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A method is developed for demonstrating how solitons with some internal periodic motion

may emerge as elementary excitations in the statistical mechanics of field systems. The pro-

cedure is demonstrated in the context of complex scalar fields which can, for appropriate choices

of the Lagrangian, yield charge-carrying solitons with such internal motion. The derivation uses

the techniques of the steepest-descent method for functional integrals, It is shown that, despite
the constraint of some fixed total charge, a gaslike excitation of such charged solitons does
emerge.

I. INTRODUCTION

Recent decades have yielded localized "solitary-
wave" and "soliton" solutions to a large number of
nonlinear wave equations. This in turn has led, start-
ing from the mid-seventies, to a study of the role of
such solutions both in qunatum field theory as well
as in statistical mechanics. In quantum field theory
soliton solutions have on the one hand led to new

types of nonperturbative extended particle states' and
on the other hand, when used in the Euclidean field-
theoretic context, to interesting vacuum-tunnelling
phenomena. ' (While conscious of the technical
difference between the two terms, we will use the
word "solitons" to include solitary waves as well, as
is often the practice in the literature. ) In statistical
mechanics, the contribution of solitonic excitations to
the partition function and related thermodynamic
quantities of systems which can be approximated by
continuum fields, has received increasing attention.
In particular, there has been a series of about a
dozen articles dealing with soliton excitations in the
classical statistical mechanics of one-dimensional field
systems. ' This series was initiated by the work of
Krumhansl and Schrieffer who studied the one-
dimensional $' theory. Their suggestion, based on
intuitive arguments, was that the solitons (kinks) of
this theory form elementary excitations which contri-
bute to the free energy as if they were molecules of a
gas. This was in addition to the familiar phonon con-
tribution. Krumhansl and Schrieffer (KS) also com-
puted the partition function independently by transfer
integral treating methods, and found that the
phenomenological evaluation treating solitons and
phonons as elementary excitations agreed with the
transfer-integral result to a good approximation.
Subsequently, a- rapid succession of papers have ap-
peared, ' where the initial work of KS was

where the form of U(I&I) and the space dimen-
sionality can be left arbitrary as long as the system
permits charged solitons. Notice that L is invariant
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Our work differs from the papers cited above in
several respects:

(i) In order that a solution carry nonzero charge, it
is evident from (1.3) that it must involve some in-
trinsic time dependence even in its overall rest frame
(zero-momentum frame). By contrast, the KS work
and subsequent related papers deal mostly with exci-
tations of static solutions. We do not mean that these
authors do not include the kinetic (translational)

developed further and improved upon. (A partial list

of these papers is given by Refs. 5 to 12. References
11 and 12 review earlier work and contain a fuller list
of other references. ) These papers applied the KS
idea to other one-dimensional field theories such as
the sine-Gordon model and the double quadratic sys-
tern. They also incorporated soliton-phonon interac-
tions in the form of a self-energy addition to the soli-
ton mass.

In this paper we show how a gaslike excitation of
"charged" solitons, with some intrinsic time depen-
dence, emerges in the classical statistical mechanics
of a complex scalar field. The Lagrangian we consider
is of the type

L = J~[ ,'(ri, @')(rl—"P)—U(lyl)]dx
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motion of their solitons. What we mean by static
solutions is that the solutions themselves (like the
Q4-theory "kink") are time independent in their rest
frames.

(ii) Static solitons for scalar field systems exist only
in one space dimension as per the Derrick-Hobart
theorem. '3 [In certain special scale-invariant models,
like the nonlinear O(3) model, they can exist in two
dimensions as well; but none exist in three dimen-
sions. ] But this theorem does not apply to solutions
with intrinsic time dependence. Thus, for many
choices of U(

~ P ~ ), charged solitons can be found in

one, two, or three dimensions. '4 Accordingly, in
contrast to the work cited above, our statistical-
mechanical derivation will also be tailored to arbitrary
dimensions (Sec. III).

(iii) For a real scalar field in one dimension, such
as the sine-Gordon or $" theory, the partition func-
tion behaved, ' as far as soliton excitations go, as a
grand partition function of the soliton particles. In
other words, configurations with arbitrary numbers of
(well separated) solitons contributed. In the charged
case that we will be discussing, the situation is quite
different. Since charge is a conserved quantity, the
standard procedure of computing the partition func-
tion is to either introduce the corresponding chemical
potential, or to constrain the charge to have any
specific value Q0. To extract the charged-soliton
solutions, we will invoke the latter procedure. But if
the total charge Q is fixed at some Q0, then clearly
arbitrary numbers of solitons of some given charge

Q„|cannot contribute, since the total charge must
add up to Q0. The number N must satisfy

NQ„~= Q0. Nevertheless, configurations with dif-
ferent soliton numbers will be seen to contribute.
However, as Nchanges, Q„|=Q0/Nwill also have to
change, and along with it, the shape, the energy and
other features of the individual soliton. In short, we
will get contributions from a family of different
species of solitons, the species varying with the total
number N of solitons. This interesting feature is dis-
cussed in detail in Sec. IV.

