
PHYSICAL REVIE% B VOLUME 25, NUMBER 3 1 FEBRUARY 1982

Light scattering from magnetic excitations in orthoferrites

R. M. White, R. J. Nemanich, and Conyers Herring'
Xerox Palo Alto Resarch Centers, Palo Alto, California 94304

(Received 6 July 1981)

The Raman spectra of YFe03, SmFe03, DyFe03, HoFe03, and ErFe03 have been measured

as a function of temperature from 8 to 650 K. For all the materials, the spectra show two

features in the 5 to 20 cm range. From their polariziation properties, these two modes are

identified as the two predicted spin-wave modes. For several of the samples, the ratio of the in-

tensity of the Stokes-shifted to anti-Stokes-shifted peaks is not as expected for boson excita-

tions. In addition, rotating the sample by 90' causes an inversion of the Stokes —to —anti-Stokes

intensity ratio. The effect has been attributed to an intereference between linear and quadratic

magnetic contributions to the dielectric function, and this model can account for the observa-

tions. Another striking effect probed by the light scattering is the spin-reorientation transition

which occurs in the vicinity of 470 and 90 K for SmFe03 and ErFe03, respectively. In this tran-

sition, the net magnetic moment rotates continuously by 90' in the ac plane, with a resultant

change in the spin-wave symmetries. This transition occurs over a temperature interval of
about 20 K, during which the frequency of one of the spin-wave modes is expected to go to

zero. hile the change in spin-wave symmetry is reflected in the light scattering spectra, we do

not observe complete "softening, " and attribute this observation to a coupling with the rare-

earth electronic states.

I. INTRODUCTION

The rare-earth orthoferrites, 8Fe03, are a well-
studied family of magnetic materials with a rich array
of magnetic properties. ' The orthoferrites are partic-
ularly interesting because of the presence of an an-
tisymmetric exchange interaction which involves the
vector cross product of neighboring spins as opposed
to the usual scalar product. In the absence of this
interaction, the orthoferrites would be antiferromag-
nets. Its presence leads to a small canting of the sub-
lattices making the orthoferrites "weak" ferromag-
nets with 4aM = 100 Oe. Another interesting
feature of these materials is the fact that some of
them exhibit a transition as a function of temperature
in which the direction of the net magnetization ro-
tates by 90'.

Since yttrium is nonmagnetic, studies of YFeO3 en-
able one to selectively investigate the magnetic in-
teractions between the Fe'+ ions. Before growth-
induced anisotropy was discovered in the rare-earth
garnets, the orthoferrites were used in magnetic bub-
ble devices. However, the small magnetization
results in relatively large bubble sizes. On the other
hand, domain-wa11 mobilities can be very high, partic-
ularly in YFe03. Because of this high mobility,
YFe03 was chosen as the material for an earlier in-
vestigation2 of domain wall motion. One of the out-
comes of this investigation was a calculation of the
spin-wave frequencies and lifetimes in YFe03. The
spin-wave spectrum consists of two branches. The
k =0 modes correspond to ferromagnetic- and anti-

ferromagneticlike resonances. The frequencies of
these modes, based on parameters obtained from
susceptibility, etc. , are predicted to fall in the far in-
frared. However, the anisotropy parameters are
numerous and difficult to evaluate from static mea-
surements. Although inelastic neutron scattering
measurements have been carried out on several
rare-earth orthoferrites, we are not aware of such
direct determinations of the resonance frequencies in
YFe03. In this paper, we report on Raman scattering
measurements on YFe03 as well as several other
orthoferrites from which we obtain the resonance fre-
quencies. A preliminary report of the room-
temperature results was presented earlier. ' The Ra-
man scattering in these materials revealed a number
of interesting features some of which have their ori-
gin in the magnetic symmetry of the crystals. In Sec.
II, we present a group-theoretical analysis of YFe03
from which the symmetries of the Raman tensor and
the dielectric tensor are obtained. A microscopic in-

terpretation of these results is also presented. Sec-
tion III describes the experimental results. Of partic-
ular interest was the observation that the spin-wave
frequencies do not "soften" completely at the spin
reorientation.

II. THEORY

A. Magnetic group

The crystal structure of YFe03 is shown in Fig. 1.
Not shown in this figure is the fact that the yttrium
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and combinations of these with lattice translations.
These operations leave the charge density invariant.
If we wish to consider the magnetic moments we
must include the time-reversal operator, T. The full
(nonunitary) space group M of the nonmagnetic crys-
tal then becomes M = G + TG, and would be denoted
Pnma 1'. The ordered magnetic state is not invariant
under time reversal. Therefore, the space group ap-
propriate for the magnetically ordered system must
necessarily be a subgroup of M. There are eight such
subgroups. The one that characterizes the spin
configuration shown in Fig. 1 is Pn'm'a, whose asso-
ciated point group we shall describe in the next para-
graph.

%e shall restrict our considerations to one-magnon
scattering. Two-magnon scattering will have a con-
tinuous spectrum overlapping that of the phonon
bands. The restriction to single magnons simplifies
matters, since, at small wave vectors, the symmetry
properties can be described in terms of the magnetic
point group. This is obtained from the space group
by setting all the translations, both primitive and
noriprimitive, to zero. The resulting magnetic point
group, let us denote it by M, is m'm'm;

M = (E I C2g, (r„TC2„,TC2y, Ta „,To y)

FIG. 1. Unit cell of yttrium orthoferrite.

ions are displaced slightly. The ion at 10 4 for ex-

ample, actually lies at 1—x —y 4
while that at 10 4

1 . 3

lies at 1+x y 4 where x and y are small. This struc-

ture belongs to the orthorhombic space group Pnma
in the international notation, or D~q in the Schoen-
flies notation. The symmetry elements in this (uni-
tary) group, let us denote it G, are as follows:

(E l0), the identity operator;

