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Nonferroic phase transitions are defined as the structural transitions occurring with a breaking

of translational symmetry within the same crystal class. They involve no new macroscopic ten-

sor components below the transition point, and they are generally identified experimentally

through the onset of superlattice reflections denoting the multiplication of the crystal's unit cell.
A theoretical analysis of these transitions is presented, based on Landau's symmetry criteria for
continuous transitons, of the order-parameter symmetries, space-group changes, and free-energy

expansions. We establish that the order parameters of such transitions are necessarily related to
one-dimensional (real or complex) small representations of the group of the k vector. Their

symmetry characteristics are, in general, simpler than those of other types of structural transi-

tions. Most of them possess a one-component order parameter inducing a doubling of the unit

cell. The remaining ones are associated with order-parameter dimensions as high as six, and

unit-cell multiplications up to thirty-two. The coupling of the order parameter to macroscopic

quantities, illustrated by the example of dielectric ones, is shown to belong to two possible

schemes. The relation between nonferroics and antiferroelectrics is discussed. The theoretical

results are compared to the available experimental data which pertain mainly to organic com-

pounds and metallic alloys.

I. INTRODUCTION

The onset of spontaneous, symmetry-breaking,
macroscopic quantities (i.e., polarization, strain) dur-

ing a crystalline phase transition involves necessarily
a modification of the crystal's point group. This cir-
cumstance is encountered in most of the well-known
categories of structural phase transitions such as fer-
roelectric and ferroelastic ones. It has led Aizu to de-
fine the concept of a ferroic crystal' which covers be-
sides the two preceding extensively studied groups of
transitions, more complex ones characterized by the
onset of spontaneous tensorial quantities of rank
higher than 2. Various authors' have listed the
orientational symmetry changes ("ferroic species")
relative to the various types of ferroic phase transi-
tions.

However, substances have long been known, which
undergo a crystalline transition without the advent of
any point symmetry breaking, but solely with a de-
creasing of the translational symmetry. These transi-
tions will not involve any spontaneous macroscopic
component. By reference to Aizu's terminology we
can call them "nonferroic phase transitions"
(NFPT). The change of translational symmetry dis-
tinguishes NFPT's from the so-called4 isomorphous
phase transitions which occur without any modifica-
tion of the crystal's symmetry.

The experimental identification of a NFPT
proceeds mainly through the detection, below the
transition, of superlattice reflections denoting the
multiplication of the number of atoms in the crystal's
unit cell, The available experimental results show
that these transitions are also accompanied by
anomalies in the dielectric or the elastic properties.

A number of organic compounds display a NFPT,
for instance chloranil' C6C1402, fluoronaphthalene
C ~OF8 and NN-dimethylnitramine. Several insulating
mineral compounds are also known, such as potassi-
um cyanide KCN (Ref. 8) and cesium trihydrogen
selenite CsH3 (Se03)2, as well as entire structural
families of metallic alloys, for example the groups la-
beled 82 and I.I2.' This relative abundance of il-

lustrative examples is surprising, because the experi-
mental identifications of NFPT's should have been
hampered by the lack of new tensorial components
below the transition point. It suggests that the con-
sidered class of transitions is very commonly realized
in nature. This has stimulated us to undertake its
theoretical analysis in order to specify its distinctive
aspects and to evaluate its importance among the
structural transitions which are predicted to be possi-
ble in the framework of Landau's theory of continu-
ous phase transitions. "

On the basis of this theory, we establish, in Sec. II,
a theorem which restricts drastically the types of ir-
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reducible representations of the crystallographic space
groups that are likely to induce a nonferroic sym-

metry change. This result simplifies the systematic
working out of the order-parameter symmetries,
space-group changes and free-energy expansions of
possible NFPT's. In this section, the preceding
characteristics are summarized in table form, and
compared to previous crystallographic works.

Section III is devoted to a detailed examination of
the experimental data. In Sec. IV, attention is given
to the forms of the free energies and to the coupling
of the order parameter to macroscopic quantities. In
particular, we discuss the dielectric anomalies which
are expected to occur at a NFPT.

II. THEORETICAL PROCEDURE AND RESULTS

The method used to apply the Landau theory to
continuous NFPT's is identical to that previously
used for ferroic phase transitions" ' and described
in detail in these references, It involves three steps,

In the first place, the "active"" irreducible represen-
tations (IR) of each of the 230 crystallographic
space-groups (SG), denoted Go, are selected on the
basis of the Landau" and Lifschitz" symmetry cri-
teria. This selection determines a few stars k' in the
Brillouin zone (BZ) of Go, and certain small
representations' v „ofthe group G -„ofthe k -vector
representative of k'. The free-energy expansion as-
sociated to the IR is then constructed and its minima
specified as a function of the expansion's coefficients.
Finally the symmetry change Go G corresponding
to each minimum, is worked out.

NFPT's possess specific characteristics which sim-
plify significantly the general procedure. The simpli-
fications are based on the following theorem' . A
NFPT can only be induced by an IR whose small
representation 7„is one dimensional (real or com-
plex). Let us establish this property.

(i) Let Go and G be the SG of the high- and low-

symmetry phases and 6-„the invariance space
group of the k-vector representative of the star k'

TABLE I. NFPT's in the triclinic and monoclinic systems. The detailed meaning of the columns is explained in the Appen!dix.
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associated to the considered IR (G k C Go). We
note Go, 6, and G-„the corresponding point groups.
G is defined" as the invariance group of the function

Bp=XXCk „4„(k)

where k and n, respectively, run over the arms of k'
and the basis of the small IR, r„.The set of P„(k)
is assumed to be a standard" basis of the IR.

As for a NFPT G = Go, G will necessarily include
the operations which transform k into any other arm
k, of the star k'. As the basis of the IR is chosen in

TABLE II, NFPT's in the orthorhombic system.
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(a) (b) (c)

TABLE II (Continued).
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A A

As G = Go, we have also G-„=H:G-„and Hhave
the same point-group operations, and g~, g2, . . . are
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the transition from Gq to G.}
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k

[E~ t j being a pure translation. '6
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one coefficient C„atleast being nonzero in the low-
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G-k =g)H+g2H+ h(Sp-„)=Spk (h c H}
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Using (6) we then find

The action of an element of G-„onthe function
5p-„ leads to a multiplication of Sp-„bya scalar.

Thus Sp-„spans a one-dimensional representation of
6-„contained in 7„.As v„is irreducible, we con-
clude that it is one dimensional itself.

The previous theorem allows to discard from the
present study all the IR's whose small representation
is multidimensional. On the other hand, it gives a

TABLE III. NFPT's in the tetragonal system.
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N I4/ (Tl) ' I41/'(T2)

2
n

1

a ' 2' 5'1' 2' 5' 6 P42mc

P4&cm(T, t ),t 3 t

P42mc (t l, t 2),
I4 md(T, T ),

P4 nm(t', T, )u

P4qbc(T , T, )

I4 cd (T,T4)
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I422 (T ~ T )4
2, 4 1, 2 a b

I4cm , MZ P4bm(T ),P4cc(T ),P4 bc(T ),P4 cm(T )2 3 '
2 4

X P4nc (T ),P42mc (T ),P4cc (T ),P4 bc (T )
1

' 2 2 ' 3 '
2 u
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TABLE III (Continued)-

(a) (b)

P42rn A

P42m( t
I

P4m2 (T
I

I4m2 (T
I

P42m (T

I42m (T

(c)

, T4), P42c (T2, T3)

P T3} ~ 4b2 {T2PT4}

T4} 14c2(T2

), P42 m(T, T )

)
4

(d) (e) (f)

2 I a

(a) (b)

P4/mmm A

P4/mmm(tI

P4/mmm (T
I

I 4/mmm (T
I

P4/mmm (T

I4/nuum ( T

(c)