(iv) Last, but not least, we derive the contribution
of charged solitons to the partition function Z by a
systematic steepest-descent approximation to the
functional integral for Z. Of course, given that the
field equations of a system yield charged solitons,
one would expect on physical grounds that these soli-
tons would contribute as "elementary" excitations in
the statistical mechanics of that system. We could in-

troduce them on those intuitive, phenomenological
grounds, just as the early papers on the sine-Gordon
or $4 theory did. But it is much more satisfying to
derive them systematically from the parent functional
integral for the partition function, so that the nature
of the approximation involved is clear.

In fact, before describing our calculations in Secs.
III and IV, we present a compact rederivation, using

the steepest-descent (Gaussian) approximation, of
the basic result of Refs. 5 to 12, viz, , that a gas of
phonons and static solitons emerge as elementary
excitations in the partition function of a one-
dimensional real scalar field system. All the correc-
tion factors obtained in those papers due to phonon-
soliton interactions, the kinetic motion of the solitons
and zero-mode effects, will be seen to come out au-
tomatically. It should be emphasized ho~ever, that there
is nothing really new in Sec. II. The techniques used
are borrowed in toto from instanton-gas calculations
in quantum field theory. 3 4 The final results obtained
have as stated, also been given in Refs. 11 and 12,
but based on intuitive arguments. All that we do in
Sec. II is to obtain the latter results compactly, using
the former techniques, for the sake of completeness.
It also prepares the ground for the derivation of
charged-soliton excitations in Secs. III and IV, which
is new.

II. STATIC SOLITON EXCITATIONS DERIVED
USING FUNCTIONAL INTEGRALS

We give a short summary of how the contribution
of static soliton excitations in classical statistical
mechanics may be obtained compactly, using func-
tional integrals. Consider, for illustration, the one-
dimensional sine-Gordon field P(x) with canonical
momentum vr(x), and a Hamiltonian given by

H(m, P) = Jl dx —[m(x) ]'+— + U(P)
2 2 dx

with

m4
U($) = 1 —cos

m

(2.1)

Z Z~ZQ

where
1/2

z-=-rr '"
Z

Z, —= „&[@(x)] exp( —pE [yl),
and

(2.2)

+U(@) dx .
2 dx

(2.3)

The classical partition function is

Z = J B[$(x)]$[a(x)]exp[ —pH(m. , $)]
The m(x) integration can be done exactly since the
integral is just a Gaussian, to yield a factor of 427r/P
at each point x. Thus,
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The $ integration cannot in general be done exactly
and is treated in the Gaussian approximation by ex-
panding E[P] about its minima. The minimization
condition is just the classical static field equation

Then one can expand

P(x) = y„(x)+ Xc„7I„(x)
0

(2.5a)

+ =0
dx2 d@

(2.4) in which case

Let @„(x)be a solution of (2.4), and let rt„'(x)and
~„'be the complete set of eigenfunctions and eigen-
values of the operator

E[y] =E[y„]+ —,
' Xc„'o)„'+O(c„')

0
(2.5b)

+
dx' d$' e

Defining the integration measure S [$(x)] as
g„dc„,and neglecting the O(c„')terms in (2.5),
we have

P 4c] I 2 2
—PEt~cl 277Z=Z Z~ ——Z„e "

~ g dc„exp — c„(0„=Ze
' 1/2

(2.6)

In general, (2.4) may have more than one finite-
energy solution, in which case it is assumed that each
will make an additive contribution to Z, as given by
(2.6). In the sine-Gordon case, @(x)=2N7r(m/JX)
is a zero-energy solution for any integer W. In addi-
tion, Q, (x —X) = (4m/Jh. ) tan (e (" +) is a static
soliton solution of finite energy M—= 8m3/li. The an-
tisoliton is $q(x) = —Ps(x). These are the only stat-
ic solutions. The contribution of the $(x) =0 solu-
tion to the partition function, called the "phonon"
contribution, is obtained by noting that the eigen-
values of

2+
dx dQ

m„=k„+mfor n &0, k„L+b(k)=2nm, (2.9)

L, ~oo

The zero-mode zoo, related to translation symmetry,
clearly renders the naive formula (2.6) divergent.
This problem is handled by using collective coordi-
nates. 4 Instead of (2.5), one expands

I

This is a Schrodinger operator, and ~„and rl„(x)can
all be exactly obtained for the sine. -Gordon case.
There is a discrete zero-mode zoo=0, followed by a
continuum, whose density is related to the phase
shift h(k) of the Schrodinger problem

are

co„'=k„'+rn2,with k„L=2n|r, L ~~ . (2.7)
with

y(x) =y, (x-X)+ Xb„~„(xX)-
n 1

(2.10a)