(C2ul~/2)
rotations through 180' about the
axes indicated in Fig. 1 plus

{C2$lb/2), a transition by half the repeat
distance along that axis (note that
we have used different coordinate
origins for these three rotations);

C2~(C 2

Half of the elements of M constitute a subgroup of
unitary operators, u&, called the halving subgroup, 0,
while the other half is a set of antiunitary operators,
aj. Thus, M =H + T(G —H), where G is the point
group obtained from G. From the elements of G, we
see that G is mmm (or D2i, ). The halving subgroups
0 have been worked out for the 58 magnetic point
groups and are tabulated in several places. ' In the
case of m'm'm, the unitary subgroup H is 2/m (or
C~q). The elements of this group, which should be
obvious from Eq. (l), and their representations are
given in Table I. The antiunitary co-set, T(G —H),
may also be written aoH, where ao is any one of the
antiunitary elements

The transformation properties of antiunitary groups
are characterized by their co-representations. The
procedure for finding these co-representations in

TABLE I. Irreducible representation of the halving sub-

group H which, in this case, is 2/m (or C2&).

(I lo}

( l
bo/2) =

(oh l~/2) =

(~.lc/2) =

inversion about an Fe'+ site;

{C2~l
b/2) (I l0), reflection in a

plane at a/4 or 3a/4 plus a
translation along the b axis by b/2;

(C2, la/2) (Il0), reflection in a
plane at b/4 or 3b/4 plus a
translation along the a axis by a/2;
(C2, lc/2) ' (Il0), reflection in a

plane at c/4 or 3c/4 plus a
translation along the c axis by c/2;

Ag

Au

Bg
&u

E

1
—1

1
—1

C2g

1

1
—1
—1

1
—1
—1

1
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TABLE II. Real co-representations of the magnetic point group m'm'm.

ap= TC2„ C2g TC2x TC2y T cJ'y

Ag

A~

Au

A—M

Bg

8~

&u

1

1
—1
—1

1

1
—1
—1

1

1

1

1
—1
—1
—1
—1

1

1
—1
—1
—1
—1

1

1

1
—1

1
—1

1

—1

1
—1

1
—1
—1

1

1
—1
—1

1

1
—1

1
—1

—1

1
—1

1

1

—1
—1

1

—1

1

1
—1

M„x2 y2, z2

xy, MxMy

z

My, yz

M„,xz
x

X(u, ) = h(ao 'utao)", (2)

~here ap is again any one of the antiunitary ele-
ments. If X(u, ) and h(u, ) are equivalent, thatis, if
3 (ut) may be written as p 'd (u, )p, where p is some
unitary transformation, then there are two types of
co-representations. If P'P = + 6 (a o ), then

terms of the representations of the unitary subgroup
was developed by Wigner. o Suppose A(u, ) is a uni-
tary irreducible representation of H. Then we first
form X(u, ) which is defined as

the possible co-representations can thus be labeled as
in Table I, with an arbitrary phase of p assignable to
each. For the classification of classical tensors like
the susceptibility, for which the real and imaginary
parts have different physical meanings, it is con-
venient to consider co-representations consisting only
of real matrices, and thus to distinguish the two cases
p = +I, i.e., to distinguish two alternatives for each
row of Table I, as shown in Table II.

B. Spin-eave symmetries

D(u, ) = A(u, )

D(a, ) = h(a, ao ')p

If p'p = —A(ao2 ), then

h(ut) 0
D(u, ) =

0 ~(„)
0

D(a, ) =
~( t)p

A(a, ao ') p
0

0
D(a)= ~( t ),

If &(ut) is not equivalent to A(ut), then the co-
representations are of the third type:

'a(u) 0
D(u)=

0 ~( ) t

h(atao)

(4)

(5)

The spin waves, being normal modes of the sys-
tem, must transform according to the irreducible co-
representations developed in Sec. II A. We shall dis-
cuss these modes in terms of the two-sublattice
model of YFe03 shown in Fig. 1, in which the spins
of a11 the Fe atoms that point in the same direction
are assumed to move together. This model has a sin-
gle isotropic exchange constant coupling nearest-
neighbor Fe spins, a single antisymmetric (canting)
exchange constant, and two anisotropy constants;
Herrmann' has shown that one gets essentially identi-
cal results from a more general four-sublattice model
with neighbors at different distances allowed to have
slightly different couplings, and with slightly different
anisotropies for the different sublattices. Thus we
write the Hamiltonian

0 =2J XS, St+D X(SfSJ St"St')

Notice that ap is our case may be written as Tup

where up is the appropriate member of 6-H. Thus,
ap 'upap = up 'u;up. But the representations of 6 are
all one dimensional. Therefore, up 'u&up= u& and
h(u, ) = A(u, ). From observation, we see that Z(u;)
may be written as P '4(u, )P, where P =exp(io)
with tt arbitrary. We then have p'p =+5(ao ) since
ap =E, so the co-representations are of the first type.
For the classification of quantum states, for which a
change of complex phase has no physical meaning,

1

—K X(S~)2+ X(S")2

l J

l

-K, X(S*)'+X(S)'
l J

where J ( equal to 40.2 cm ') is the isotropic ex-
change and D (equal to 0.88 cm ') is the antisym-
metric exchange. The anisotropy constants E„and
E, correspond to fields of 996 and 245 Oe, respec-
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FIG. 2. Two of the allowed spin configurations compati-
ble with the symmetry of the orthoferrites.

tively, as determined by our Raman results at room
temperature. These values lead to an equilibrium-
canted spin configuration in which the spins lie in xz
plane with their net moment along the z axis as illus-

trated in Fig. 2 (left). This configuration is denoted
I'4(F,). There are two spin-wave modes which we la-
bel o- and y. The k =0 frequencies are

tru = (24JS[2(K„—K,)S])' 2

luau„= (24JS(6DS tanP+2K„S)]' ',
where P is the canting angle. The spin-wave eigen-
values and eigenfunctions were derived in Ref. 2.
The k =0 modes are illustrated in Fig. 3. In order to
determine how these modes transform, we must
determine the effect of each element of M on these

FIG. 4. An illustration of the effects of certain symmetry
operations on the cr mode. The lines labeled 1,2 designate
the static equilibrium orientations of the two sublattice mo-
ments. A complex normal-mode coordinate (spin deviation)
is indicated with its real part represented by the arrows in
the plane of the drawing and its imaginary part normal to
this plane and directed upward (0) or downward ( 8).

configurations. Consider, for example, the action of
C2, on the cr mode. This is illustrated at the top of
Fig. 4. In order to compare the result with the origi-
nal configuration, we must also make a site inter-
change. %'e end up with the same rocking mode, but
it is now 180' out of phase. Thus, C2~a = —o-. Simi-
larly, the bottom of Fig. 4 shows that TC2~o- = + 0-.

