. lt is p/R ~ Tas T 0. The
proportionality constant for general couplings is the
solution to a transcendental equation which does not
display any properties of interest to us. For the equal
coupling case, it is simply k/2J, as obtained in Ref. 8
also.

For T ~ T„cr(@)vanishes everywhere since
h„+ hy =1 at T, . One can check the well-known fact
that o- is proportional to T, —T and that it is an "in-
verted ellipse. " Thus, the ES, near T„ is an ellipse
with the ratio of the axes being sinh2P, J„
(= I/sinh2P, J»), where P, =1/kT, . For the equal
coupling case, the shape becomes a circle which is re-
lated to the isotropy at the scaling limit. An easy way
to see the ellipse and associate features is to expand
the cosh in (8) for small arguments, leading to
h„x'+h»y'=2(1 —h„—h»)/P . Equation (8) also al-
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lows us to conclude that, except at T =0 and near T„
no (temperature-dependent) rescaling of x and y can
bring the general ES into the equal coupling case.
The ES is an intrinsic property of the couplings and not
related simply to unequal lattice spacings in the two
directions.

Since 0- is a kind of "free" energy associated with
interfaces, we interpret X as the free surface energy.
Defining E =—B(PX)/BP, we would interpret it as the
average energy of the droplets. As T 0, both X
and E approach 8'„J»V. But near T„alt hough X
vanishes, E approaches a finite limit. This is a special
feature of the two-dimensional Ising model, where
X cc T, —T. This finite value is (16m Vsinh2P, J»)'i2
&& [J„+J»(sinh2P, J„)], which reduces to 8Jdm V in
the equal coupling case. For arbitrary T, we are un-
able to integrate (8) into a close form. However,
PX&/Vis just 26(P28')/BP which is integrable. We
quote the equal coupling case (it„=h» = h)

PXE 32J 1 —6e+e2 ~( )
1 —e'

where a=exp( —4PJ), m =—1 —4h2, it = h„=h», and
Jt (m) is the elliptic integral of the first kind. '5 The
general case, involving the second and third elliptic
integrals, is quite complicated. Unable to see any in-
teresting features, we do not quote it here.

In Monte Carlo studies' of droplets, it is easy to
find E: Count the broken bonds which make up the
boundary of the droplets of a certain size (i is the
number of minus spins in a sea of pluses, for exam-
ple) and average this quantity (for fixed h. Since the
configurations are generated according to their
Boltzmann weights, such an average is readily ob-
tained (by contrast the ES is far more difficult to ex-
tract from a Monte Carlo study). For the equal cou-
pling case and 2PJ =2 and 1.5, E/(8AII ) is found"
to lie in the range [1.18,1.21] and [1.33,1.38], respec-
tively. These results compare with 1.21 and 1.34
which we computed by numerical integration (for W)
and Eq. (11).

Before concluding, we make some remarks con-
cerning the solid-on-solid (SOS) approximation' for
0-. It was explicitly given by Burton, Cabrera, and
Frank' in the equal coupling case. The anisotropic
result is a trivial generalization which shows how dif-
ferently J„and J~ enter. Even in the latter case, this
approximation is exact for all T ~ T, if
$ =0, + m/2, ~. This miracle is a consequence of
delicate cancellations between overhang contributions
and interactions between the interface and bubbles in
the bulk. 2 For any other angle, the approximation
ceases to be exact. In particular, it does not vanish at
T, . Work is in progress to investigate the nature of
the contributions mentioned above for general an-
gles. A systematic expansion in exp( —4pJ„) near

$ =0, say, may be a possible way to analyze these ef-
fects.

It would be grossly unfair to give the impression
that SOS is a bad approximation. For the equal cou-
pling case, one can get excellent agreement by taking
the SOS from $ =0 to 7r/4 and using the fourfold
symmetry to get the rest. Although such a ST
(o.sos) would have a kink at w/4, a.sos/o-««, as a
function of $ and T, is within 1% of unity in over
half of the region 0 ~ P & 2', 0 ~ T ~T, in the $ T-
plane. For the ES, Ref. 18 gave the explicit result
also. As expected y(x) becomes infinite at some
finite value of x since they employed a formula which
is exact at P = rr/2. Using this ES up to dy/dx =1,
they generate a complete droplet by symmetry. For
such a droplet, they also quote the radius of curva-
ture at the corners, which agrees with the exact result
up to terms in exp( —4PJ). However, we do not
understand the nature of such a droplet near T,:
since the true (SOS) ST does not vanish at T, for any
angle except 0, + n'/2, 7r yet Burton et al. claimed that
the droplet becomes circular near T„corresponding
to an orientation-independent ST.