Hence, using (2.6)
&/2

z,„=zg
n-0 P~n

P(k'+ m')=Z exp — dk—ln2' 2' . (2.8)

Efrb] =M+ —gb2a)„+O(b3)
1

(2.10b)

In the place of the set {c„;n =0, I, . . . ~ ], one uses
the set {X,b„;n = I, . . . ~ ] as the variables. The
Jacobian associated with this change is given by

To obtain the soliton contribution, let rt„(x)and (0„
be the eigenfunctions and eigenvalues of

(

d d U
dx dP y, (x)

(2.11)g«. =~~dX gdb. .
0 ]

Then, instead of the form (2.6), the contribution
Z&& of the single soliton to the partition function is

S

given by

—(p/2)b 2 2
[

&/2 2n
Z(~ =Z e a JM gJ db e " "

&
dX=Z e P JML Q

1 n 1 ~n

1/2

(2.12)

Using (2.8), this becomes

$/2

Z =Z Le PM exp Xlnco„—gina„
0 1

(2.13)
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Recall that the set co„(n=0, . . . ~) and the set
co„(n=1, . . . ~) form continua in the L ~ limit,
with densities given by (2.7) and (2.9), respectively.
Using these, (2.13) becomes

r r 1/2

1' phS 2m
exp [—(PM + o-)], (2.14)

where

o.=—In~M + dk [A(k)] ln(k +m )'
2m "— dk

(2.15)

Notice that o. is independent of the temperature P '.
In the low-temperature limit, cr will be much smaller
than IBM. Also, the integrals over k can diverge in a
truly continuum field theory, but they can be ren-
dered finite by adding the usual counter-terms. " In
the condensed-matter context there is a natural ultra-
violet cutoff.

A set of N widely separted solitons will also solve
the sine-Gordon equation to arbitrary accuracy as the
separation tends to infinity. Repeating the arguments
made above, the N-soliton contribution can be seen
to be

1/2

III. CHARGED-SOLITON EXCITATIONS

In the preceding section, we derived in the Gauss-
ian approximation to the partition function in classi-
cal statistical mechanics, the contribution from static
soliton solutions. These solutions are static in their
rest frame, i.e., the zero-momentum frame. The
static nature of the solitons that emerged in that
derivation was clearly because the time derivative of
the field rtr(x) = m(x) was separated and completely
integrated out, leaving behind Z~ which depended
only upon Q(x). Naively, it may appear that in such
a derivation, contributions to the partition function of
solitons carrying some intrinsic time dependence (in
the rest frame) may not emerge, even if such soliton
solutions are permitted by the field equations;
whereas, on physical grounds, we would expect that
such so1itons, if they exist, would contribute to the
partition function.

This section is devoted to generalizing the deriva-
tion given in Sec. II so as to yield the contributions
of solitons with some periodic internal motion. We
illustrate the procedure using the simplest example of
this kind, namely, charge-carrying solitons of a com-
plex scalar field.

Consider the complex scalar field

Zpg $ Zph L P
S N! 2m

exp( —PM —o.), (2.16) y(x, t) =P)(x, t) +i&2(x, t) (3.1)

where the N! appears because permuting the 1ocation
of the N solitons will yield the same configuration.
An identical contribution will arise from antisolitons.
If we use open boundary conditions (i.e., zero chemi-
cal potential), then the system can permit an arbitrary
number of solitons and antisolitons. The sum of all
such contributions in a "dilute soliton gas" is clearly

L = J [ —,'(8„rt+)(8"4)—U(l@l)]dx (3.2)

We note that this Lagrangian is invariant under glo-
bal U(1) transformations,

in an arbitrary number of space dimensions. Let the
Lagrangian have the form

rt(x, t) =e' P(x, t) (3.3)
1/2

1 P —rsM —a

Wi!N2! 2m
1 2

N1+N2
Associated with this symmetry, there will be a con-
served charge

' 1/2

=Z hexp 2L ~ e t'M a
ph 2' (2.17)

An important assumption has been that the solitons
are widely separated, i.e., that the gas is dilute. The
mean density, obtained by maximizing (2.16) with
respect to Nis

&max P
L 2m

1/2

At low temperatures (P ~), the gas will satisfy the
requisite diluteness. We have thus compactly derived
the basic result on static soliton excitations [as for in-

stance in Eqs. (3.21) to (3.26) of Ref. 12].