In this case, since the rotation takes atoms of each
sublattice into atoms of the same sublattice, no site
interchange is necessary. Notice also that in deter-
mining the effect of time reversal, we must not only
reverse the direction of the spin but also that of the
applied field which governs the direction of preces-
sion. As time progresses, the mode will precess back
into itself. Thus, a spin-wave mode is characterized
by a co-representation of Table I or a pair from Table
II. Proceeding in this manner, we find that cr

transforms into plus or minus itself. In particular, we
find that o. transforms according to Bg and ~8. Simi-
larly, y transforms according to Ag and A~.

o—mode

to

C. Symmetry of the Raman tensor

The Raman scattering cross section is proportional

$E,"„,R „„E+

y —mode

FIG. 3. Precessional motion of the two k =0 spin-wave
modes.

where E;"„is the electric field component in the p, th
direction associated with the incident light, while E,„,
refers to the scattered light. R„„is a tensor of rank
two which belongs to a co-representation of M; it is
complex in general, though only the relative phases
of its different components are physically significant.
The Raman tensors for the 58 magnetic point groups
have been worked out and tabulated by Cracknell. '
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For m'm'm TABLE III. Symmetries of the various components of the
Hermitian and anti-Hermitian parts of the dielectric tensor.

A iB0
R(AI, A~) = iD E 0

, 0 0 I,
(g)

Components Representations

0 0 iC
R(BI,B~) = 0 0 F

,iG 0 0,
where A, B, etc. , are constants that depend upon mi-

scopic considerations.
Since the Raman tensor reflects the symmetry of

the mode excited, we conclude that the Raman ten-
sor associated with the a mode should have the form
(9), while that associated with the y mode should
have the form (8). We notice, in particular, that
these modes should not appear in the same polariza-
tion.

[6H ]r +1[~3 ]~1

[~H]r +I [~A ]rr

[~A ]r +f [~H)ir

[~H]I+;[,A]ri

[~")'+I [~H]"

[~H]r + I [~A] ri

[~A] + I [~H]i~

Bg

Bg

D. Dielectric function

a.p = ( [ ~fp]' + [ a".p]') + I ( [ ~Hp]
"+ [ a".S]") (10)

The magnetization-dependent contribution to the
dielectric tensor, 6» &, will be a function of the sub-
lattice magnetizations. We shall develop it to the
second order in these magnetizatons, and then con-
sider its first-order increment when the magnetiza-
tions depart slightly from their equilibrium values.
Since the operations C2„a-„TC2„,and T~„ inter-
change the sublattices, it is appropriate to expand
4» & in terms of the sums and differences of the sub-
lattice moments. Only those terms having the ap-
propriate symmetry will occur in the various com-
ponents. In the Appendix we establish the general
formalism for determing the symmetry of any
response function and apply it specifically to the
dielectric function. The symmetries of the various
components are listed in Table III. In Table IV, we
list the symmetries of the various combinations of
sublattice moments. From these tables, we find

[d a~~]'+i [he~]"= K~(M)y —M2y) +. . .

i [ggH]" + [Ae" ]' = K~(Mt, —M2„)

+K~(Mt, +M2, ) +. . .

where the ellipses represent terms of second order in
the M's, and the E's are coefficients describing the

The Raman tensor is the derivative of the dielectric
function with respect to the excited mode amplitude.
We can gain additional information about the Raman
tensor by considering thet dielectric tensor, » &, itself.
This tensor is complex and, if the medium is dissipa-
tive, the components will also have anti-Hermitian
parts, i.e.,

optical response of a single ion. Since [keg]' and
[Ae~]" are symmetric with respect to x and y, we
also have

TABLE IV, Transformation properties of ferromagnetic
and antiferromagnetic combinations of sublattice moments.

Mi +M2

Mix ™2x

M)y —
M2y

M)y+ M2

M]x+M2x

M)g —M2g

(M] +M2 )

(Mg~ —M2~)

(M]x ™2x)(M]g ™2g)
(M]g + M2g) (M/z —M2z)

(M)z ™2z)(M)y ™2y)
(M]y ™2y) (M] g ™2g)
(M]g +M2g) (M&y M2y)

(M~x ™2x)(M~y ™2y)
(M]z +M2z) (M]y M2y)
(Mi +M2 )(Mi, +M2, )

(M(y +M2y) (M]z M2z)

(M/y ™2y)(M]g ™2g)
(M$ +M2 )(M] +M2 )

(Mlx ™2x)(Mlx ™2x)
(Mly ™2y)(Mly ™2y)
(M]g +M2g) (M]g —M2g)

(M]x M2x) (M]g ™2g)

[hey„]'+i [Ae~]"=K~(Mty —Mgy) +. . .