, t ), P4/mcc(T, , T6),P42/mmc(T3, T9) 'P42/mcm(T4, T )
7 6 3' 9 ' 2 4'
),P4/mbm(T 2, T 4),P4/nbm(T 6, T ),P4/nmm( t, T )6' 8 7' 9

T7 T ) I4/mcm(T2 T4 T6 T8}

, T ),P4/nmm(T2, T ),P4/nbm(t, T5),P4/mbm(T4, T6)

, T3,T7, T8), / (T2, T4, . 5, -6)

(d) (e) ( f )
f

a

}4 2 b

P42c X

P421m Z

P4c2 (t,T3), P4n2 (T2, T4)I' 3
P42m(T, T3), P42 m(T2, T4)

I42d(T ~ T, }
I

P42 m(T, T ), P42 c(T,T )

4 2 b

P4/mcc (T,T ), P4/mnc (T 2, T4), P4/nnc (T6,T8),P4/ncc (T7,T 9) 2 I aP4/m'cc f
X P4/mcc ('t, T ), P4/ncc (T7,T9), P4/nnc (T,T5),P4/mnc (T4, T6) 4 2 b3' 5

P4/nbm Z P4/nbm(T, T ),P4/nnc (T„,T6),P42/nbc (T3, T ) P42/nnm(T, ,T )

P4/m"m Z P4/mbm(TI' 7) ' 4/mtrc(T2' 6 'P 2/mbc(T3 T& ' P42/m { 4'T8

P4m2 A

P4 2(,
42m(

,
I42m (T

I

P4m2 (T

I4m2 (T

,T4), P4c2 (T,T )

'4) ~ P"
I m'2 '3'

-+ T )

), P4b2 (T,T4)

), I4c2 (T, , T4)
4 2 b

P4/ nmm Z P4/ nmm{ t T } P4/ncc {T
2 T6} P4 /nmc (T3 T9} 42/ nc~ t4

I a

M P4&/mcm(T), T3), P42/nnm(t , T ),P4&/mnm('c2, 14),P42/ncm(14, T )/2

P4&/mtnc X
2 I

' ' 2
m 2' ' 2/nbc (T3, T 5 ' 42/mbc {T4 'T6)2 I

'
7

' 2 2' 8 ' 2 3' 5 ' 2 4' 6 4 2
R I4 /amd('tI, T3'T7'T8 , I4 /acd( 2'T4, T5, T6

I
I' 3' 7' '

I

P4. 2 j '
L X

P4b2 Z

P4n2 A

P42c (T I,T ), P42 c (T 2, T3)I' 4 '
I

P4c2(TI T2). P4n2(T3 T4)

P4b2(T
I
' 4), P4'n2 (T2'T3

I42d(T ~ T, )
I 4

2 I a

2 b

2 I a

2
P4 /mmc (T, t ),P4 /nbc (T 6, T ),P42/&nbc (T 2, t 4) .P42/nmc (T

P42™~
XX P42/mcm(T I, T },P42/ncm(T2, T ),P42/nnm(T, , T, ),P42™~(T,2'8' 2 3' 5 ' 2

P4~/nnm A I4 /amd(T T. T T ), I4 /acd(T PT, T pT )
I

l4, Z

X
I4m2

P4m2(T, T4), 4n (T2, T3)
P4m2(

I
' 2, P4n2(T3, T4)

I4m2 (T ), I4c 2 (T )
I

(I42m, 172d) (T I,T2)

4 2 b

4 f I4/mmm
X

4 2 b N

A

P4/mmm(T ),P4/mnc(T2), P42/mrnc (T3),P4 /mnm(T4)
2

P4/nnc (T6),P4/nmm(T ),P42/nnm(T ),P42/nmc (T 9)8
P4/mmm (T ),P4/nbm (T5),P4/mbm (T4), P4/nmm (T )

P42/mcm(T ' 42 2 ' 2 ' 2 37

I4/mmm(T I,T4), I4/mcm(T2, T3)

14/lMm(T
I

j T3 PT 4) j &+/&ueu4(T2 & t

I4 /amd (T,T,T ), I4 /acd (T )

4 2 b

8 4

4 2 b

I4231 X

N

A

P42m(T
I

)

P42c (T3}
P4m2(TI)

P4b 2 (T3)

I42m(TI)

I4m2(TI,

P42 c(T2)
P42 m(T4}

P4c2 (T 2)
P4n2 (T4)

, I42d(T )

) ~ 14c2('t2, T3)

N, Z P4c2(T T ) P4b2(T2 T3)14c2
X P42c(TI, T ), P42 c(T3,T4)

I

2 I a

4 2 b

a

4 2 b

8 4

4 2 c

14/mcm

P4/mcc (T I ),P4/mbm(T 2),P42/mern(T3), P42/mbc (T4)
14Z

P4/nbm(T ),P4/ncc(T ),P4 /nbc(T ),P42/ncm(T9)

P4/mcc (T ),P4/nnc(T5), P4/mnc (T4),P4/ncc (T8)
l

P4 /mmc(T ),P4 /nbc(T },P42/mbc(T ),P4 /nmc{T }
7

2 I a

4 2 b

marginal importance to the checking of the Lifschitz
condition' as this condition is necessarily obeyed' by
an IR having an "active" star k', and whose small
representation is real and one dimensional. %e only
have to examine, in this respect, the IR's for which

~„is complex. This is the case for only six BZ
points, having the property that k W (—k): R
(orthorhombic lattice I), A (tetragonal I), K and H
(hexagonal), W (cubic F), and P (cubic I)." By con-
trast, the one dimensionality of v„does not simplify
the checking of the Landau criterion. " As shown by
our investigation, this criterion even appears as a
very selective condition for the IR's of the rhom-
bohedral, hexagonal, and cubic systems. Thus,

among the 7„examined, nearly one half is discarded
by the Landau condition. As these IR's are as liable
as the "active" ones to describe the transitions of
real systems, we can expect that a significant fraction
of the observed NFPT's, within a rhombohedral,
hexagonal, or cubic crystal class, wi11 display a first-
order transition due to the fact that their order-
parameter expansion contains a term of degree-three.

The established property provides a necessary con-
dition for an IR to preserve the point symmetry of
the crystal. This condition is not sufficient in gen-
eral. It has, however, been shown to be sufficient'
in the case where ~„is real and when k' &0 has one
arm. In this case the IR itself is real and one dimen-
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TABLE IV. NFPT's in the rhombohedral and the hexagonal systems.

(a) (b) (c) (d) (a) (b) (c) (d) (e) (&}

P3

P3

P3

R3

P3(T1)
AHL P3 (Tl)

(&
1

)

ZA R3 (~1)

2, 6,8 1,2, 3 a, d, ej s f t j

28 1,3 a e

i'3m

R3c

R3m(T, T ),R3c(x,x )

R3m(T st ),R3c (T s T4)

R3m(z2, z, x4)

R3c (t2 f T3 f T4)

P3

R3

P312

A P3(T,TA)

t
HL P3(T )

Z R3(T, TA)

A R3(T T )

P31 2 (T 1,T4)

P312{T )
1

P321(&1)

2 1 a

68 23 d, e
P6

P6

P6

AL P6(T },P6 (T2)3

( H (P6, P6 )(7 )
3 1

P6(~, ),P6 (~ }
P64 (T 1),P6 (T2)

1

( 6,P64) ( )

AL P6, ),P6 (X2

H (P6, P6 ) (I )

281,3ae
6 2 d

2, 8 1,3 a, e

6 2 d

P321

P321 (I,T2}

P321(T, )

F312 (~1 'T

P6
AH P6(T, I )

L P6(T, T )

2, 6 1,2 a, d

8 3 e

A

P3 12 L

P3 21 L
1

H

P3 12 L

H

F3221 L

H

P3 12(T )