(3.4)

0U(l@l) @
II(I @I)

(3.5)

and a solution to this equation of the form

@(x,t) =p„(x)e'"' (3.6)

We require U(lrtrl) to have its absolute minimum at
l$l =0. In that ease, it is clear that finite energy soli-
ton solutions must approach l@l =0 at the boundary
of space, and consequently will carry a finite value of
the charge Q. The only other requirement on
U( lrtr l) is that it must permit charge carrying soliton
solutions. That is to say, consider the equation of
motion
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Then p„(x)must obey

BU(p)V p„—
P

+v pv
P PIt

(3.7)

The condition on U(p) is therefore that this equa-
tion should yield a localized solution for p„(x)for
some range of V. An explicit example of a potential
that supports such solutions will be considered in the
next section. If this condition is satisfied, then soli-
ton solutions of the form (3.6) with periodic intrinsic
time dependence will exist. They will carry a charge

g =v J/p'„(x)dx (3.s)

+ U[(yt+y2)'"] Idx (3.9)

where the momenta, mt(x) and m2(x), conjugate,
respectively, to Q~(x) and $2(x) are given by

mt(x) = —= Qt(x), m2(x) = —= $2(x)
Bt

'
Bt

(3.10)

There will also be other charged-soliton solutions
to Eq. (3.5) with a more complicated space-time
dependence (even in the rest frame) than the family
of solutions given in (3.6). However, it can be
shown'4 that the latter carry the least energy for a
given charge. Consequently, on physical grounds, we
would expect these to be the most significant contri-
butors to the partition function for any given total
charge of the system. Let us proceed to show how
their contribution to the partition function may be
extracted in the functional integral formalism.

The Hamiltonian for the system is given in terms
of the real and imaginary parts of @(x) by

H= JI ( —,'~f+ —,'~', + —,'(9y, )'+ —,'(9@,)'

The appropriate procedure to compute the partition
function in the presence of a conserved charge is to
either constrain the charge or to introduce a suitable
chemical potential. We will adopt the former
method. The partition function for this system is
then given by the following path integral

fz =
J & [pt(x)]& [42(x)]+[7rl(x) l

x&[~,(x)l&(g —Qo)e t'", (3.11)

where Q, the charge given in (3.4) reduces to

g= I&2(x)~~{x)—@~(x)mg(x)]dx . {3.12)

In contrast to the uncharged case in (2.4), we no-
tice that now the canonical momenta m~(x) and
m2(x) are coupled to the fields Qt(x) and @q(x)
through the delta function and thus cannot be in-
tegrated separately. Therefore, let us change vari-
ables to polar fields p(x) and 8(x) defined by

P(x, t) =p(x, t)e '""" (3.13)

The Lagrangian given by (3.2) in terms of p and 8 is

L =J [ —,'(B„p)(&"p)

+ 'p (8„—8)(8 9) —U(p)]dx . (3.14)

The momenta, p(x) and q(x), canonically conju-
gate to p(x) and 0(x) are thus

p(x) =p(x), q(x) =p'(x)e(x)

and the charge in (3.4) is now given by

g = J/q(x) dx

(3.15)

(3.16)

The Hamiltonian of the system given in (3.9) reduces
to

H= Jr [—'p + —'p 8 + —'('7p) + —'p ( 78) + U(p) ]dx

2
= JI [ —,

' p'+ —,~+—,('7p)'+ —,
' p'( 78)'+ U(p)]dx (3.17)

Note that the Jacobian of the transformation from the variables $&, $2, rr~, 7rq to p, 0, p, q is unity. Thus the par-
tition function in these new variables is

Z = JI &[p(x) l S[H(x)] S[p(x) l& [q(x)]8(g —go) e ~H (3.1s)

Using the integral representation for the delta function

f+co

5( g —Qo) = Jl exp[in(g —go) ] d n
2'7T

We can write the partition function as

Z= JI d~S[p(x)]&[q(x)]X)(p(x)]g)[&(x)]e s e2'

(3.19)

(3.2O)
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The path integral over p (x) is just a product of Gaussian integrals, and can be easily evaluated
1 r 1/2

4
6 [p(x) ] exp —+

J d xp'(x) = g2 -„P
The path integral over q ( x) is easily converted to a product of Gaussians and then evaluated as follows:

2

[q(x)]exp in~ dxq(x) — dx

(3.21)

r T

u
$[q(x)]exp —~ dx q —'

J 2 p
'r T)/2

2

=exp — „p'(x)dx g p(x)

r

a
exp —~ p'(x) dx

p2 J
2

(3.22)

Substituting (3.21) and (3.22) in (3.20)

r T

2

JI p(x) &[p(x)]&[e(x)]dnexp inQO — —p'(x)dx
2p "

x exp —~
J [ —,

' ('T7p)'+
2
p'(T78)'+ U(p)]dx (3.23)

The integral over e is also converted to a Gaussian and then evaluated

2

dnexp inQO — Jp—'(x) dx

r T r
T

=exp —+
„

I dnexp —
J p2(x)dx n+i pQ0 'tp2(x)dx (2p)

p (x)dx

=42np,
„

1

J p'(x)dx
,„,exp —+Q02 I dxp2(x) (3.24)

The partition function is thus reduced to a path integral over only p(x) and 8(x)

where

i/2 ~

~ 2m J" p(x)$[p(x)]&[8(x)] as
r

'(x)dx
t r

(3.25)

