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Exponent behavior at a dissipative phase transition
of a driven Josephson junction

G. S. Agarwal and Subodh R. Shenoy

Static and dynamic critical exponents and a set of spinodal exponents are calculated
within a mean-field approximation for the case of a driven Josephson junction undergoing
a nonequilibrium phase transition. These universal exponents obey the exponent relations
obtained from scaling-for-equilibrium phase transitions. The exponents are directly relat-
ed to experimental observables such as the junction voltage, its noise bandwidth, and the
Josephson radiation linewidth.

I. INTRODUCTION

Response functions near the critical point of an
equilibrium second-order phase transition exhibit
exponent behavior as a function of scaled variables.
The working out of a full set of exponents from
models of real systems is desirable, since these ex-
ponents are independent of detailed sample param-
eters, and obey simple algebraic relations useful for
checking independent measurements.

It is well known that systems driven far from
equilibrium can undergo dissipative transitions
analogous to first- and second-order phase transi-
tions. ' Exponent behavior has been seen in partic-
ular nonequilibrium measurements, such as the
spontaneous convective velocity at a Benard insta-
bility and the relaxation time at an optical bista-
bility threshold. One might ask whether, by anal-

ogy to equilibrium transitions, a full range of none-

quilibrium exponents can be obtained, and whether
these obey the scaling relations. Recently, Bishop
and Trullinger have considered the noise voltage
across a Josephson junction near its current thresh-
old, and showed that, as the temperature ap-
proaches zero, mean-field exponents analogous to
those of a ferromagnet near its critical point, can
be extracted.

We have elsewhere shown that a Josephson
junction and resistance, driven by external coherent
radiation or a battery, exhibits a first-order dissipa-
tive phase transition. The transition, involving the
self-consistent dc voltage across the junction, is
analogous to the equilibrium phase transition of a
van der Waals gas, with a first-order line ending at
a second-order critical point. In this work we
show that, within this model, a set of mean-field
critical exponents can be obtained that obey the

equilibrium scaling relations. Furthermore, at the
spinodal curve or limit of metastability, another
set of nonequilibrium "spinodal" exponents can be
obtained, that differ from the second-order critical
exponents, but independently satisfy the exponent
relations. We also show that the (dynamic) ex-

ponent characterizing the relaxation time may be
directly related (at transition) to the broadening of
the linewidth of the Josephson radiation, and the
narrowing of the voltage noise spectrum.

II. EXPONENTS

Consider a Josephson junction with maximum
tunneling current IJ and capacitance C, with exter-
nal resistance R across it. The oxide layer of the
junction forms a cavity of resonance frequency m,
and quality factor Q. A magnetic field is required
for the current-photon coupling. (The size of the
junction is assumed less than the Josephson
length. ) External coherent radiation, with photon
number N, and/or a battery Vb inserted across the
junction-resistance combination, can drive the junc-
tion into a nonequilibrium state, with dissipation
occurring due to the resistor and the leakage of
photons. The scaled voltage f=2eV, /fico, has
been shown to satisfy the Langevin equation

where F~(i) is the delta correlated Gaussian noise
with difFusion coefficient 1/2rf (related to the
parameters of the junction) and 4(f) is the general-
ized potential whose minima, denoted by f, yield
the nonequilibrium steady states:

4(f)= —,(f —1)+a tan '2Q(f —1) p(f 1). (2)——
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In Eq. (2) Itt is the total drive
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The minima of 4 are plotted in Fig. 1 for various
values of the parameter a =(a —a, )/a„with
a, =2/3V 3g'.

The origin in the figure is the critical point of
our system where 4'= 4"=4'"=0, when

p =@,=i+~3/2Q, a=a„and f=f,= I
+(2~3Q) '. For a & 0 and IM, q &p &IM, I,4 has
two minima. The locus of points (f,i q,p, i q) (de-

fined by 4'=0, 4"=0) is the spinodal curve
(dashed line) corresponding to the limit of metasta-
bility. The coexistence curve denoted by the dotted
line in Fig. 1 corresponds to the points where the
depth of the two minima of 4 are equal. It can be

It is clear that Fig. 1 represents a nonequilibrium
phase diagram with first-order lines ending in a
second-order point. The analogy between the
above nonequilibrium phase transition and the clas-
sic liquid-gas phase transition is clear—pressure

p~p, volume U~f, temperature ( T T, )—
~(a, —a); the curve a =0 (a =a, ) is similar to the
critical isotherm, the spinodal curve is similar to the
limit of supersaturation, etc. One would thus ex-

pect divergent susceptibilities, exponent behavior,
etc. , as the critical point (p„f„a,) is approached.
Such critical exponents may be calculated (in the
mean-field limit) from an analysis of (5) and the
minima of (2) which have the property

1
fc+ — (+a+a ), IM =p~ 3g

— c

f='
f,+,(+p+p, )'", a=a,

3 2

Since the junction is assumed to have transverse
dimensions small compared to the coherence length
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FIG. 1. Nonequilibrium phase diagram. The shaded region between the spinodal curve and the coexistence curve is
the metastability region. The minima of 4 are the "isotherms" —the solid (dashed) part denoting stable (unstable) states
for various values of a =(a—a, )/a„with Q =5.
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+L ')(f„)afca+ ,
' L"'(f„—)(~f)'

+[1+a„L"'(f„))~f+L(f.)« (7)

where L(f):—2QI[I+4Q (f 1) ] and—L"
denotes the ith derivative of L (f) with respect to
f. The third and fourth terms vanish at the criti-
cal point, and the exponents of Table I follow at
once for constant p, a, or f, or along the coex-
istence curve. Equation (7) is in complete
correspondence with the equation of state of a van
der Waals gas near its critical point

gI = gb, TSV a(&V)'+C—(~T)

Divergent response functions at second-order
critical points are associated with flattening of
Ginzburg-Landau potential minima and an in-

for the transition, the system is "zero dimension-

al," and spatially varying thermal fluctuations are
relatively suppressed. True divergences thus would
not occur, and deviations from mean-field exponent
behavior are expected within a critical region. For
a=a„a naive Ginzburg criterion yields an esti-
mate

~

b,p ~

((RCAI)'~ Q, which is —10 for a
typical choice of parameters.