In conclusion, we point out several directions one
may continue future studies. Other d =2 models:
there is a wealth of models which are "soluable" to
various degrees. What type of ES do they produce?
Other applications. 'even within the confines of the
d =2 Ising ES [the remarkably simple (10)], we are
aware of two possible channels of exploration. One is
further comparisons with Monte Carlo simulations or
with the shapes of nucleation platforms in real crystal
growths. The other is a study of the fluctuations
about this ES, which enter into the analysis of singu-
larities associated with first-order transitions. '

In Refs. 21, the soft fluctuations about a spherical
(circular) droplet (ES) are considered since they were
concerned with a totally isotropic theory (the Q' field
theory). Near criticality, circular droplets may be a
good approximation to the Ising case. Far from criti-
cality, it is the ES of Eq. (10) that enters. We expect
that an analysis starting from our ES will produce
singularities which are closer to the true Ising ones
for all Tbelow T, . Lastly we believe that this study
of ST and ES may be extended to include the effects
of an external field, such as gravity. From there, we
hope to develop a theory of roughening transitions in
the presence of gravitational fields.

ACKNOWLEDQMENTS

One of us (R.Z.) thanks Professor K. Binder and
Professor H, Wagner for the hospitality at JQlich and
Munich, respectively. Stimulating conversations with
H, van Beijeren and D. J. Wallace are gratefully ack-
nowledged. He also thanks S. P. Bowen for help
with numerical computations. J. A. thanks L. Yaffe
for a useful discussion.



25 RAPID COMMUNICATIONS 2045

Permanent address: Physics Department, Virginia Polytech-
nic Institute and State University, Blacksburg, Va. 24061.

~For references on ST, see those in Refs. 8 and 9.
~J. D. Weeks, G. H. Gilmer, and H. J. Leamy, Phys. Rev.

Lett. 31, 549 (1973); H. J. Leamy, G. H. Gilmer, and K.
A. Jackson, Surface Physics ofMaterials (Academic, New
York, 1975).

H. J. Leamy and G. H. Gilmer, J. Cryst. Growth 24/25,
499 {1974);H. van Berjeren, Phys. Rev. Lett. 38, 993
(1977) provided an exactly soluable model of a roughen-
ing transition.

4G. Wulff, Z. Kristallogr. 34, 449 (1901). For a more re-
cent treatment see C. Herring, in Structure and Properties of
Solid Surfaces, edited by R. Gomer and G. S. Smith
(University of Chicago Press, Chicago, 1955).

H, Cheng and T. T. Wu, Phys. Rev. 164, 719 (1967). For
a summary see B. McCoy and T. T. Wu, The Teo-
Dimensional Ising Model (Harvard, Cambridge, Mass. ,
1973), pp. 299—305. See also M. E. Fisher and R. J. Bur-
ford, Phys. Rev. 156, 583 (1967), and L. Onsager, Phys.
Rev. 65, 117 (1944).

E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys.
4, 308 (1963).

7A. E. Ferdinand, Ph.D. thesis (University of London,
1967) (unpublished), Chap. 11; M. E. Fisher, J. Phys. Soc.
Jpn. Suppl. 26, S7 (1969); P. G. Watson, J. Phys. C 1,
575 (1968); and in Phase Transitions and Critical Phenome-

na, edited by C. Domb and M. S. Green (Academic, New
York, 1972), p. 116; R. H. Swendsen, Phys. Rev. B 17,
3710 (1978); E. Fradkin, B. A. Huberman, and S. H.
Shenken, ibid. 18, 4789 {1978);and R. K. P. Zia, Phys.
Lett. 64A, 345 (1978).

C. Rottman and M. Wortis, Phys. Rev. B 24, 6274 (1981).

J. E. Avron, L. S, Schulman, H. van Beijeren, and R. K. P.
Zia, J. Phys. A 15, L81 (1982).
We denote unit vectors in d-dimensional space by a caret
("). Scalar product is written with a dot ( ). Components
are denoted by subscripts (e.g., n&, i =1. . .d). Re-
peated indices are summed.

"0 is regarded as a function of d independent variables nk

when S» —= (S/Bn») is written. The projector r automati-
cally eliminates the spurious (radial) component.

' This is a generalization of the d =2 case, Eq. (D4) in Ref. 18.
' C. Rottman pointed out to us that this formula also ap-

peared in D. W, Hoffman and J. W, Cahn, Surf. Sci. 31,
368 (1972); Acta Metall. 22, 1205 (1974).

~4A. A. Chernov, Usp. Fiz. Nauk. 73, 277 (1961) [Sov.
Phys. Usp. 4, 116 (1961)]. We thank Dr. S. Stoyanov for
pointing out this article to us.

' We use the notation of M. Abramowitz and I. A. Stegun,
Handbook of Mathematical Functions (Dover, New York,
1965), Chap. 17, for K(m).

'6K. Binder and M. H. Kalos, J. Stat. Phys. 22, 363 (1980).
'~We thank Professor K. Binder for providing us with the

numerical data that were used to construct Fig. 4 of Ref.
16. Samples have l —100 and 500,

' H. N. V. Temperley, Proc. Cambridge Philos. Soc. 48, 683
(1952).

W. K. Burton, N, Cabrera, and F. C. Frank, Philos. Trans.
R. Soc. London Ser. A 243, 29 (1951).

OH. van Beijeren and H. Groenveld (private communica-

tion); (unpublished); see also M. E. Fisher and R. J. Bur-

ford, Phys. Rev. 156, 583 (1967).
J. S, Langer, Ann. Phys. (N.Y.) 71, 108 (1967); N. J. Gun-

ther, D. A. Nicole, and D. J. Wallace, J. Phys. A 13, 1755
(1980).