E= J [2 ('Vp) +
2 p (OH) +U(p)]dx+Qo 2„dxp(x) (3.26)

Rewritten in terms of rtrT(x) and rtr2(x),

with

p 2~ " S[rtrr(X)]X)[rtr2(X)] pE
' r/22m -„p (@2+y2) d
r

E= Jt [—(Ortrr) +—('V/2) +U[(rtrr+rtr))' ]]dx+Qo 2 J (rtrr+$2)dx

(3.27)

(3.2S)
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The functional integral in (3.27) is evaluated using
the method of steepest descent. In this, the dom-
inant contributions to the partition function are from
the neighborhood of those configurations of $~(x)
and $2(x) that minimize E in (3.28), that is, from
the solutions to the equations

Equations (3.29) and (3.30) are integro-differential
equations for Pq(x) and $2(x), and as such, it may
appear to be a difficult task to obtain solutions to
them. However, a family of simple but nontrivial
solutions may be obtained by the following trick. '

Writing $(x) in polar form, with a space-indepen-
dent phase

$(x) —= Q~(x) +i&2(x) =p(x)e'e

we note that both (3.29) and (3.30) reduce to

(3.31)

—'7 p+~& + eU(p)
Bp

Qp
2P —0

p2(x)dx
(3.32)

1/2

p„(x)dx, (3 34)

where (P/2m)e is the contribution of the Gaussian
fluctuations about p„(x)and arises as follows. As

Configurations with a space-dependent phase 8 have
higher free energy because they give an extra positive

contribution —,J p2(VH)2dx to Ein (3.26), and will

therefore not be considered here.
However, note that Eq. (3.32) is the same as Eq.

(3.7) [which has solutions of the form (3.6)] provid-
ed we make the following identification

Qp=v) p2(x)dx

That is, a solution p„(x)to Eq. (3.7) that has a
charge equal to Qp will also be a solution to (3.32).

For a fixed Qp, Eq. (3.32) can have several solu-
tions with different frequencies v. Consider any one
such solution p„(x ) with a frequency v. Let the en-

ergy [given in (3.26)] associated with this solution be
denoted by E„.Then the contribution to the parti-
tion function from this solution and its Gaussian
neighborhood (in function space) will be

/2
2m P P
p 2m 2m'

explained in Sec. II, there is a factor of v P/2m as-
sociated with the zero-frequency translation mode.
Unlike the uncharged case dealt with there, where
there was only one zero-frequency eigenmode, now
the spectrum of the fluctuations consists of two
zero-frequency eigenvalues —one corresponding to
uniform translation in ordinary space and the other
corresponding to uniform rotation in internal space.
These give rise to a factor [(P/2 r7)

' 2]' in the parti-
tion function. The P-independent contributions from
the zero-frequency modes are absorbed in e, which
also includes the contributions from the remaining
nonzero frequency eigenmodes of the fluctuations.
o. is independent of P. Though there is a specific
prescription, analogous to that given in Sec. II, for
evaluating cr, it is difficult to evaluate it in practice,
partly because of the added complications due to the
presence of two zero-frequency eigenmodes. Note,
however, that o. is one order of P smaller than PE;
we will therefore neglect it in comparison to /3E in
further computations.

In the following section, we will identify all the
solutions to Eq. (3.32) and evaluate their contribu-
tion to the partition function only to leading order in

P. If the solution that we picked here had corre-
sponded to a configuration of W identical, well-

separated solitons, then an extra multiplying factor of
V~//Vt will have to be introduced in the expression
(3.34) for the corresponding partition function. This
factor arises from the integration over the locations
of the N solitons.

If other scalar fields are also present in the theory,
then they will be unaffected by the U(l ) symmetry
transformation of $(x). Therefore the charge asso-
ciated with this symmetry remains the same. The
procedure given in this section for the computation
of the partition function in the presence of a con-
served charge still holds. These other fields will be
unaffected in the early stages of the procedure and
will appear in the final result (3.25) along with the
radial field p(x) with an energy functional which
depends on these fields and p(x).

IV. CHARGED SOLITONS AS CONTINUOUS
GAS SPECIES

When it comes to the question of the solitons
forming a gas, there are two differences between the
uncharged solitons of Sec, II and the charged solitons
of Sec. III. Firstly, in the uncharged case there is a
unique static soliton function (as for instance, in the
sine-Gordon case) whereas, for the charged soliton
[Eq. (3.32)], one can have a continuous family of
solitons by continuously varying I . Secondly, in the
uncharged case, one could add the contributions from
an arbitrary number of solitons and antisolitons
under the boundary conditions specified in Sec. II.
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In the charged case, one cannot add the contributions
from an arbitrary number of the same single soliton
since their charge will not add up to Qp. Remember
that the demand of charge conservation persists in
our result through Eqs. (3.7), (3.32), and (3.33); un-

less (3.33) is satisfied, a solution of (3.7) will not
satisfy (3.32).