From Eq. (2), a steady-state point,
)M=(tt„+&itt, f=f„+bf, a=a„+«close to a
critical (itt„~iM„etc.) or spinodal (iM„~p„2, etc.)

point, obeys the equation

g)M = —,'a„L"'(f„)(~f)'

crease in fluctuations. However, a weakening of
restoring forces also occurs at the spinodal curve,
or limit of metastability, in the first-order transi-
tion region, where one of the bistable minima flat-
tens and disappears. It is thus also possible to de-

fine another class of what might be termed "spino-
dal" exponents near the points +„2,p„q). Here
we consider exponents for systems externally driven
far from equilibrium, rather than metastable states
of equilibrium systems. ' In Eq. (7), with

f„=f„2 the third term vanishes, and the spinodal
exponents of Table I follow.

An increase in relaxation times ("critical slowing
down") occurs at both critical and spinodal points.
From Eq. (1) the relaxation rate T&

' ——RC/
4"-7, so this dynamic exponent" is the same as
that of the static susceptibility as in the classical
(equilibrium) von Hove case. Another characteris-
tic time scale is T2, the lifetime of the metastable
state in the bistable region. This vanishes similar to
(p —p„)'~, with the exponent —, coming from the

spinodal exponent 5 '. However, the stochastic
switching region (p —iM„) (10 within which this
behavior occurs is probably too small to be probed
accurately.

For the critical exponent v we must consider

nonuniform fluctuations, f~f (r)=f+f(r). Ex-
panding 4 of Eq. (2) about f=f„,with bp, b,a
small, one gets only oaf (r), f (r) terms in the

critical case (f„=f,), while c. ubic terms f (r) oc-

cur in addition, in the spinodal case. For a simple

TABLE I. Exponents exhibited by physical quantities as the critical or spinodal point is approached along the speci-

fied paths on the nonequilibrium phase diagram.

Critical exponents Spinodal exponents

Physical
quantity

Order
parameter f

a=a, Coexistence
curve'

g=ge1, 2 a fixed,
gac

—,(6 ')

f=f.i, i

Susceptibility p=
Bp

Specific heat
a'e
Ba

—(a)2

3

2

3

2

3
-(a)1

2

1

2

1

2

'Dynamical exponent for T1 same as that of p; the linewidth of Josephson radiation —T1, whereas the linewidth of
voltage fluctuations —1/Ti. We find g- Ti yielding for example v= —( —) for critical (spinodal) exponent, for con-

stant p.
See Eq. (5) of the text
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static gradient term -g (0)
~

7f(r)
~

the critical
dimensions are' d, =4 and 6, respectively. How-
ever, the gradient term enters here less directly. '

.

For the Josephson junction, with a small varying
drive component p+5p(r, t), and /=to, f,

done directly from the dc voltage versus drive
nonequilibrium phase diagram, with estimates indi-

cating that the region where mean-field exponents
can be seen may be of the order of the hysteresis
region itself. Dynamic exponents might also be
seen through other means. In the Gaussian ap-
proximation Eq. (1) leads to the voltage fluctua-
tions

—2

+ (V P —A,q sing)
~c

Here the Josephson length A,J =—2~c/co& is large,
and treating AJ as small, a linear response
analysis in 5p(k, co) yields a "most divergent" sus-
ceptlblllty X(k, to=toJ) —(toJTi ) [(c k/toJ)
+(toJ T, ) ] '. Thus the correlation length is
g=l J[to&T~(a,p)]', which diverges at transition,

1 I
with v= —, and 4 in the critical and spinodal

cases. It is clear that the critical and spinodal ex-
ponents independently satisfy the relations
tt+2P+y=2, 5=(2—a+@)/(2 —o, —y), P=(v/2)
&((d, —2+t)), and vd, =2—a, with the critical
dimensionality d, set equal to 4 and 6, respectively.

The measurement of some exponents could be

([f(t) f][f(—t+r) f])=—(T /2' )e ' . (10)

The Lorentzian voltage fluctuation spectrum will

therefore narrow (independent of rI ) at transition.
The line shape of Josephson radiation is related to
(exp[i@(t+r) —4&(t)]) and in the relevant param-
eter regime the spectrum is Gaussian —exp

[ (co co,f—) /(—Tt/rI)] with width proportional'
to (T&/rI)' . The linewidth behavior can be un-

derstood from the Josephson relation co =2eu/fi
and (10), since ((5to) ) —((5f) )-(T~/r/).

Finally, it would be interesting if the micsros-
copic results on the bistable behavior of Josephson
junctions can be obtained using phenomenological
equations so that the present work can be placed in

perspective with other dc effects in Josephson junc-
tions. ' Work in this direction is in progress.
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