
PHYSICAL REVIEW B VOLUME 25, NUMBER 3 1 FEBRUARY 1982

Ising model phase-diagram calculations in the fcc lattice
with first- and second-neighbor interactions
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Phase diagrams for a model fcc binary alloy with first- and second-neighbor interactions are
calculated in the tetrahedron-octahedron approximation of the cluster-variation method. The
calculations are carried out for two values of the ratio of second- to first-neighbor pair interac-

tions in the range of 0 to 0.5, where the low-temperature-ordered structures occur at
stoichiometries A2B2, A 2B, A3B, and A 5B.

I. INTRODUCTION

A problem of great interest in the study of the
thermodynamic properties of alloys is the calculation
of the associated temperature-composition phase dia-

gram. Among the earliest attempts to obtain an
order-disorder phase diagram for fcc lattices was that
of Shockley' who, in 1938, calculated the equilibrium
phase boundaries for Llo and L12 ordering (CuAu
type) in the molecular field or Bragg-Williams (BW)
approximation. The results of the molecular-field ap-
proximation clearly indicated the need of higher ap-
proximations for the treatment of ordering in fcc lat-
tices. Within mean-field theories, the next approxi-
mation, namely, the Bethe or pair approximation fails
even more dramatically than BW, predicting no
order-disorder transition at finite temperatures.

The first encouraging result of the mean-field ap-
proach to fcc lattices came with the use of the quasi-
chemical method of Guggenheim. Although the
results. of the quasichemical method are far from be-
ing satisfactory, the calculated CuAu-type phase dia-

gram displayed most of the expected topological
features. '

In 1951, Kikuchi proposed a variational approach,
the so-called cluster variation method (CVM), which

represented an appreciable improvement over the
quasichemical method. Despite the fact that the
CVM was, and still is, the most accurate mean-field
theory available, it was not used for the calculation of
order-disorder phase diagrams in fcc lattices until van
Baal's work in 1973.4 The phase diagram obtained by
van Baal was again for L 10 and L12-type ordering,
with the calculations carried out in the lowest mean-
ingful approximation of the CVM, namely, that cor-
responding to the nearest-neighbors tetrahedron.
Since the work of van Baal, the tetrahedron approxi-
mation of the CVM has been used quite successfully

to calculate the binary CuAu5 and the ternary CuAu-
Ag phase diagrams where ordering is also of the Llo
and L12 type.

Recently, Mahan and Claro' have tackled the prob-
lem of calculating a CuAu-type phase diagram by
real-space renormalization-group theory. The
method, however, fails to give the L 10 ordered phase
and it incorrectly predicts the L12 transition to be
second order.

At the present time, the most reliable phase dia-
gram in fcc systems with first-neighbor interactions is
undoubtedly the one obtained by Binder via Monte
Carlo calculations. There are clear and in fact not
surprising discrepancies between the previous CVM
calculations and the more recent Monte Carlo results,
particularly away from the stoichiometric composi-
tions. Nevertheless, the CVM calculations reproduce
quite well many of the topological features of the
phase diagram and, near stoichiometry, discrepancies
with the Monte Carlo results are within a few per-
cent. One would expect that including larger clusters
in the CVM free energy expansion should result in
yet better agreement.

Recently, the authors have used a higher level of
approximation the CVM, resulting from the combina-
tion of the tetrahedron and octahedron in the fcc lat-
tice, to calculate a prototype phase diagram for sys-
tems with first- and second-neighbor interactions.
The ratio o. of first- to second-neighbor pair interac-
tions was chosen equal to 0.25 (with positive first-
neighbor interaction) and thus, as it is well known
from the analysis of the ground states, ' ' the order-
ing at low temperatures is somewhat more complex
than the Llo and L12 type occurring for n ~0. The
ground-states structures for values of n between 0
and 0.5, shown in Fig. 1, are found at stoichiometries
AB A 2B A 3B, and A 5B. The phase diagram report-
ed in Ref. 9 for o. =0.25 is only partially complete
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since the low symmetry ASB structure was not includ-
ed in the calculations.

Although a complete Monte Carlo calculation for
0. =0.25 is not yet available, Phani, Lebowitz, and
Kalos' have recently obtained the transition tem-
perature at two isolated points of concentration 0.5
and 0.25. The CVM and Monte Carlo results differ,
at such points, by less than 5%. In view of the
discrepancies between the Monte Carlo and the CVM
calculations in the CuAu-type phase diagram away
from stoichiometry, it would appear safe to expect a
similar behavior for values of 0. in the range 0 to 0.5.
Nonetheless, and because of obvious computational
advantages over the Monte Carlo method, it is of
great interest to establish the reliability of the CVM
for different levels of approximation. In order to
provide the basis for comparison with future Monte
Carlo simulations, we calculate here the complete
phase diagrams (A5B phase included) for n equal to
0.35 to 0.45. As we shall see, the resulting phase di-

agrams are relatively complex, being very sensitive to
the ratio of second- to first-neighbor interactions
(a).