Given these differences, it is still possible to have
contributions from configurations consisting of dif-
ferent numbers of solitons in the following sense.
The simplest possibility is to have a one-soliton confi-
guration with some frequency v~ such that

Qo= vi
& p„,(x)dx. The next possibility is to have

two identical widely separated solitons each rotating
with some frequency v~ and having a charge Qp/2,

i.e., Qp=2v~ „p'„,(x)dx. Remember that p„,(x) is

a solution to Eq. (3.7) with v = vq and is a different
function from p„,(x). In this double-soliton confi-

guration, the two solitons are identical to one another
but different from the single soliton p„,(x) men-

tioned earlier. Though the charge of each v~ soliton
is half that of the v~ soliton, vq is not half of v~ nor is
the energy of each vq soliton half that of the v~ soli-
ton. These depend on the exact form of the poten-
tial. Similarly, one can have three solitons all rotat-
ing with a frequency v3 and carrying a charge Qp/3

each, and so on. Of all these configurations that can
contribute to the partition function for a given Qp,
the one that has the minimum free energy will dom-
inate.

The most interesting situation is where in the ther-
modynamic (V~~) limit, Qp is proportional to V,

i.e., the charge density qp —= Qp/ Vis finite. One can
still ask the question whether an infinite number of
solitons are necessary for this or not. Typically, one
finds that in the allowed range of frequencies, the
charge of a single soliton varies from a finite to an
infinite value, i.e, , a charge of the order of the
volume of the system (see for instance the example
below). In that case, one can achieve a total charge
of Qp proportional to V with either some finite
numbers of solitons each having a charge of order V,

or an infinite number of solitons each with finite
charge. Intuitively, one would expect the latter possi-
bility, because of the enormous contribution to entro-

py from the infinite number of solitons. This indeed
turns out to be true. Even then, it still remains to
find the optimal number density of solitons which
minimizes the free energy. Once we find this optimal
na and an associated v0, we essentially have a gas of
solitons each of charge qp/np and density no that
dominates the partition function.

As mentioned towards the end of Sec. III, the con-
tribution of a configuration of N solitons (each rotat-
ing with a frequency vrv, and having a charge Q~ and
energy En) to the partition function will be propor-

tional to

V~ &

—
PNEUM

N! ~Q
(4.1)

The factors of 2n/P which are common to all config-
urations, have been left out. For ready reference, we
rewrite the expressions for Qn and En here

Qn=N J p'„„(x)dx

En=~ [—,'('7p„)'+U(p„)]dx

(4.2)

1

+Q$2 p„(x)dx

where p„(x)is the one-soliton function rotating

with a frequency v~. Explicit expressions will be
given for Q~ and En in the specific model discussed
later in this section.

The partition function is given by a sum of the
contributions of all such configurations with arbitrary
N's

(4.3)

r r 3/P

z= g2 I' xz. ,
P 2m n

where each of the N-soliton configurations being
summed over must have a total charge of Qp. It is,
in practice, difficult to evaluate the sum to give a
closed-form expression for Z. We will therefore ap-
proximate it by its peak value multiplied by a typical
width which will soon be defined precisely.

We now proceed to find the optimal number densi-
ty of solitons. For this, we have to maximize Z~
with the constraint

(4.4)

(4.S)NQrv = Qo

on N, or equivalently on v~. Notice that N and v~
are related through (4.5). The optimal value Np is
the solution to the equation

=0
dN

(4.6)

or equivalently, to the equation

d (Inz~)
dN

We have taken N to vary continuously, which we are
allowed to do for large N. From the expression (4.1)
for Z&, we have

(4.7)

Inzrv = N ln V —PNE~+ —, lnvn —N(lnN —1)1

——, In(2m) —
—, InN ——, lnQp,1 1 1 (4.g)

where the Stirling's approximation for Nt has been
used. (4.7) then becomes

lE& $ 4v& Iln V PE~ /3N +- ——lnN —— =0
dN 2v~ dN 2N

(4.9)
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We express all the quantities in this equation in
terms of vN, as we shall soon see, it will be simpler
to solve this equation for vN than for N As N
varies, the frequency vN also varies according to
(4.5), and we have

QgdN +NQgdu~ =0

i.e.,

Qw Qn'

dN NQn Qo Q„'
(4.10)

dEN BEN dv N

dN Bv ~N dN
(4.11)

The energy EN of the single soliton depends on the
frequency implicitly via its dependence on Q~. From
(4.3) we have

where the prime on Qn denotes the frequency deriva-
tive, evaluated at v = vN, of the single soliton charge
function. Further, dE~/dN may also be expressed
completely in terms of v~ and Q~ through Eqs. (4.3)
and (4.10) as follows. We can write

Equation (4.9), which determines the optimal (peak)
value then takes the form

/3E~—+/3u~Q~ —,—lnq, +in' — =0
2p~QoQ 2Qo

(4.14)