P3 12(T )

P3221 (~
1
}

P3 21(~2fT3)
P3 21 (g )

P3 12(&2s

P3 12(r,& )
1

P3 12(T )

21( 1)
1

P3 21 (~2s T
1

P3 21(cl)
P3, 12(T2,~3)

P6/m L

A

P622 L

yp6 22

P6 22

P6/m tl'~7), P6 /m(T2'T8

P6/m(T , T3), 6 /m(T2, T4)

(P6/ , P6 / }(T,, & }

P622(T sx, ),P6 22(T sT )

P622{zl,z4), P6 22{T2 ~3)
(P622, P6 22) {T,T2)3

P6 22(T2f T3) sP6 22('6 s&6)
1

P6 22(y f T ),P6 22(T f T4)
1

(P6 22, P6 22) (Z, I2)4 1'

P6 22(T, T ),P6 22(T f T )

P6 22(y fy ), P6 22(T f T )

(P6 22, P6 22) (I,T )

R32

P3m 1

ZA R32(T, T )

X R32 (T2}

P3ml (I
1
) P3c 1 (T2)

H (P31m, P31 c) (T )
I

2, 8 1,3 a, e

3 e

2, 8 1,3 a, e

6 2

P 6mm

P6mm( l
1
),P6cc (T2)

P6 mc(T ),P6 cm{y4)

P6mm(T1), P6cc (T3)

P63cm(T2), P63mc (T4)

(P 6mm, P 6 cm) (T 1)
(P6cc, P6 mc) (T2)

R3m
ZA R3m(T ), R3c (T )

X R3m (I2)

R3c R3c (x2)

AL P3)m(T ), P31c (TZ)

H P3m1 (T ), P3c 1 (T2)
1

2, 8 1,3 a, e

3 e

28 1,3 ae
6 2

P6r) '

P'72m

P6m2(T, T ),P6c2(T, T )2' 4
P6m2 (T,T 4),P6c 2 (T

2 3)f 4
(P62m, P62c) (T,T4)1' 4

P62m(7 , T ),P62c(T ,T )2' 4
P62m(C, T4), P62c (T,T )

P6m2(T, T ),P6c2(T, T4)2' 4

P31m

P3ml

P31m(t sT ) sP31c(T sT5)

P31m(T, T4), P31c (&2,T ) 8

P3ml (&1,T4),P3c 1 (~2'&5 2

P3ml (~1,T4),p3c 1 (~2, T3) 8

P6/mmm L

P6/mmm('C st ),P6/mcc (T f T )2' 7
P63/mmc (T3,t },P63/mcm(&, T )4' 9
P6/~(T1 78) P6/mcc(T4 I )4' 5
P6 /mcm(T, T ),P6 /mmc (&3 T )3' 7
(P6/mmm, P6 /mcm) (T T )3 1' 5
(P 6/mc c,P 6 /mmc ) (T,T 4)
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sional. It will systematically induce a NFPT corre-
sponding to a subgroup of index 2," i.e., to a dou-
bling of the unit cell. In the other cases, for stars
having several arms, or for complex v„,the possible
occurrence of a NFPT has to be examined in detail
for each IR.

We can also notice in Eq. (3) that, because of the
independence on k of the C„coefficients, all the
arms of the star k' are simultaneously "frozen in" in
the low-symmetry phase. This has the consequence
that a NFPT always involves' "the maximum loss
of translational symmetry compatible with the corre-
sponding order parameter.

We have summarized in Tables I to V the crystallo-

graphical and physical results relative to the order-
parameter symmetries and space-group changes rela-
tive to all possible continuous NFPT's. The tables
have been ordered according to the crystal system
common to the two phases: triclinic and monoclinic
(Table I), orthorhombic (Table II), tetragonal (Table
III), rhombohedral-hexagonal (Table IV), and cubic
(Table V). Similarly to the tables published previ-
ously for other types of transitions, the present ones
allow the determination of the following characteris-
tics of each NFPT: (i) space-symmetry change and
unit-cell multiplication, (ii) identification, dimension,
and symmetry properties of the transition's order
parameter (OP), and (iii) form of the OP expansion

TABLE V. NFPT's in the cubic system.

(a) (c) (d) ( ) {f) (g) (a} (o) (c) (d) (~) (I.} (g)

P23
R F23 (T

I
)

P23 (T,T ),P2 3 (T3 Q T4)

2 I a C.1 P43m
R F43m(T

I ),F43c (T2)
P43m(T

I
) .P43n(T2)

2 I a C.1
8 3 0

F23

I23

F23 (T
I
)

P F23 (T
I
)

H F23(T )

4 2 c C4

a C.1 I43m

8 4 f3 95. 1

F43m F43m(T 1),F43c(T )
W (P43m, p43n) (T,T2)2

F43m Tl ,F43c(T2
P43m(T

I
) P43n(T2)

8 4 f3 109.01

32 6 hl L3

4 2 c C4

2 I a C.
1I2 3 P213 (T

I
) 2 I C.

1

Pm3

Pn3

Fm3 (T
I

T5)

pm3 (T
I

Pa3(T3 T4~T7

R Fd3(T &T5)

2 I C.1

a C.1

8 3 e Th
Pm3m

Pn3m

Fm3m (T I,T 6),Fm3c (T 2 'T2' 7
Pm3m(T I,T3),Pm3n (T 2, T 4)
Pnjn(T6 T8) n3m(T7 T9)

R Fd3m(T, T6)Fd3c(T2, T )2' 7

I a C.1

2 I a C.
1

Fm3

Im3

L Fm3 (T
I
), Fd3 (T4).

P (Fm3, Fd3) (CI)
H Pm3 (T 1),pn3 (T 5)

4 f3 95 ~ I

4 2 b C44v
a C.1

Fm3m

Fm3m(T 1),Fm3c(T )
Fd3m(T ),Fd3c(T5)
(Pm3m, Pm3n) (T,T4)
(Pn3n, Pn3m) (T2 T3)

4 f3 109 01

32 6 hl Ll

Ia3

P432

H Pa3(TI T5)

R F432 (T
I 'T2

X P432(TI. T3),P4 32(T,T )

2 I a C.1

I a C.
1

8

Im3m

(Fm3m, Fd3m). (T )
(Fm3c, Fd3c) (T )
Pm3m (T ),Pm3n (T 2)
Pn3n(T6), pn3m(T )

7

2 I a. C.
1

4 2 b C
4v

P4 32
R F4 32 (T

I 'T2I' 2
2 I a C.

1

1. F432(TI),
I

( 2

F432 P432, P4 32
CI 7 C4

P4 32, P4 32
I

8 4 f 109,01

32 6 hl

I432
(F432,F4 32) (T )

H P432( I,P4 32( 2

2 b C
4v

2 I a C.1

I4 32 H P4 32(T ),P4 32(T2 2 1 a C.1
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TABLE VI. Materials undergoing a nonferroic phase transition.