The organization of this work is as follows. In the
next section a brief review of the CVM is given. For
a more detailed description of the free energy charac-
terization, the reader is referred to Ref. 9. In Sec.
III, the crystallography of the relevant ground states
is described and the results of the phase diagram cal-
culation are presented in Sec. IV.

E(a.) and X(a.) are, respectively, the energy and
probability of configuration (a.j.

The first term on the right-hand side of Eq. (2),
equal to the average energy (E), can be easily writ-
ten in terms of the pair correlation (q „(p) = (a.(p)
x a (p + r) ). In the present approach, the pair corre-
lations are variational parameters determined by the
minimization of the free energy functional.

The key aspect of the CVM is that it approximates
the entropy term in Eq. (2) by a sum of similar terms
involving the probabilities for small clusters of lattice
points. Such cluster probabilities will be denoted by

x„,(Jp), where n refers to the number of points in
the cluster and where s is an index characterizing its
geometry. The arrangement of A and Batoms in the
cluster is specified by J, which take 2" values for a
binary system. Finally, p refers to the location in the
lattice of the n, s cluster. In general, the CVM free
energy functional for first- and second-neighbors in-

teractions can be written as

P fi P fp

+ ks & X Xy„,, Xx„,,(J,p) lnx„, (J,p), (3)
p n, s J 1

where the coefficients y„, depend on the geometry of
the lattice and on the clusters included in the approx-
imation. A set of independent variational parameters
in Eq. (3) is given by the multisite correlation func-
tions defined by

II. CLUSTER-VARIATION METHOD („,(p) = (a (p) rr(p + r&). . . a-(p + r„&)), (4)

The model to be adopted here consists of a binary
system with atomic species A and Boccupying a rigid
fcc lattice. The configurational energy will be as-
sumed to be given by the sum of pair interactions
between first and second neighbors, characterized,
respectively, by constant energy parameters v~ and
vq. In terms of the spin operator a (p), which equals
1 and —1 if lattice point p is, respectively, occupied
by an A or a B atom, the configurational energy is

E(a) = —v) X Xa(p) a(p +r))
P fi

+ —,
'

vg X Xa.(p) a.(p + r, )
P fp

where the sums are over all lattice points p, and over
first (r~) and second (rq) neighbors of p.

The free energy of the system can be formally ob-
tained by minimization of the following functional':

F= E(a)X(a) +ksT X(a.) lnX(a. )
(~ (cr

where, for a binary system with N lattice sites, the
sums run over the 2 configurations and where

where the angle brackets represent an ensemble aver-
age and where the set of vectors (r~. . . r„~) defines
the n-point cluster of type s located at lattice point p.
As shown elsewhere, the cluster probabilities
x„,(Jp) are given by linear combinations of the mul-
tisite correlation functions.

Although there is no definite criterion for deciding
a priori which clusters should be included in the free
energy expansion, a number of relatively accurate ap-
proximations for the fcc lattice are currently avail-
able. The approximation to be used here is that
resulting from the combination of the regular
tetrahedron and octahedron which allows for first-
and second-neighbor interactions in the configura-
tional energy. " In the tetrahedron-octahedron
(TQ) approximation there are 54 correlation func-
tions per lattice point, one for each of the subclusters
of the tetrahedron and octahedron. For a detailed
description of the correlations in question, the reader
is referred to Ref. 9. Those clusters which appear ex-
plicitly in the free energy formula [see Eq. (3)] are:
The point (y~ = —1); the nearest-neighbor pairs
(yq, =I; s =1,2. . .6); the nearest-neighbors trian-
gles (y3, = —I; s = I, 2. . . 8); the regular tetrahedron
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(Y4,, = 1; s = 1,2) and the octahedron (y6 = 1).
In order to carry out the minimization of the free

energy functional, one must first reduce the infinite
number of variational parameters in Eq. (3) to a fin-
ite set. For a given phase, the reduction in variation-
al parameters follows from the application of all the
symmetry operations of the associated space group.
Thus, the use of the CVM requires a detailed
knowledge of the ordered structures expected to be
stable at low temperatures (ground states).

The ground states of the fcc lattice with first- and
second-neighbor interactions are well known since
the work of Kanamori, ' of Richards and Cahn, "and
of Allen and Cahn. " For positive first-neighbor in-
teractions (ui )0) there are three distinct sets of
ground-state structures occurring for different values
of the ratio 0. of second- to first-neighbor pair in-
teractions. For negative values of 0., the lowest ener-

gy structures occur at stoichiometries —, and 4. The

structures in question correspond to the Llo(P4/
mmm) and to the L12(Pm3m) ordered phases. As
mentioned in the Introduction, the phase diagram as-
sociated with the L1p and L12 structures has been
studied in a number of different approximations for
the special case of +=0.

For values of n larger than 0.5 there are three or-
1 1 1

dered ground states at stoichiometries —,, —, , and 6,
the space groups of which are R3m, C2/m, and
C2/m, respectively. To our knowledge, no attempt
has been made to calculate the phase diagram in this
particular region of 0..