But the Onsager relation requires that a~( —M)
= e~(M); therefore K~ =0. It is straightforward to
apply these arguments to the other components and
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to use the tables in like manner to find the explicit forms of the second-order terms. We shall retain only those
second-order terms which are no more than linear in the magnon amplitudes and also in the small quantities P
and the ratio of minor to major axes of the precession ellipses of Fig. 3. With these simplifications, the
magnetization-dependent part of the dielectric tensor becomes

Aa/p, = K/p/»(Mt» —Mg») + K/02, (M), +Mp2) + G/020, (M)» —Mg») (M)3 —Mp3, )

50»» = K~(M&3, +M&3 ) + G»202/(M)3 + Mp3, ) (M)» —Mp») + G»»»2(Mt» —Mp») (M), —Mp, )

503, = K~(M)» +My») +K3~(M)2 —Mg2) + G~(Mt3, + Mzy) (M)» —Mp»)

+ G~(M&» —Mg») (M)2 —MP, ) (M), —MP»)

where the G coefficients, like the E s, describe the response of a single ion.
Let us now write these components in terms of fluctuations away from the equilibrium canted configurations.

In terms of Fig. 2 (left),

M~, = —M sinp+Micosp

M&y= —M I,

M~, =M sinl3+M cosP,

Mq„=M iisinp M i.—cosi3,

Mgy=M rr,

Mq, =M sinP+M, cosP

(12)

In linear spin wave theory the M r and M r components are proportional to the spin-wave amplitude while M &

=M rr = MD, the sublattice magnetization.

Using these expressions in the dielectric function, we find, in this linear approximation,

50~ = 2MpK30» cosp + 2MpK30» sinp+ (K/02» cosl3 —K»3„sinp) (M +M ) —2MpG~~ cosp(M +M )

d a»» = K»»3(M» —M i) +2M0G~ cosp(M» —M 2) +2MpG~ cos p(M i
—M «)

y y XVX X X

603» = (K32»»cosp K~ sinp)(M —M ) + 2MpG~cos/8(M —M ) +2MpG~ cos p(M M )

(13)

The static terms in Eq. (13) are responsible for
magneto-optical effects, while the terms containing
M, M, M, M r give the first-order coupling toX' X ' y' y

the spin-wave modes, responsible for the Raman
scattering we have measured. Were the material cu-

bic, we would have obtained only the term propor-
tional to the net magnetization, MpsinP. The term
Mpcosi3 is due to the lower symmetry. This
enhances the magneto-optical effects as already noted
by Kahn et al. 9 The term involving K~ in 4m~ has a
similar origin.

E. Microscopic considerations

The "conventional" mechanism for one-magnon
Raman scattering' involves the spin-orbit interaction
and only occurs for one of the photon polarizations
being parallel to the magnetization, i.e., through the
terms b~~ or A~ . "Symmetric" scattering, i.e.,
through 4~~, arises because the axis of quantization
for the orbital angular momentum and the equilibri-
um spin direction are not the same in the canted sys-
tem. The angular momentum axis is determined by
the crystalline electric fields which are, in turn, deter-
mined by the crystallographic structure. Thus, the

In the electric dipole approximation, the interaction
with the electromagnetic field of the light has the
form

Hz = 8 Xp» E»(0

l

(15)

where p„' are the components of the electric mo-

ment of the ith ion. The many-electron ground state
of the Fe'+ ion is a A~g. The electric dipole transi-

tions couple this state to a T~„consisting largely of
one-electron charge-transfer transitions from the oxy-

gen 2p orbitals to the iron 3d orbitals. Excited-state
exchange will split the M, components of the T~„.
Thus, the one-magnon contributions to the dielectric
function ~„„have the form

e $(A|,3/2 Z3 2 (2H ll) 2 ZP(3 ~A| 5/2)
1,2 i l

(&0 &1)(&0 &2)

(16)

I

spin-orbit interaction at site 1 takes the form

H, = AL„(—S i sPn+ S icoPs)

L~S, +)3.L,(S .sin/8+S cosl3) . (14)
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FIG. 5. Electronic energy levels associated with an Fe + ion showing the virtual transitions contributing to the two lowest-

order terms in the Raman tensor.

The complete expression for he„„ involves contribu-
tions in which p, and v are interchanged and also in
which the scattered photon is created before the in-
cident photon is annihilated. However, Eq. (16)
shows how symmetric scattering can arise. If v =x
and IM, =y, then states ~1& and ~2& have the same or-
bital projection numbers. Thus, H must create a
spin flip without changing the orbital state. The term
h, L,S cosP does precisely this. Figure 5 illustrates

the third- and fourth-order perturbation processes
that lead to the two types of Raman scattering.

III. EXPERIMENTAL RESULTS

HEATING
COILS/

INSULATIO POLAR IZER

TO
MONOCHROMATOR

As mentioned in the Introduction, this study was
initiated largely to measure the spin-wave frequencies
of YFe03. However, a number of rare-earth ortho-
ferrites were also measured for comparison. The
samples were flux grown and most were multicrystal-
line with -3-mm x 3-mm facets. The YFe03,
SmFe03, and ErFe03 samples were oriented and cut
along the crystallographic faces. For the other sam-
ples, spectra were obtained from several facets which
appeared perpendicular. All the samples were opaque
in the visible spectral region.

The Raman spectra were obtained in a near-

backscatter geometry using —200 mW of the 6471-A
line from a krypton ion laser. The laser radiation
which was focused to a line image of —3mm x 50
p, m was incident at —20' to the normal while the
scattered light was collected at the normal with
f =1.2 optics. The incident light was polarized hor-
izontal or vertical to the scattering plane while the
scattered light was always analyzed horizontal. The
scattered light was dispersed with a Spex 14018 dou-
ble monochromator equipped with a third monochro-
mator. All three monochromators were scanned
simu, ltaneously under control of a Nova 800J com-
puter. The monochromators were stepped at 1- and
0.5-cm ' intervals, and the photon counts were also
stored by the computer. All the spectra presented
here are raw data with straight lines drawn between
data points. Peak signal count rates varied from 10
to 500 counts/sec.