Substances
pc kbar)or OrderT 'C) or

x (at. comp)

Space-group change 'Jni t-cel 1 Bri 1 1 oui n Order Table
expansion zone point Parameter number

dimens i on
References

C~H3(Se03)2

AgpH3 I06

Nal- K Nbo1-x x
N. N. Dymethylnitramine

812T14011

C6C1402

C10H7Cl

Cu(HCOO)2. 4H20

CIOF8
Bis-P. Toluene sulfonate

di cetylene

201862n

CsFeF4

C VF4

K Fe F4

KVF4
KTi F4

(CpH5NH3) 2Mnc14

(CPH5NH3) CdC14

(C3H7NH3)pMncl4

(C3H7NH )2CdC14

{C]OHp1 NH3) 2CdCl

NH (CH2)3NH3Mnc14

NH (CH ) NH CdC1

NH3(CHP)5NH3CdC14

KCN

NaCN

C18H24

CH3NH3CdC14

CH3NH3Nncl4

128

45

x'& 0. 33

166

250

181

35

39

78

103

150

95
290

255

215

57

39

32

103

190

101

30

16

PT~ P1

Pm ~ Pm

P21/m P 21/b

Bp/m ~ 82/b

P21/b ~ P2 /b1

Pmma ~ Pmmn

Cmcm ~ Pmmn

Cmmm ~ Cmcm

Cmca ~ Pbca

Cmca ~ Pbam

Qcm ~ Pnnm

Imma ~ Pnma

Immm ~ Pmmn

Immm Fddd

I4/mmm ~ P42/ncm

2(T1 T2)
B(-,],zp}

8( , )

Y(vp, v3)

(8,Y,C}(&2 /+3)

A(~1 ~ ~4)

Y(~4,~3)

Y(z7)
('2 '3'6'7)

Y(~7)

Y(z3)

Y( I)

Y(y4)

X(3, 7)

!

"('6'7 "8)

R(~, ~ ~ )

19

25

30

7

31

5

26

29

6

28

27

38

40

34

35

33, 37

41

32

{NH4) 2H3 I06
PbZr Ti ] 0

x 1-x 3
PbZro &Tio &03

NaNO&

YMn03

Mg3cd

Tl Al

Eu0

21

= 0. 63

100

275

1 000

150

150

kbar

(1)
1

1

R3 ~ R3

R3m ~ R3c

R3m ~ R3c

P63/mmc ~ P63/mcm

P63/mmc ~ P63/mmc

2(g1)
z(~, )

A( )

2(gp, y5)

25

46'

48

EuTe

EUS

EuSe

110
~ 215

145

110

kbar

kbar

kbar
Fm3m ~ Pm3m X(vI) Ref .47

PrTe

CU AUI

a"Au3Cu I

Fe1 Al

Fe3A1

Fe3Si

8-CupNnAl

0-CuZn

Ag Au S

90

394

kbar

200

) x ~ 0.50
]x ~ 0.26

550

130

630

425

Im3m ~ Fm3m

Im3m ~ Pm3m

P(&1)

H(y1)



25 NONFERROIC PHASE TRANSITIONS 1955

o
Co

p
~ E

a oo o
Cilg

a. C'

W 04 M
C

cd

. ~E~ ~2
~EE
OC~ ~
~~ o

M
g

m o&g
O g
8

C
cd

o ~
g4

N

Q

~ E

~ p%

O
g4 cd

M
(D

g
(Q

o
Q Q7

Qch

&~ E

anC.~~C
0~ a,

o
o th

(D gl CdE.- ~
P o
Q,

o
s

riI

m

~C ~o .
ceC

g Eo .9

E ~

™~

tD P

Ci6

C
~ W0
4

o

Co
~ ~
Ch

cd

A

i

C'

CD( W

C
Zt }H

A V

II

O

II

C

dl

4J

0
~\

CCl

0
Z

CV [CV

+ +

+
CV

y /ne

O
A

M
a
C3

O
A ' A

O ' O
A A

CI?

O 0)&

~I

O

~4
dl

a i

td0
U

00

C1

a

+
CV

y )CV

O
V

I

t
„

O O 0

CV

col

O

O

O

A

II

II
~A

+
(4

CCL CQ.
Q
+

+ CV
CQ.
C4

CX1
A

CCL CC1
4) 4j

A I

CV

CV
C'

O

O

lPI

M

CV
M

CV )C4

+
0

M

A
I

+
I
I

. I

+

O

c0
A

O
00 .

M

le

CV
C'

g/CV

1~
V

~ A

~I

il
~r4

O

+I
II
CI)

I

+
CV

M

+

M

(4
I
4

+

Cd

CL)

Id
CV

cd
CII

Y
~4

CV

II

eel
Ci. II

CVa 0

a

CCI
N

I
A

CC1

Q

Q

0
U

CVa
r4

Ci

Cl e4a
A

I
~6

+
C4

Q
Q

e4 .aa
a

44 V
~pf

Pl)CV

~6

+

V

0 O
A

Q I

II II

CI)a

N
Q

C4

CVa
%Ih4

+

a
CV CVa
CII ~a

u1
A

col

I

CQ

I CV

N
C'

0
O
CL

C4a

C'

II

hl rhC'
CV

CV

CV
C'

' C4
C'

CV
C

C4

fV
C'

I
~A

0
M



1956 PIERRE TOLEDANO AND JEAN-CLAUDE TOLEDANO 25

F~(n;) with the range of values of each of the expan-
sion coefficients corresponding to the stabilities of
the different phases.

The tables are organized in the same way as in
Refs. 12—14. The content of the columns is recalled
in the Appendix. Some general results can be drawn
from examination of the tables.

In the first place, it appears that on theoretical
grounds, NFPT's should be a very frequent type of
structural transitions: among the 3000 IR of the
space groups which are related to continuous crystal-
line transitions, over 1200 detern:ine a symmetry
change towards a nonferroic phase. The only other
type of structural transition which arises, in the
framework of Landau's theory, with a comparable
frequency, is that of pure ferroelastics, '"

In general, the symmetry characteristics of NFPT's
are very simple due to the one dimensionnality of the
small representation ~„.Thus in about two-thirds of
the possible transitions, the order parameter is one
dimensional, and the translational change consists in
a doubling of the crystal's unit cell. This situation is
the one encountered with few exceptions in the tri-
clinic, monoclinic, and orthorhombic systems and it
also constitutes the major pattern in the quadratic
one. It is also found for one k vector of the rhom-
bohedral hexagonal systems and for two k vectors of
the cubic one.

The remaining cases can be grouped in three types.
In the triclinic, monoclinic, orthorhombic, and tetrag-
onal systems the transitions have either a two-
dimensional or a four-dimensional OP and are ac-
companied, respectively, by a fourfold and an eight-
fold multiplication of the unit cell. In the trigonal-
hexagonal systems two specific patterns are found: a
three-dimensional OP determining an eightfold unit-
cell expansion, and a two-dimensional OP associated
to a sixfold multiplication. The cubic system com-
bines the various preceding cases with, in addition,
transitions associated to a six-dimensional OP. In
particular, one finds the latter dimensionality at the
W point of the BZ of the face-centered cubic lattice.
At this point the NFPT determines a 32-fold multipli-
cation of the primitive unit cell. This steep decrease
of translational symmetry was well known" to be the
largest possible in a continuous structural transition.
The present study clarifies the fact that such a multi-
plication is necessarily associated to a NFPT, while

any other type of structural transition would involve
a smaller multiplication of the unit cell.

According to the definition of a NFPT, the transi-
tions considered take place between two space groups
belonging to the same crystal class. Following the
terminology of Hermann, "the low-symmetry group
is a "klassengleichen" subgroup of the high-
symmetry group, i.e., a subgroup having the same
point group but different translations. In this
respect, a number of crystallographical studies have

been devoted to the generation of the "klassen-
gleischen" subgroups of the space groups. ' ' Fol-
lowing extensive works by Neubuser et alt. ' and
Koptsik, ' summarizing tables have been established
by Boyle and Lawrenson (BL).2O A comparison of
the present results to those of BL, besides providing
a useful checking, permits clarification of the addi-
tional restrictions imposed by the Landau theory on a
purely geometrical relationship between crystallo-
graphic groups.

As pointed out by BL, klassengleichen subgroups
of a given space group form an infinite set if any
unit-cell multiplication is allowed. Accordingly, BL
have limited this multiplication to a factor, depending
of the crystal system dealt with. For instance, this
factor is 32 in the orthorhombic system. Comparison
to the results in Tables III—VII shows that the physi-
cal restrictions of Landau's theory (mainly based on
Lifschitz's criterion) are much narrower. The non-
ferroic groups worked out here constitute a small
fraction of the groups found in the tables of BL.
Thus, in the P222 space group, we find a doubling of
the unit cell towards any of the nonferroic groups
while BL indicate unit-cell multiplications by factors
of 2, 4, 8, 16, and32.