The third and last terms are of order 1/Qp, i.e., of or-
der 1/Vand may be dropped in the thermodynamic
limit. This equation then reduces to

lnQ~ lnqo —PE~+—P~wQw =o . (4.15)

no —= =exp[ —P(Eiv —uw Q~)„„]. (4.16)
Qp

Q& "w "o
"N "P

For a given P and qp, this can be solved for the fre-
quency and a solution vp obtained. Then, the optimal
number density, np, of solitons can be obtained from
(4.5) and (4.15) to be

dEN
=VN (4.12)

dEy dE~, dew, Qg ver
de dN QoQ~ Qp

(4.13)

As mentioned earlier, the soliton number Np(=np V)
that minimizes the free energy for a finite nonzero
charge density does in fact correspond to a finite
number density np of solitons. At this number densi-
ty, Z~ in (4.1) has a maximum value given by

vp

2m QpNp
exp [ V(1 —PvpQ~ ) exp[ —P(Elvo xpQNo)) (4.17)

The partition function given in (4.4) is approxi-
mated by the area under the Gaussian function cen-
tered at Np and having a peak value ZN at that point.

To get a rough estimate, we approximate this area by
the product of the peak value and the half-peak
width. We already have an expression for the peak
value.

To obtain the half-peak width, note that the Gauss-
ian approximation amounts to writing ZN for any N
as

5= —2 ZN
p

t

ZN

dN +o

Now, (d2Z~/dN2)~ is given by

which

1Z ZN oN 2 p

We thus have, from (4.18), for the half-width

(4.20)

(4.21)

d ZN
Z~ = Zn +— (N —Np)

2 dN Np

The half-peak width 6 is then given by

(4.18) d ZN

dN2 P

d lnZN d lnZN

dN Np dN Np
+

6 =2(N —Np) (4.19)

d'lnZN
Np (4.22)

~here, as the name implies, N is that value of N for
since Np is a solution to the equation d In'/dN =0.
Using (4.9), (4.15), (4.10), and (4.13) this is
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d ZN dEN 1 dvN dvN

dN N dN N dN
——+PQN +PVNQN

dN

leading to

QN QN QN QN QNp QNp
=zNO PVN — -P, -PvN =-zN 1+P

QOQN Qo No
' Qo g„', (4.23)

1/2

QNO5=2JNp 1+P
QNO

(4.24)

exp( V(1 —PvogNO) exp[ —P(ENO —
VOQN, ) ) j

The product of (4.17) and (4.24) gives an estimate of the partition function as

3/2 r ]/2 i ~1/ 2~ 2' P 2 vo Pgo
Z —LI 1+

P 2ll W gp QNO

(4.25)

Once Eq. (4.15) is solved and the optimal frequency
vo found, then the charge and the energy at that fre-
quency can be evaluated from (4.2) and (4.3). The
contribution of the soliton solutions to the partition
function in the steepest-descent approximation may
then be obtained from (4.25).

Besides the soliton solutions, which are space-
dependent functions, Eq. (3.32) will also, in general,
have space-independent (constant p) solutions.
p(x) =0 is a solution to the equation, but only with

go=0, which is of no interest. The other extrema of
U(p) —v p /2, being solutions of (3.7) will also be
space-independent solutions to (3.32) for suitable
values of go. From Eq. (3.33) it is clear that the
charge associated with any such solution corresponds
to a finite charge density. Further, from (3.26) note
that the energy of any constant solution is also pro-
portional to the volume, i.e., a finite energy density is

associated with such solutions.
Thus, for a value of go proportional to the

volume, (3.32) is likely to have constant p solutions.
However, their contributions to the partition function
will be of the order of e ~v~ $ being the energy den-

sity associated with any such solution, and will there-
fore be negligible in the thermodynamic limit. The
partition function will therefore receive contributions
only from the space-dependent soliton solutions.

We will now consider a specific model' '7 in one
space dimension to illustrate with an example the
main points of this section. We choose this particular
model bccausc cxpllc1t cxpl'css1ons arc avallablc ln
this model for the charged soliton solution and the
charge and energy associated with it. The potential
U(l@l) in this model is

the potential U satisfies all the conditions stated in

Sec. III to be necessary for charged soliton solutions
to exist. Equation (3.7) for p(x) takes the form

d p
dx

P =(m —v )p 4bp +6cp— (4.28)

This has two space independent solutions, the extre-
ma of U(p) —v p /2, given by

b + (b —3ac)' '
+ 3c 3c

(4.29)

where a = (m' —v2)/2. These solutions are, of
course, functions of the frequency v and exist in cer-
tain ranges of v.

and

m&v&vfor p

v&vfor p+

(4.30)

(4.31)

where v is defined by

—'(m' —v')c=b' .
2

(4.32)

Equation (4.28) has also nontopological soliton solu-
tions with p(x) 0 as x +~, for a range of v

given by

m PVPvmtg

where v;„satisfies

2(m' —v' )c =b' .