To verify and examine the magnetic properties of
the low-frequency excitations, the spectra of the
YFe03 samples were recorded at elevated tempera-
ture using the cylindrical oven shown in Fig. 6. In
addition, the oven and an immersion-type liquid-He
cryostat were used to examine the spin orientation
transitions in SmFe03 and ErFe03, respectively.
With either the oven or the cryostat, the backscatter
geometry remained unchanged. In the oven, the
sample was in air, but even at temperatures above
400'C there was no evidence of surface deteriora-
tion. All our measurements were carried out in zero
magnetic field because previous Bitter pattern studies
of YFeO3 showed that the samples were single do-
main in zero field.

SAMP
A. Yttrium orthoferrite

647.1 nm

FIG. 6. Experimental arrangement used in measuring the
Raman spectra at temperatures above room temperature.

Low-frequency excitations in YFe03 were clearly
observed from the c and a faces and several of the
resulting spectra are sho~n in Figs. 7 and 8. The
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FIG. 7. Raman spectra obtained from the a face of
YFe03, the notation a (cb) a means that an incident light

beam directed along the (negative) a-direction and polarized
along the c-direction, while the scattered radiation is a polar-
ization analyzed along the b direction and emerges along the
a direction.

c(ba) c spectrum showed a mode at 17 cm ' while
the a (cb) a spectrum showed a mode at 11 cm '.
Note that the spectra are associated with different
Raman tensor components as predicted for the mag-
netic scattering. Comparison with Eqs. (8) and (9)
shows that the 17-cm ' mode is the y mode while
the 11-cm ' mode is the o- mode. The frequencies
are in reasonable agreement with the predictions. No
Raman scattering could be detected from the b face,
probably because of the small amplitude of the a
mode along the y' and y" axes (see Fig. 3).

Since the index of refraction, n, of the orthoferrites
is of the order of 2.3, the geometry of the scattering
very nearly corresponds to that of back scattering.
Thus the wave vector of the excited spinwave is ap-
proximately 2(2mn/It), where A. is the laser
wavelength, which, in our case, is 6471 A. This corre-
sponds to a spin-wave wave vector of 44.7 x 10
cm '. The freqeuencies of the spin-wave modes in

this regime of small yet finite wave vectors are2

tee~(24JS(2(K» —K,)S +2JSa2k ]]'

tee~= (24JS [6DS tanP+2K„S +2JSa2k ])'
(17)

where a is the separation between the Fe'+ moments,
which is 3.85 A in the ab plane, 3.81 A in the c direc-
tion. Using J =20 cm ', D =0.88 cm ', p = 8.9
x 10 radians, "and the experimentally observed
values for tee and tcu„we obtain H~ (defined as

K„S/p, ) =996 Oe and Hx =245 Oe. The in-plane

anisotropy is therefore less than the reduced antisym-
metric exchange field, H~ tanp, which is about 1250
Oe. Thus the antisymmetric exchange is the dom-
inant factor in keeping the magnetization in the easy
ac plane.

Figure 7 shows the softening of the mode as the
temperature nears the Neel temperature of 645 K.
Above -600 K, the mode is no longer distinguish-
able from the elastically scattered light. Another ex-
perimental indication of the magnetic nature of these
excitations is the linewidth. In Figs. 7 and 8,
linewidths are instrumentally limited. The room-
temperature measurements were repeated using spec-
tral linewidths as small as 0.7 cm ', and the spectra
were still found to be instrument limited. These nar-
row lines are consistent with magnetic resonance
linewidths. '

Of particular interest is the Stokes —to—anti-Stokes
(S-to-AS) intensity ratio anomaly observed in the
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18-cm ' mode. The S-to-AS ratio for bosons is
(rps/~As) 4 ea"i"r which for an 18-cm ' mode at room
temperature could be —1. Thus the experimentally
observed spectra of the 18-cm ' mode are clearly in-

consistent with this prediction. Even more striking is
the fact that the lines reverse in intensity when the
sample is rotated 90'. This corresponds to changing
the Raman tensor from ab to ba. In addition, the
anomaly is found to be wavelength dependent. Spec-

0
tra excited at 6471 A show a S-to-AS ratio of 2 while

0
at 5145-A excitation the ratio grows to —3.0. In the
11-cm ' mode, a variation of less than 5% was ob-
served changing from the (bc) to the (cb) configura-
tion. We did find, however, that the frequency shifts
of the Stokes and anti-Stokes modes are identical to
within our experimental accuracy of +0.2 cm '.

This anomaly in the S-to-AS ratio has been ob-
served in other systems and has been attributed""
to an interference between one-magnon terms arising
from the linear magnetic (E) contributions to the
dielectric function and those arising from quadratic
contributions (G). We shall illustrate this for the
case of c(ba) c or c(ab) c scattering by the y mode
(Fig. 8). This scattering is induced by the magnon
modulation of the component e~ of the dielectric
function. To leading order (i.e., with P 0), we can
use (13) to express the oscillating part of p~ in terms
of the magnon creation and destruction operators
y'y:

Ap~(osc. ) =K~,(M +M )

—2MpG~~(M +M )

~ (irK~, +2G~)y
—(irK~, —2G~) y+, (lg}

where r is the ratio of the minor to major axes of the
ellipse generated by transverse components of the
precessing magnetization, as shown in Fig. 3. Since
both E and G are complex, the S-to-AS ratio (I) be-
comes

(rK~+2G~Mp) + (rK~ —2G~Mp) n~+ I

(rK~ —2G~Mp) + (rK~+2G~Mp) n„

(19)
When @co„((ksT, the thermal factor (n„+ I)/(n~)
can be neglected. Figure 9 shows the real and ima-
ginary parts of E~.9 At the longer wavelength used,
the crystal is not very absorptive, i.e., K~, is small.
If we also assume 6 is Hermitian, then the first
terms in the numerator and denominator of (19) can
be neglected, and a S-to-AS ratio of 2 implies
2G~MQ is 20/0 of rK~. Notice that the ellipticity r
of the y mode enhances this interference effect. In
the case of the cr mode, the ellipticity enters in the
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FKJ. 9, Real and imaginary parts of the off-diagonal ele-
ment of the dielectric function as functions of frequency
(Ref. 9); the two wavelengths indicated refer to the two ex-
citation wavelengths used in this study.

opposite way (multiplying the G tems instead of the
E terms), thereby suppressing the interference.