On the other hand, it is worth comparing our
results to those of Syromiatnikov'4 also based on
geometrical rules, in which the same selection of k
vectors as in Landau's theory is taken into account,
but no use is made of the irreducible representations
or of the thermodynamical considerations. As we

pointed out previously, ' the method of Syromiatni-
kov supplies the same symmetry changes as Landau's
theory only when the small representation is one
dimensional. This explains why we have been able to
verify a frequent identity of the present results to
those of Syromiatnikov tables. Two differences can
be noted. In the first place, nonferroic symmetry
changes, which are absent from our tables due to
their incompatibility with the Landau and Lifschitz
criteria for continuous transitions, appear in
Syromiatnikov's work indistinctly mixed to the "con-
tinuous" symmetry changes. On the other hand, a
given symmetry change is indicated only once, in

their table, for each star of k vectors, while such a

change can happen to be associated to various order-
parameter symmetries having a common star.

III. NONFERROIC MATERIALS

About 50 substances have been listed in Table VI.
They constitute illustrative examples of nonferroic
symmetry changes. They belong to a wide diversity
of chemical compositions: metallic alloys, salts, hy-
drates, molecular solids, and oxides. The phase tran-
sitions considered are either induced by a tempera-
ture change, by a pressure change, or by a composi-
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tional change. Let us compare these data to the
theoretical results of Sec. II.

A. Triclinic and monoclinic systems

cient to specify the translational symmetry of the or-
der parameter. Tables I and VI show that three BZ
points, namely, 8, Y, and Care compatible with the
observed unit-cell doubling transition.

In these systems all available examples fit into the
pattern expected to be most frequent for NFPT's.
They are found to possess a one-dimensional order
parameter and a double unit cell below the transition.
We have been able to check the compliance of the
observed symmetry changes with the results of Table
I, and to identify, on this basis, their order parame-
ter.

Two compounds undergo the triclinic modification
Pl ~ Pl with a doubling of the primitive unit cell,
CsH3 (Se03)2 (Ref. 19) and Ag2H3106. For the latter
material there is a sequence of transitions, one of
which has been conjectured to be a NFPT in the
framework of a theoretical interpretation. "

In the monoclinic system most available examples
display a uniform symmetry scheme, i.e., the space-

group change P2~/b P2~/b with a doubling of the
microscopic periodicity along either the a or the b

direction. This scheme is mainly realized in organic
compounds such as chloranil, ' chloronaphthlene,
octafluoronaphthalene, 6 the polysulfonyl

(C20H]806S2)„,the diacetylpolymer bis (p-toluene
sulfonate) and copper formate tetrahydrate. '9 Their
order parameter can be identified by one of the four
IR's at the A point (k = a'/2) of the Brillouin zone
(Table I).

Similar monoclinic NFPT's are observed in NN-

dimethylnitramine (P2~/ m~P2~/b) with a doubling

along c, and in Na~ „K„Nb03.In the latter material,
which has a distorted perovskite structure, and

displays a number of stable phases according to the
external conditions, the considered NFPT occurs
between the phases labeled J, and E, 30 on decreas-

ing the potassium content below x =0.33. These two

phases have cells, respectively, four and eight times
larger than the cubic perovskite cell.

In Bi2Ti40~~, the space-group change is known

(82/m B2/b) but the available data3' are insuffi-

B. Orthorhombic and quadratic systems

Two families with layered structures and displaying
NFPT's, have been recently the subjects of intensive
studies.

The first one is the perovskite layers structural
family. It contains several categories of compounds
differing by their chemical formulas and the sequence
of the layers forming their structures.

In the so-called ammonium series of general for-
mula (C„H2„+~NH3)2MC14, four types of NFPT take
place. In the methyl compounds (n =1) with
M = (Cd, Mn), the tetragonal space-group change
14/mmm P42/ncm occurs, through an orthorhom-
bic intermediate phase. " Table III shows, in agree-
ment with a previous theoretical analysis, that the
order parameter is two dimensional and described by
the v 3 representation at the X point" of the body-
centered tetragonal BZ. In the ethyl (n =2) and pro-

pyl (n =3) compounds a NFPT takes place for
M = (Cd, Mn) with, respectively, the symmetry
changes Cmca ~Phd, ' and Cmca Pbam, "like-
wise the compound n = 10, M = Cd undergoes the
change Cccm ~Pnnm. ' A11 these NFPT's have a
one dimensional OP corresponding to the Ypoint of
the BZ (Table II).

In the less-studied diammonium series of formula
NH3(CH2)„NH3MC14, NFPT's have been report-
ed33 37 for n =3 (M=Mn, Cd) and n =5 (M =Cd)
with the space-group change Imma ~Pnma. Table II
shows that two representations at the X point of the
BZ can possibly induce this transition.

The second structural family of interest has the
formula ABF4 (A =Rb, Cs, K and 8 =Fe, V, Ti).
Two distinct sequences of transitions exist in it. The
first one has been observed complete" in CsFeF4 and
partial in CsVF4 and RbFeF4. It is

P4/mmm( t ~, t 2, t 3) Pmma( t ~, 2 t 2, t 3) Pmmn(2 t ~, 2 t 2, t 3) P2~2~2(2 t ~, 2 t 2, t 3)

The NFPT Pmma-Pmmn occurs continuously in

CsFeF4 and discontinuously in CsVF4. It is induced

by a one-dimensional IR as disclosed by Table II.
The second sequence characterizes the com-

pounds KMF4. It consists in the symmetry
changes

Ammm(v) ~Amma(2v) ~Pmmn(4v)

The first NFPT occurs in KF,F4 at 290'C and ap-
pears related to the Z point (Table II) of the Brillouin
zone. The other one, Amma-Pmmn is observed as a
continuous transition in KFeF4 and KVF4 and as a
discontinuous one in KT;F4. The theoretical results
associate its order parameter to the IR labeled v4 at
the Ypoint of the BZ.

Besides these two structural families three exam-
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ples of orthorhombic NFPT's have been listed on
Table VI. The cyanides KCN and NaCN possess, in
addition to a ferroelastic transition, a low-temperature
NFPT detected, respectively, at —190 and —101'C.
The corresponding symmetry change Immm mmmm

involves a doubling of the ferroelastic cell which can
be related to one of the three IR's (T6, T7 or 78) of
the orthorhombic X point (I lattice). At last, let us
mention the NFPT observed in the organic com-
pound ' triamantane C~SH24. Its ordered phase is
described by the space group Fddd and possess a unit
cell four times larger than the body-centered proto-
typic phase of symmetry Immm. According to Table
II, a two-component OP corresponding to one of the
four IR's at the R point should be associated with
this transition.