(4.33)

(4.34)

I

If the values of the parameters m, b, and c are re-
stricted by the condition

(4.27)

U(Ill) =
I @I' bl @14+ c I yl' . —

2
(4.26) The solution is

x m —v2 2

b+ [b' —2(m' —v')c|' 'cosh[2(m' —v')'~'xl (4.35)
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This has a half-width given by

1
l

2b +4(b2 —4ac) '~~

J2a (b' 4a—c) '" (4.36)

This solution carries a charge
1

b +v'4ac
2 J2&e b —J4ac

(4.37)

and has an energy
1

2m c+2v c —b2 b+44ac Jab
8J2Mc b —v 4ac 2 J2c

It can easily be shown that

(4.3g)

E„,Q„Oas v'~m 2

E„,Q„-~as v v~;„,2 ~ 2

2~ 2.vQv C as v vmin

(4.39)

where C has a positive finite value.
The contribution of these charged soliton solutions

to the partition function for a given charge density

Q / V can be obtained from Eq. (4.25). For this, we

need to know the optimal number density np o en of the
so itons an1' d the corresponding optimal frequency pp.

4.15)These are obtained by solving for vo from ( .

which is

lnQN lnqo PEN+/3vNQN

an ed then using (4.5) to evaluate no S.ince we know
explicitly how the charge Q~ and the energy E~ o
the soliton in this model vary with v~, we can solve

course make sure that Eq. (4.15) does indeed have
solutions. We rewrite (4.15) as

&(Eg-&~&~~
Qw/Vo = e (4.40)

and examine this graphically for specific values
b = c = m =1 of the parameters in the potential U.
In Fig. 1 we have plotted the right-hand side as a
function of v for a particular value o P.f . The left-
hand side has also been plotted in the same figure for
three different values of qp. It is clear that there is at
least one point of intersection, that is, at least one
solution to Eq. (4.15). This can also be seen directly
from Eq. (4.40) as follows. The left-hand side, for
any qp, is zero a v=vm» =ro at v=v (=m) and increases mono-
tonically as v decreases, tending towards infinity as

v;„.The quantity (E& v~QN) is—zero at
v =v,„and it also increases monotonically as v de-
creases, but it has a finite positive value at v;„.
Thus, for any P, the right-hand side will be unity at

d 'll continuously increase with decreasing v.&max an
.40 willAt v;„ithas some finite value. Thus Eq. 4.40 wi

have at least one solution vp for any qp anand . From

L
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40

0
0.5

I

06
I

0.7
I

08
III I

0.9 1.0

FIG. 1. A numerical solution to Eq. (4.40)
frequency v for P =15. The dashed curves,curves I,
are for parameter values b = 1, c =,

P(E p g )
for =15 and three values of qp. Curve A is the p o oi the lot of e vs thefor P= an

=0.1 0.15 0.5, respectively. All the four curvesII, III are the plots of Q&/qp for qp = . ,
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FIG. 2 CG. 2. Comparison of the intersoiiton separation Q / and th0~ qo an t e soliton width (. The solid curve shows the soliton width g
as a unction o the frequency v. The three crosses denote the threeo e e ree points of intersection of the curves A and II in Fig. 1, i.e.,

an qo = . . The ordinates of the crosses are the intersoliton separations, Of these onl th r
repres nt a lid ¹o1ito ol tio i her tho u ion, i.e, w ere the intersoliton separation is much larger than the soliton width.

Fig. 1, we can see that for a certain range of qo (this
range depends on P) there are as many as three in-

tersections denoted by crosses in Fig. 2. However, as
we shall now show, only one of these corresponds to
a true solution. Note that the average separation
between any two solitons in a configuration of N soli-
tons is given by Q~/qo. For this configuration to be
a solution of (4.15), this average separation must be
much larger than the soliton width. This must be
true for the separation and the width evaluated at the
optimal frequency (i.e., at the values of v corre-
sponding to the intersections). In Fig. 2 we have
plotted the soliton width as a function of v. The
width becomes arbitrarily large at both limits, v;„
and m, of the frequency range. As is clear from this
figure, only one of the points of intersection, the
central one, satisfies the criterion for representing a
solution to Eq. (4.15).

Having found the optimal frequency vo, one can
easily evaluate (4.25) to give the solitonic contribu-

tion to the partition function.
Let us now consider the case of a finite charge in-

stead of a finite charge density discussed so far. Fol-
lowing the same procedure, we have to look for solu-
tions to Eq. (4.40) for a finite charge Qo. Note that
though the right-hand side remains unaffected, the qo
in the denominator of the left-hand side which was
finite earlier is now vanishingly small. The solution
to (4.40) will then tend to be the trivial solution; so
the dominant contribution to the partition function
will be from small fluctuations about the trivial solu-
tion, i.e., from the phonons with a total given finite
charge. The system will then behave like a gas of
phonons rather than a gas of solitons.
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