Rotating the sample by 90' changes the sign of
E~, which is antisymmetric, but does not affect
G~, which is syrhmetric. This clearly inverts the ra-
tio, and accounts for the experimental observation.

S. Rare-earth orthoferrites

At room temperature, the Fe + sublattices in the
three rare-earth orthoferrites DyFe03, HoFe03, and
ErFe03 have the same orientation as in YFe03. The
Fe +-Fe'+ exchange interactions are still the dom-
inant interactions in these materials as witnessed by
the fact that their Neel temperatures are close to
those of YFe03. However, at lower temperatures,
the iron sublattices in HoFe03 and ErFe03 undergo a
90' reorientation in the ac plane. This configuration,
illustrated in Fig. 2 (right), is denoted I'2(F„).
Samarium orthoferrite differs from these orthofer-
rites in that its spin reorientation temperature is
above room temperature, which means that its spin
configuration at room temperature is I'2(F, ).

The room-temperature Raman spectra of these ma-
terials are shown in Fig. 10 along with YFe03 for
comparison. The frequencies of the modes are listed
in Table V. The scattering at 18 cm ' in SmFeO3 was
seen only on the b face and is very weak, showing a
peak intensity of 10 counts/sec. This is 10 to 100
times weaker than the other materials. We associate
this scattering with the y mode. The o- mode at 9
cm ' was observed from all three faces, although
most strongly from the c face. The observed scatter-
ing intensities of the Raman tensor components for
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YFe03

TABLE VI. Summary of the intensities of the com-
ponents of the Raman tensor R tsee Eqs. (8) and (9)] ob-
served in YFe03 and SmFe03 at room temperature
(VS =very strong, S -strong, M =medium, W =weak,
VW =very weak).

DyFe03

YFe03

9,11 cm i

0
0

VS

0
VS
0

18cm ~

eO

SrnFe03
M
S
W

S
M

0

0 0
0 0

VW 0
0
0

o

C. Spin reorientation

0—
I I I I I I I I I I I

20 0 -20 ZO 0 -20

RANAN SHIFT C cfn

YFe03 (I'4) and SmFe03 (I ~) are summarized in

Table VI. The fact that the y mode is seen only on
the b face rather than the a face, as we might have
expected from our results on the other orthoferrites,
suggests that microscopic considerations favor the
corresponding E coefficient in an expansion analo-
gous to Eq. (13).

TABLE V. Room-temperatur'e frequencies of y and o-

modes.

Material Magnetic
configuration

YFe03

DyFe03

HoFe03

ErFe03

SmFe03

r4(F, )

I 4(F,)

r4(F, )

r4(F, )

r, (F„)

9.1

13.0

13.75

8.9

17.4

16.5

18.0

22.7

18.4

FIG. 10, Raman spectra of several rare-earth orthoferrites
at room temperature; the left column corresponds to scatter-
ing from the c face, i.e., c(ab)c, while the right column cor-
responds to a (cb) a.

1. Results

The reorientation region causes striking effects in

the Raman spectra. Since the light scattering is sensi-
tive to the small-k excitations, any mode softening
will be observed and, in addition, in the reorientation
region, the magnon modes transform as linear com-
binations of the respective representations of the
I'4(F, ) and I'2(F ) space groups. Thus the modes
should be observed in several scattering geometries.

Consider first the ErFe03 (Fig. 11). At room tem-

perature this material exhibits I 4(F,) symmetry, and
cr mode is observed from the b face only while the y
mode is observed only from the c face. As the tem-
perature is lowered from room temperature, the in-

tensity of the modes decreases gradually, consistent
with a normal dependence for scattering from boson
excitations Ii.e., for Stokes scattering, I ~ [n (co) + I]j.
The frequency of the y mode remains constant while

the cr mode frequency decreases as the temperature
is lowered. %e note that this decrease in frequency
is contrary to expected behavior for a simple ferro-
(or anti-ferro-) magnetic system. This effect is sug-

gestive of a phase transition.
The temperature dependence of the frequencies

and intensities of the ErFe03 magnon modes is sum-
marized in Fig. 11. First, we note that the y and o.

modes are both observed from the c face in the
reorientation region. The frequency of the y mode is
independent of the reorientation; however, the cr-

mode frequency is certainly affected. At the high-

temperature limit of the transition, only the rate of
softening seems to change while, at the low-temperature
limit, a slight dip in frequency is observed. A rela-
tively rapid increase of frequency is noted as the tem-
perature decreases, where a value of 19.2 cm ' was

found at -8 K. As has been shown by Koshizuka
and Ushioda, ' the intensity dependence most clearly
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FIG. 12. (a) —(e) Raman spectra of SmFe03 at various
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FIG. 11. (a) Frequency dependence and (b) normalized
intensity dependence of the cr and y modes in ErFe03 as a
function of temperature. The Stokes peak intensity has
been normalized by (n +1)/0).

defines the transition region. For light scattering
from sharp boson excitations, the light scattering in-
tensity is proportional to [n (co) +1]/ru. Thus, to
ascertain the temperature dependence of the light
scattering matrix element, we have normalized our
measured peak intensity by this term. Here the mea-
sured frequency and temperature were used. %e see
from Fig. 11(b) that, away from the transition, the
intensity is relatively constant, but through the transi-
tion the intensity changes are significant. Here, for
the o. mode, the drop in intensity for scattering from
the a face was matched by an increase in intensity of
the corresponding feature from the c face. The y-
mode intensity decrease parallels that of the a- mode
but was unobserved below the transition. This obser-
vation is consistent with the room-temperature mea-
surements of SmFe03 [12(F„)], where the y mode
was exceptionally weak. The Raman results shown
here are similar to those that have been recently pub-
lished by Koshizuka and Ushioda' and also con-
sistent with the neutron scattering results. "