C. Rhomboedral and hexagonal systems

Three compounds are known to possess a rhom-
boedral NFPT. In the solid solutions PbZr„Ti~ „03a
transition occurs with increasing xat x =0.63. The
space-group change is R3m R3c corresponding to

1 1 1
the BZ corner point ( k = 2, 2, 2 ) precedingly point-

ed out by Cochran and Zia ' (Table IV). In
PbZr09Tio ~03 another type of NFPT takes place at
100'C or by varying the temperature. This polar-
polar transition, which is slightly first order, ' is
described by the same space-group change
R3m R3c but with an octupling of the primitive
cell corresponding to the A point (k = —,, 0, 0) of the

rhomboedral BZ. Sodium nitrate undergoes at
275'C, a continuous transition R3 ~R3c, just below
its melting point. Petzelt et al."assign to it, in ac-
cordance with the results in Table IV a one-
dimensional IR at the Z point of the Brillouin zone.
Ammonium periodate, (NHq) 3H3IO6, like its silver
isomorph, displays a more intricate situation. " Two-
phases transitions have been detected in it by thermal
analysis measurements. Only the extreme phases
have been identified as R 3 and R3, with an eightfold
expansion of the unit cell. Roos et al. ' suggested
that the lowest transition is an isomorphous transi-
tion R3-R3 without translational change. An alter-
nate scheme can be based on the results of Table IV
and of Ref. 12. It involves the sequence of a fer-
roelectric transition'2 83 (v) R3 (4u) having a
three-component order parameter, and a NFPT, R 3
(4v) R3 (Sv), with a double periodicity along the
ternary axis. The latter symmetry change is absent
from Table IV as it does not comply with the Landau
condition.

A hexagonal NFPT has been observed in YMn03
at about 1000'C. The space-group change
P63/mme P63/mcm involves the unusual tripling of
unit cell determined by an inactive" IR at the K
point' of the BZ. Other inactive IR s are involved in

the hexagonal NFPT of a number of alloys, such as
Mg3Cd and Ti3A1 possessing the 383 type' of
structure. The corresponding space-group change is
P63/mme (~) P63/mme (4v) and is related to the
M point" of the BZ. The transitions are of first or-
der consistently with the inactive character of their
order parameter. The same symmetry change has
been observed in Mg3Cd, A13Th, Pt3U, CO3MO,
CO3W, and PNi3Sn.

D. Cubic system

Members of the rare-earth monochalcogenides
family and a large number of substances belonging to
various alloys systems can be given as examples of
cubic nonferroic materials. A widespread characteris-
tic of NFPT's in this crystal system are their noncom-
pliance with the Landau symmetry criterion. This is,
in particular, the case of rare-earth monochal-
cogenides. This family is best known for the oc-
currence of a pressure-induced semiconductor-metal
transition involving a change of valence of the rare-
earth ion. In addition to this change, high-pressure
studies have revealed'0 a pressure-induced structural
change from the NaC1 structure Fm3m to the CsC1
one (Pm3m) in the two compounds SmTe and EuO.

In other compounds, namely, PrTe, EuS, EuSe, and
EuTe, only the structural change NaC1~CsC1 is ob-
served with no electronic modification. This change
which involves a fourfold-larger cell is actually a
NFPT induced by a three-dimensional inactive IR47 at
the

appoint

of the cubic (F) BZ. A strongly discon-
tinuous volume change at the transition confirms its
first-order character, in agreement with the noncom-
pliance of the preceeding representation with the
Landau condition.

All the cubic alloys listed on Table VI possess a
phase transition within the m3m class. These transi-
tions correspond, on a phenomenological basis, to
three distinct situations. One is the type of transfor-
mation taking place in the archetypical P-brass
(CuZn) and in several isomorphous compounds such
as Au-Cd, Al-Ni, Ni-Zn, or LiT1.' The corre-
sponding space-group change Im3m (v) Pm3m
(2v) is induced by the unidimensional IR(rt) of the
H point' of the cubic body-centered BZ. A very
similar situation is encountered in Ag2 „Au„S(Ref.
51) which undergoes a compositional transition at
x -0.29 with the space-group change associated to
another representation (r4) of the same Hpoint.

A second type of transition is found in the Fe-Al
system and in the so-called Heusler alloys isostructur-
al to Cu2MnA1. In the Fe-Al system a temperature-
dependent transformation (Im3m Fm3m) can take
place continuously at 550'C in alloys containing
about 26 at. % Al. The same symmetry change occurs
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dependent on the composition in Fe~ „Al„whenx
reaches 25 at. %. According to Table V it is a bidi-
mensional OP at the P point [cubic (I) BZ], which is
associated to the Im3m ~Fm3m change involving a
quadrupling of the primitive cell.

The preceding space-group modification corre-
sponds also to the L2~ type' of superlattice ap-
pearing in the metastable P phase of Cu2MnAl, and
in many ternary alloys such as Cu2MSn (M =Co,
Mn, Fe, Ni), Ni2TiAl, LiMg2TI, or CO2MnSn. Other
similar transitions are found in n'-Fe3Si, p~-AICu,
H3La, AIF3, HgLi3, LaMg3, p&u3Sb, and Mg3Pr.

A third type of NFPT within the m3 m class is the
transformation which occurs in Cu3AuI from the
high-temperature disordered state (Fm3m) to the or-
der state (Pm3m) at 394'C. This structural change
is also detected in a large number of alloys the more
studied of which are o."-Au3CuI, Ni3Fe, Ni3Mn,
Pt3Sn, and u'-A1CO3. The discontinuous character
of the 394'C transition in Cu3AuI is in agreement
with the fact that the corresponding three-dimen-
sional OP transforms like the v~ IR of the Xpoint
(cubic FBZ) which does not comply with the Landau
criterion. 4' The same IR induces the composition-
dependent transition observed in Fe~ „Al„whenx
reaches 50% of Al atoms, the Fe-Al structure being
then of the B2 type.

We have not included in Table VI the fluorite ~com-
pound PbSnF4 as its nonferroic character still requires
experimental confirmations. However, it deserves to
be quoted as it is the single known example of a
NFPT involving a multiplication by 32 of the number
of atoms in the primitive unit cell, this situation be-
ing predicted in Table V at the 8'point of the F432,
F43m, and Fm3m space groups. Structural data are
given by Pannetier and co-workers" ' for three
phases, labeled y, I8, and a with decreasing tempera-
ture, separated by two transitions occurring, respec-
tively, at 370—380 and 260—290'C. The y phase has
a fluorite-t pe structure (space group Fm3m) with
a =6.050 and P-PbSnF4 has a tetragonal unit cell
(unspecified space group) with a = 16.834 A and
c =23.063 A, i.e., with a unit-cell dimension 128
times larger than the cubic Fone. When using the
results of Tables III and V and of Ref. 14 it appears
that, within Landau's theory predictions, there is only
one sequence of three transitions capable to produce
the lattice modifications reported for the y P
change, the higher-temperature one being the NFPT
Fm3 m ( v) Fm3 m (32v).

These transitions have not yet been clearly detected
but they could explain the complex thermal expan-
sion of the lattice parameters between 280 and 380'C
mentioned by Pannetier et al. '4 The Fm3m ~Fm3m
transition should thus be related to the endothermic
effect measured around 350 'C by these authors and
to the P' P transition reported at 350'C in Refs. 53
and 54.

IV. PHENOMENOLOGICAL THEORY OF
NONFERROIC TRANSITIONS

y(ri, )y(xi) = & $g&' P(xi)
I

(10)

On Table VIII, we have expressed the set of Pk
functions having the smallest degree, in the two cases
when the x~ are the polarization components
P&(j =1,2, 3) and the strain ones e~&(ij =1,2, 3). It
can be seen that orily two different qualitative situa-

Let us examine, in this section, the characteristics
of the Landau free energy of a NFPT and the conse-
quences of its form on the behavior of macroscopic
quantities. In this respect, no distinction has to be
made, as would be the case for ferroics, between a
proper and an improper behavior. ' These concepts
corresponded to a classification based on the respec-
tive symmetries of the order parameter and of the
symmetry-breaking macroscopic components. No
such components onset below a NFPT. Neverthe-
less, it is relevant to take into account, in the free en-
ergy which describes a NFPT, in addition to the order
parameter expansion F~ (g&), terms relative to the
macroscopic quantities which couple to the order
parameter.