Consider now the SmFe03. This material exhibits
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FIG. 13. (a) Frequency dependence and (b) normalized
intensity dependence of o- mode in SmFe03 as a function of
temperature. The Stokes peak intensity has been normal-
ized by (n +1)/eo.
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a spin reorientation in the temperature range -460
to 480 K. A series of representative spectra of the o.
mode is shown in Fig. 12. The behavior of the fre-
quencies and intensities are summarized in Fig. 13.
There are both similarities and notable differences
between the transitions of the two materials. In the
SmFe03, there is no dip at the lower-temperature
limit of the transition, but a definite change of slope
of the frequency as a function of temperature is ob-
served. In addition, the upper-temperature limit of
the transition sho~s no observable effect in the fre-
quency dependence. As the "Neel" point is ap-
proached, the expected softening is observed. This
temperature dependence is to be contrasted with the
ErFe03, where the frequency rises significantly for
temperature increasing above the transition. The in-
tensity behavior is most similar for both materials
and again serves as a demarcation of the reorienta-
tion transition. As mentioned earlier, the y mode is
exceptionally weak in the SmFe03 at room tempera-
ture, and, in the oven configuration, we were not
able to observe it. We attempted to note its presence
in the high-temperature phase, and again it was still
unobservable.

2. Discussion

The spin reorientation has been extensively studied
and ascribed to various mechanisms. One of these'
argues that the anisotropy parameters KJ and Kz in

(6) are temperature dependent, with the difference
K~ —Kz changing sign at a temperature near the
middle of the range where the spin reorientation is
observed. Near this temperature, K~ —Kz is small,
and, for an adequate description of the variation of
free energy with spin orientation, it is necessary to
retain the small fourth-order anisotropy term. This
model predicts that, if the sign of the fourth-order
anisotropy term is such as to make it a maximum
when the ferromagnetic moment M = M~+M2 points
along the a and c axis, and a minimum at 45', then
with increasing temperature the equilibrium direction
of M will start at some temperature T~ to rotate away
from the a direction toward the c, and will reach the
latter at a higher temperature, T2. At both tempera-
tures, Tj and T2, the frequency of the k =0 ~ mode
will vanish, but at intermediate temperatures it will

be finite. Although this predicted behavior of the
mode frequency has received only partial confirma-
tion in the literature, the model was widely accepted
for some years, and some of its other predictions ac-
cord nicely with observations, "especially for spin-
reorientation transitions in mixed crystals without
rare-earth spins. ' As we have just seen, our Raman
results show no sign of mode softening for SmFe03,
and only a slight softening (at the lower transition
temperature) for ErFe03, our result for the latter ma-
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FIG. 14. Small wave-vector dependence of the cr mode
for a typical value of K~ —Kz (solid curve) and at the soft-

mode condition (dashed line).

terial being similar to that obtained by neutron
scattering. "

In more recent years, a number of workers have
espoused the view that the transitions in orthoferrites
with unfilled f shells are primarily due to the cou-
pling of the iron and rare-earth spins. ' For one
thing, they do not occur when the rare-earth ion has
no spin (Y, La, Lu) or a J =0 ground state (Eu). '

Also, the rare-earth magnetization, with its T varia-
tion at high temperatures, provides a natural source
for temperature-dependent terms in the free energy.
The most detailed analysis of the role of rare-earth
spins in spin-reorientation transitions seems to be
that of Yamaguchi, ' who employed a free-energy ex-
pression dependent on the orientations of four iron
sublattices and four rare-earth sublattices, with iso-
tropic, anisotropic, and antisymmetric exchange cou-
plings, and with the magnitude of the magnetization
of a rare-earth sublattice as a temperature-dependent
parameter. However, the magnon modes of a system
of coupled iron and rare-earth sublattices have been
much less carefully studied; an early paper by Aring
and Sievers quoted some results that were used to
interpret optical absorption data on YbFeO3 near its
low-temperature spin reorientation at -8 K, but used
a model appropriate only near the high-temperature
spin configuration, I 4(Fz). So until a more complete
analysis of such modes is available, our discussion of
the role of rare-earth spins in the interpretation of
our experimental results must be somewhat tentative.

One simple fact, applicable to essentially any model
of the magnon modes, must be borne in mind: part
of the reason that we do not observe a complete
softening of the spinwave is that Raman scattering
involves modes of finite wavevector. In Fig. 14, we

plot the spectrum for the cr mode, as obtained for a
simple model with two iron sublattices, for a typical
value of K~ —Kz and also for Ky —Kz =0. The cur-
vature of the upper plot, drawn for a temperature
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well away from the spin reorientation, is determined
by the relative magnitudes of the anisotropy
(Er —Ez) and exchange (J) energies, and is reason-
ably known. The wave vector of the mode excited is
2n =4.6 times that of the photon in air, where n is
the refractive index, and turns out to correspond to
ak =0.015, a value that is not negligible on the scale
of the figure. If the mode were to soften completely
at k =0, as shown in the dashed curve, we would ex-
pect only about a 50% reduction in the frequency.
But this does not suffice to explain our SmFeO3
results. Nor does it explain the neutron results on
ErFe03, which do measure the k =0 frequency.

Thus it is tempting to conclude that, especially in

SmFe03, the coupling of the iron spins to the weakly
but appreciably magnetized rare-earth sublattices is
preventing the cr-mode frequency from softening
very markedly at k =0. The essential physics in-

volved is probably contained in the Aring-Sievers
model mentioned above, '0 which postulated two iron
sublattices with a Hamiltonian of the form (6) plus a

small canting-anisotropy term involving products
Si xS~, and two rare-earth sublattices coupled to the
iron by an exchange Hamiltonian H' with a large an-

tisymmetric component:

H'=2J XS, R„,+2 $d R„,&&S, , (20)

where R is the rare-earth moment. They calculated
the magnetic excitation spectrum, consisting of four
mode branches. Two of these, which they denoted
0)f and co+, correspond to our y and 0. modes,
respectively, while the other two, denoted cog and
cu, correspond to rare-earth excitations; of course,
the coupling [Eq. (20)) causes some rare-earth
motion in the former modes, and some iron motion
in the latter. The mode ~~ has no dispersion and
corresponds to the frequency of a single rare earth in
the exchange field of the iron sublattices. The co

mode is strongly dependent on the rare-earth mag-
netization; at a certain value of the latter, the effect
of the iron anisotropy in (6) is cancelled and the fre-
quency co 0. Thus, the resistance of the entire
spin system to reorientation disappears. The spin-
wave mode co+, however, remains relatively un-

changed. One thus expects the behavior sho~n
schematically in Fig. 15. When the eo frequency
goes to zero at k =0, the respective eigenstate corre-
sponds to a rotation of the whole spin system (both
irons and rare earths), but the co+ mode for the same
set of conditions may be only slightly softened, and
its motion may continue to involve predominantly
precessions of the iron spins. In such case, the co+

mode will couple in Raman scattering very much as it
does far from the spin-reorientation transition.
Moreover, it seems possible that, for quite a range of
parameter values, the frequency of the a. mode can
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FIG. 15. Magnetic excitations in a rare-earth orthoferrite
with an exchange-split Kramers doublet; dashed curves cor-
respond to the point at which the rare-earth —iron exchange
just cancels the iron anisotropy. The uppermost mode, «of,
is not shown.

be almost the same on both sides of the spin-
reorientation transition.

Although the Aring-Sievers model omits many
features characteristic of real rare-earth orthoferrites,
notably anisotropy energies of the rare-earth spins,
it is not unreasonable to expect in most cases a
behavior similar to that just outlined. This ~ould be
natural for odd-electron systems where the rare-earth
ground state will be an exchange-split Kramers doub-
let. In ErFe03, for example, optical spectroscopy'
shows that the Er'+ ground state is split by 3 cm ' at
77 K. Similarly, the infrared absorption studies' on
YbFe03 suggest a rare-earth exchange splitting of 5

cm '. In even-electron systems, however, the possi-
bility of relatively widely spaced electronic singlets
should be considered. In TmFe03, the lowest two

singlets are separated ' by 17.5 cm '. This means
the spin waves lie below the rare-earth excitations,
and we might expect the more familiar soft-mode
behavior as, indeed, the neutron data" seem to indi-
cate. However, in several other cases, ' it seems
that there is a ground pair of closely spaced crystal-
field singlets, separated by some tens of wave
numbers from the higher levels. In such cases, when
there is a nonvanishing matrix element of the mo-
ment between the two states, the ground pair can
again behave like an orientable spin.

To sum up, we believe that our failure to observe
significant softening of the «T mode of SmFe03 at ei-
ther end of the spin-reorientation transition implies
that the parameters of the coupled iron —rare-earth
system are such that the corresponding mode softens
only slightly at these temperatures, although the fre-
quency of a lower-lying mode does indeed go to zero.
For ErFe03, the cr-mode softening is perceptible,
though again not complete. The contrast we find
between TmFe03 and ErFe03 is similar to that noted
in neutron depolarization by Baazov et al. "
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X,s(r) = $ & a
l [BRT +ET( r H) ]Pol & ) (A6)

APPENDIX

In most cases, A and 8 will be Hermitian operators.
If po commutes with 0 then

In this Appendix, we derive relations that describe
how a response function transforms under symmetry
operations that include products of time reversal with

spatial transformations, i.e., RT, as well as spatial
transformations alone, S.

The general expression for a response function in-

volving the operators A and 8 is

Let us now consider the case where the representa-
tions of the group we are considering are all one
dimensional, and that A transforms according to the
representation D~ and 8 according to Dg. Then

BRr = 8 (R T) D&B

+4B(r) = X(nlpo[A(tH) B]ln) (Al) and

where A (t,H) =exp(iHt)A exp( iHt) —The d. ensity
matrix po reflects the symmetry of the system, i.e.,

i T ipoRT = S ipoS = po

Using the time reversal property

(pl+) = (Tl[ I
T+)'

the response function may be written

Xgs( t)

= $(RTn lRTpo[A (t,H), B]R T lRTn)

(A2)

(A3)

We now use the fact that po commutes with R T and
recognize that, since the sum runs over all states, we

may write RTn =—m and then change m n. Thus,

XAB ( r)

= $({poRT[A (t H), B]R 'T ']n ln) (A4)

X ( (po[+RT( r H) BRT]]~ l~ ) (As)

where A~~—= RTAR 'T ' and 0 is the time-reversed

Asr = 8(R T) D A

Xgs( r) = 8D~ (R T)
8Ds

(R T) XBA ( r) (Ag)

For those operations not involving time reversal, we

obtain directly from line (A3)

Xgs(t) = 8D„(S)8D (S)X~s(r) (A9)

Let us now use these relations to derive the sym-

metry properties of the various components of the
dielectric tensor.

For the diagonal components the products of the
characters in Eqs. (A8) and (A9) are all +1. Thus,
the diagonal components must all transform accord-
ing to the representation Ag.

Now consider a~. Equation (A8) tells us that
a~= —e~ for all RT, while Eq. (A9) gives e~=e~
for all S. Since [a~]"= —[e~]"and [e~]'=—[e~]',
these relations imply that [a~]"and [a~]' must
transform like As. Similarly, we see that [ag]' and
[e~]"must transfrom like A~. In Table III, we list

the symmetries of the various components.

where the 8(RT) D, for example, is the character as-

sociated with the operation R T in the representation
Dg. Then the response function satisfies
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