As noticed previously by various authors, ' ' the
order-parameter expansions F~(q, ) relative to con-
tinuous transitions, possess a small number of possi-
ble forms. This situation, which contrasts with the
large variety of space-group representations con-
sidered, results from two simplifications. In the first
place, the form of the free energy only depends on
the set of distinct matrices relative to the IR spanned
by the order parameter. It was shown in Ref. 14 that
only 49 sets were associated to the thousands of "ac-
tive" IR's of the 230 crystallographic space groups.
On the other hand, the truncation of the expansion
to the 4th degree further reduces the number of dis-
tinct expansions to 27. Nine of these expansions are
relevant to the order parameters of NFPT's. They
are reproduced in Table VII together with the condi-
tions of stability they determine for the various low-

symmetry phases.
The coupling of a macroscopic quantity (x&) with

the order parameter (q;) is represented in the free-
energy expansion by terms of the form @(g&) P(x&),
where Q and g have identical symmetries, and where

Q(q&) WO in the low-symmetry phase (terms with

@(q~) =0 can be omitted for the considered transi-
tion). For a NFPT, the point group is the same for
both phases and P(xi) necessarily transforms accord-
ing to the identical representation of Go. Any other
symmetry would induce a breakdown of the point
symmetry through the onset of a spontaneous value
for p(x&). Consequently $(qi) is also totally invari-
ant, and we have, to lowest degree (5 is a coeffi-
cient):
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TABLE VIII. Lowest-degree invariants X; and Y; of the polarization components and of the strain ones which can be coupled
to the order-parameter invariant ($g, ). The invariants are listed in column (b) according to their distribution in the 32 crystal
classes [column (a)]. The expression of the X; and the Y; is indicated in column (c), respectively, as a function of the polariza-
tion components P„PyPz and of the strain ones ef(ij =1,2, 3) referred to standard axes. The 5; and 5ij are the coefficients
of the resulting coupling terms.

(b) (c)

222, mmm

4, 4mm

Xl, Yl

X2, Yl

X3, Y3

X4, Y3

X2, Y3

X3, Y2

X2, Y2

X5, Y4

Xl 81P~ + 52Py +83Pt

X2 =81P„+52Py+53P,

X3-51Px +82Py +83P

X4=51P„+82P+83P,2

X5 51 (P~ +Py ) + 82P~

X6=51(P2+P ) +82P

X7 51(P„+P+P, )

yt = $s„e„

4, 4/m, 422, 4 m 2, 4/mmm X6, Y4
1'2 = $ g;;e;; + x g;

i i&J

3, 3m, 6, 6mm X5, Y5 y3 Xgii i+a!2'12+613 13 +g23 23

3, 32, 3m, 6, 6/M

622, 6m 2, 6/mmm

23,m3, 43m, 432, m3m

X6 Ys

X7, Y6

Y4 81 33+81(» + 22) +82( 13 + 23 ) +83 12 +84( ll 22)

5 51~33 +81(~11+~22) +82I (~» ~22) +4 12 ~ +53(~13 + 23 )
Y6=51(~1'3 +~23 +&1'2) +8»3(&» -~22)'+2(~33 —&» -&22)'~

tions are encountered together or separately for
NFPT's: one corresponds to a linear contribution of
the PJ or e„"to the coupling term, a second one to a
quadratic contribution. It is obvious that the first sit-
uation for the P, 's occurs in the ten pyroelectric
classes 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm. A
linear coupling with some of the e„"components is
possible in all the crystalline systems. The strain con-
tribution to the mixed invariant being the same
within a given system.

Due to the totally symmetric form ( Xri,') of the
order-parameter contribution to the coupling term,
no qualitative difference will exist in the macroscopic
anomalies between the case of a one component or-
der parameter and that of a multicomponent one.
We can therefore restrict to the former simpler situa-
tion and examine for instance the coupling to the
dielectric polarization. The discussion for elastic
quantities would be similar. The two possible cou-
pling schemes will give rise to the two following free

energies:

Fg(7),P) = —ri + r) +—ri +——Pn2 /34 Vs K
2 4 6 2

+Sq2P —EP+ZP . (12)

The electric field component E parallel to P has
been introduced to derive the dielectric susceptibility
X =limE (2(P/E) and the electric dependence of the
polarization P(E) As usually in the . Landau
phenomenological description all the coefficients ex-
cept o. are taken constant in the neighborhood of the
transition point as their temperature dependence is
not determined by the existence of a phase transition.
o, which depends linearly on the temperature, can be

+—q P —EP
2

F,(~,P) = —~ +—q +—~ + P—n 2 /3 4 v 6 K
2 4 6 2
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written n = a ( T —To) (a )0) and thus changes of
sign at To. The coefficient E has to be chosen as
positive, A. must be taken as negative if we take the
orientation of the crystal towards P & 0. The sign of
the 8 coefficient has to be discussed in relation with
the different physical situations encountered.

The physical consequences of expansion F~ have
been examined in detail by Levanyuk et a/. ,"while
expansion Fg, which is formally similar to the free
energy of an improper ferroelectric, has been dis-
cussed by several authors.

The free energy F~ induces no permanent polariza-
tion component on either side of the transition. '
The behavior of the dielectric susceptibility has a
temperature dependence determined by X = (I/E
+Sg~). It is illustrated by Fig. I according to the
sign of 8 and the thermodynamic order of the transi-
tion. As emphasized by Levanyuk et al. , whenever
the transition is discontinuous, a double hysteresis
loop P(E) should appear above or below T, depend-
ing on the sign of 8.

The dielectric behavior resulting from the free en-

ergy F~ is summarized on Fig. 2. Identically to the
case of an improper ferroelectric, the susceptibility is

TG

Xo
K

2b
P K-28~

I
I
I
I
I
a

TG

FIG. 2. Schematic variations of the polarization P, and of
the dielectric susceptiblity X for a continuous NFPT the or-
der parameter of which is coupled to the polarization
through a term of the form Pq . The notations are those of
Eq. (12).
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FIG. 1. Variations of the dielectric susceptibility for a
NFPT the order parameter of which is coupled to the polari-

zation through a term of the form q P . The notations are
those of Eq. (11). Upper diagram: second-order transition.
Lower diagram: first-order transition.

temperature independent above the transition and
undergoes an upward jump at T, whatever the sign of
5 and the order of the transition. A "spontaneous"
additional component of P onsets in the low-

symmetry phase, but no multiple orientations exist
for it and accordingly no orientational domains are
induced. For a first-order transition, a double hys-
teresis loop in P(E) is predicted above T,.

For a small number of the nonferroic materials list-
ed on Table VI, dielectric studies have been per-
formed which permit, incompletely still, to check the
preceding phenomenological predictions. Only two of
these materials possess a polar-polar phase transition
described by the F~ free energy, namely,
PbZr„Ti~ „03and (NH4)qH3IO6. The others corre-
spond to the F~ type.

The nonferroic transition in the perovskite
PbZr„Ti~ „03occurs around 100'C for x =0.90 and
provokes a slope variation in the spontaneous polari-
zation P,. Below the transition point the polarization
increases linearly with decreasing temperature sug-
gesting a continuous character as shown in Fig. 2(b)
(8 (0). However, by providing the slight discon-
tinuity of the OP (the rhomboedral angle a), the
transition should be weakly first order as indicated by
Clarke and Glazer. 4 The two-step transition in
amonium orthoperiodate has been recently reinvesti-
gated by Roos et al. ' who have confirmed the early
measurement of Baerthschi of a two-step decreasing
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of the dielectric permitivity e, in the direction of the
polar axis. The lower step is in conformity with the
curve of Fig. 2(d) (5 (0). There is an obvious
resemblance between the theoretical curve of Fig.
1(a) (5 & 0) and the experimental variation of X( r)
obtained for Bi~Ti40~~ by Subbarao. ' Besides it has
been verified by this author that no hysteresis loop
exists in either phase of these compounds. Both
these facts are consistent with a second-order charac-
ter for the nonferroic monoclinic transition at 250'C.

The orthorhombic —190'C transition in potassium
cyanide has been reported as second order. Howev-

er, the anomaly of the dielectric permittivity at this
temperature measured by Gesi ' displays a typical
first-order drop as the one shown in Fig. 1(b)
(5 &0). The discontinuity of the permittivity at
—190 'C is even accentuated in the study by Julian
and Luty, 64 the slight increase of e( r) in the high-

symmetry phase on the experimental curve should be
due to the influence of the neighboring ferroelastic
transition at —105 'C.

Two other nonferroics, which should also illustrate
the F~-type behavior, reveal a more complex situa-
tion. In cesium trihydrogen selenite CsH3(Se03)q a

study by Makita shows that the dielectric constant
along the [001j direction has the behavior depicted in

Fig. 4 (5 & 0) in agreement with the first-order char-
acter reported for its —128'C triclinic transition.
But, on the other hand, the dielectric constant per-
pendicular to the (001) plane exhibits a pronounced
peak at the transition point with a sharp decrease in
both phases, in contradiction with the constant value
of X(T) predicted on Fig. 4. The same situation is

verified for copper formate tetrahydrate
Cu(HCOO) q4HqO at its monoclinic transition at
—39'C. The dielectric constant in the (100) plate has
a small drop resembling Fig. 4 (5 & 0), but in the
(010) plate Okada" finds an acute discontinuity with

a decrease on either sides of the transition point.
The peculiar increase of the susceptibility in the

high-symmetry phase of the two preceding substances
has been accounted for by their antiferroelectric char-
acter, i.e., by the presence in their structures of pairs
of opposed dipoles onsetting below T,. This presence
has been established by a variety of experimental
techniques. '

It was recognized by Levanyuk et al. that there is
an equivalence between the free energy E~ and the
one worked out by Kittel ' for antiferroelectric transi-
tions, provided that the E coefficient in Eq. (11) is
allowed to increase (e.g. , linearly) with temperature.
On this basis it is possible to account for the ob-
served behavior of the preceding substances. Thus,
the anisotropy of the dielectric permittivity of both
CsH3(Se03) q and Cu(HCOO) q 4HqO can be ex-
plained, on one hand by the different magnitudes of
the coupling coefficient 8&, and on the other hand by
the fact that only part of the components of E( r),

which is a second-rank tensor in the three-
dimensional case, are temperature dependent.
As an illustration, for cesium selenite, which is
triclinic and possesses a one-component OP, the
coupling term must be written (see Table I)
(5tP„'+5qP~'+53P,')q', but as it appears from
Makita's experimental results, one must take here
53 (( 5p = 5t/2.

From the formal identity of Kittel's theory of anti-
ferroelectrics and Eq. (11), Levanyuk et al. '6 have
concluded that the characteristics of antiferroelectrics
actually belong to a larger class of substances than
those possessing arrays of opposite dipoles. They
have also noted that the division of an electric dipole
distribution is ambiguous and that the concept of an
antiferroelectric is, in fact, irrelevant. This remark
clearly holds for ionic crystals. However for molecu-
lar ones like Copper formate tetrahydrate or in crys-
tals having covalent units like potassium cyanide, as-
signment of individual dipoles to these structural
units appears justified. For these cases, the associa-
tion of antiferroelectricity with the preservation of
the crystal class seems puzzling since the onset of
sets of opposite dipoles in a crystal's unit cell has
generally been thought to give rise to ferroelastic
properties. This inference was based on the fact that
the lowest multipolar moment generated by a pair of
opposite dipoles is a quadrupole, i.e., a tensorial
quantity of the same rank as the ferroelastic spon-
taneous strain. " Ferroelastic symmetry changes have
indeed been observed in a number of antiferroelec-
trics, such as NaNb03, (NH4)HPO4, etc. More com-
plex arrays of dipoles, for instance two pairs of oppo-
site dipoles, can correspond to the onset of a higher-
rank multipole. In this case, the symmetry charac-
teristics of the antiferroelectric transition will be that
of a "secondary ferroic. "'

The preservation of the crystal class by the onset of
opposite dipoles can be understood by examining the
case of KCN. In this crystal, the dipoles are situated
at the vertices and at the center of a body centered
orthorhombic lattice with symmetry Immm. The ones
at the vertices are parallel to the b direction while the
one at the center is antiparallel to it. The resulting
space symmetry is Pmmm corresponding to the same
mmm class as the underlying lattice. The array of di-

poles does generate a nonzero quadrupole. However
the spontaneous component of this second-rank ten-
sor is the Qqq component which is already permitted
by symmetry in the high-temperature phase and it
does not break the point symmetry of the ~:ystal.

This example, and that of the other antiferroelec-
tric NFPT's clarifies the symmetry aspect of antifer-
roelectricity. In the most frequent case where a sin-

gle set of opposite dipoles arises in the unit cell, two
situations can be found. Either the component of the
generated quadrupole are symmetry-breaking ones
and the corresponding transition will be ferroelastic,
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or these components preserve the orientational sym-
metry and one obtains a NFPT.

V. CONCLUSION

The group-theoretical investigation of NFPT has
disclosed several peculiarities of these categories of
transitions. Most possible transitions, on theoretical
grounds, are expected to have a one-component or-
der parameter and to induce a doubling of unit cell.
This property is closely related to the theorem which
has been established for the class-preserving transi-
tions and which discards all the multidimensional
small representations of the group of the k vector.
At experimental level the observed NFPT in real sys-
tems comply well with the preceding theoretical ex-
pectation.

On the other hand, the working out of the Landau
and Lifschitz symmetry criteria has shown that in the
rhombohedral, hexagonal, and cubic systems, a large
fraction of the relevant order parameters will give rise
to a cubic term in the Landau free-energy expansion
and induce a first-order transition. A number of il-

lustrative examples of this situation have been found
among metallic alloys.

The characteristics of the dielectric anomalies at
NFPT's have been satisfactorily accounted for on the
basis of two possible schemes for the coupling
between the order parameter and the dielectric polari-
zation. In some cases previously classified among an-

tiferroelectrics, the phenomenological theory has to be
refined in the form of a temperature dependence for
two coefficients instead of one as in the usual theory.

APPENDIX: ORGANIZATION
OF TABLES I TO V

Let us briefly describe the content of columns (a)
to (f) of the tables:

(a) High-symmetry space group in the standard set-
ting of axes defined by the international tables for x-
ray crystallography.

(b) Brillouin-zone point relative to the order
parameter. The adopted notation is the one of Zak's
representation tables" and is specified in Refs.
12—14. The triclinic BZ was not considered in Zak's
tables, and there is some variations in other available
tables. We have labeled the points for this system in
the same way as the corresponding points of the
monoclinic (primitive) BZ.

(c) Nonferroic low-symmetry space groups identi-
fied by their standard international symbol. Similar
to Ref. 14, the relative setting of the translations in
the low- and high-symmetry phases is not specified.
No ambiguity follows from the uniform notation.
The actual setting can be deduced from the
knowledge of the explicit translational symmetry
changes associated to each BZ point, which are given
in Ref. 66. In this column, the IR corresponding to
the order parameter is specified between brackets by
the symbol YI of the small representation referred to
Zak's tables.

(d) Change in the number of atoms in the crystal's
unit cell. As there is no change in the point group at
a NFPT, the multiplication of the unit cell is uniquely
determined for a given BZ point, as established in
Ref. 12.

(e) Dimension of each relevant IR, this dimension
being equal to the number of components of the or-
der parameter.

(f) Type of free-energy expansion for the transi-
tion. The different types are explicited in Table VII.

For the cubic system an additional column indi-
cates the "images" of the IR's (see Ref. 14 for their
definition and use). The small number of distinct
images in the other systems has made this column
superfluous for Tables I—IV.
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