Finally, for values of 0, between 0 and 0.5, the
1 1 1

ground states are found at stoichiometries
2 3 4,

and 6. This particular set of ground states has been

named the (1,—,, 0) family after the point in recipro-

cal space where the Fourier transform of the pair po-
tential is minimum. ' As mentioned in the Introduc-
tion, a partial phase diagram for the (1, 2, 0) family,

not including the ground state of stoichiometry 6,
has been calculated by the authors in the TO approxi-
mation of the CVM for o. =0.25. The results of a
more complete calculation will be present in Sec. IV
for a=0.35 and for 0. =0.45.

III. CRYSTALLOGRAPHY OF ( I ~ 2, 0) FAMILY

The unit cells for the ground-states structures of
the (1,—,, 0) family (0 ( n (0.5), labeled 2282,
A 2B A 3B and A 5B, are schematically shown in Figs.
1(a) through 1(d).

For the 2282 structure (space group 14'/amd), the
vectors defining the tetragonal unit cell are, in the fcc
lattice coordinates, a = (1,0, 0), b = (0, 1,0) and
c =(0,0, 2). The atomic species A and 8 occupy the
Wickoff positions, of multiplicity 4, labeled a and b in

c = (0,0,2)

IO~,——$——~

I

0) -' —*——+Ql b =(0, I, O)'

i

a =(I,O,O)g
(a)

(» i I r

(X

b = (0,0, 1)

(I I 0}y

c =(0,0,2)

IO0' —~r- —0
g-~-- p)

IQ0+--~---0
Qi b =(0, 1,0)

a =(I,O, O/
(c)

b, {3XO) [

0

+-y-- ~)

2'2'

I

l~
c =(FF' )

FIG. 1. Schematic unit cells for the structures of the
1(1, 2, 0) family: A,B2 {a),A28 (b), A3B (c), and A58 (d).

the International Tables for X-Ray Crystallography. '

Thus the order parameter q for the 3282 structure is
one dimensional and is defined as the difference of
the point correlation function (i(p) at each of the
two Wickoff positions (a and b):

(6)

In terms of the Fourier concentration spectrum for
the A2B2 structure, the order parameter q is equal to
the amplitude of a concentration wave with wave vec-
tor at the isolated symmetry point (1, 2, 0). By ap-

plying all the symmetry elements of the space group
14'/amd to the infinite set of cluster probabilities im-
plicit in Eq. (3), one obtains a set of 33 independent
correlation functions (or variational parameters).

The A2B structure shown in Fig. 1(b) (space group
Immm), of which Pt2Mo is an example, is the highest
symmetry ordered structure that can be associated
with the degenerate ground state occurring at
stoichiometry —, . With respect to the fcc lattice, the

vectors defining the orthorhombic unit cell [see Fig.
1(b)] are a = ( 2, 2, 0), b = (0,0,1) and

c = (—,, —, , 0). The two atomic species are at Wickoff
positions labeled a (Batoms) and i (A atoms) of
multiplicities 2 and 4, respectively. " Thus, the long-
range order parameter is again one dimensional, be-
ing defined as
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After applying the symmetry operations of the space
group associated with the A ~8 phase, there remairi 46
variational parameters for the minimization of the
free energy functional.

The 238 ground state [see Fig. 1(c)] is exemplified
in nature by the A13Ti structure (space group
14/mmm; structurbericht DOqq). The vectors of the
tetragonal unit cell are a = (1,0,0), b = (0,1,0), and
c = (0,0,2), with atoms A and B occupying three dif-
ferent %ickoff positions: 8 atoms are at Wickoff po-
sitions a of multiplicity 2 and A atoms are at Wickoff
positions b and d of multiplicities 2 and 4, respective-
ly. ' The order parameter for the A38 phase is then
two dimensional, with the two components g] 0 0 and

given by
J

g
J

ni, o, o
= —,

' [2(i(d) —ti(b) —6(a)],
g. . .= —,

'
[g, (b) —(,(a) ]

J

(7a)

(7b)

The order parameters defined by Eqs. (7a) and (7b)
are, respectively, the amplitudes of concentration
waves with wave vectors at the isolated symmetry
points (1,0,0) and (1,—,, 0) in reciprocal space. The

free energy minimization for the A 38 structure is car-
ried out, in the TO approximation, with respect to a
reduced set of 45 correlation functions.

The A58 ground state is the lowest symmetry
structure in the (1,—,, 0) family, with space group

C2/m. The monoclinic unit cell shown in Fig. 1(d) is
1 1 3 3defined by the vectors a = ( —,, —, , 1), b = (T,T, 0),

and c =(—,, —,, 1). Atoms Bare at Wickoff positions

a of multiplicity 2, whereas A atoms occupy Wickoff
positions d, g, and h of multiplicities 2,4 and 4, respec-
tively. ' The three-dimensional order parameter
(7it 7JQ 'g3) is defined as:

For the purpose of determining phase equilibria, it
is more convenient to introduce the grand potential

g(p, 7') =f(Ci, 7') +v6 ~

where f is the minimum of the free energy functional
(per lattice point), where gt is the average value of
the point correlation function, and where p, is the
chemical potential defined by

(10)

As prescribed by thermodynamics, the coexistence
of any two phases in the temperature-chemical poten-
tial space is determined by the equality of the associ-
ated grand potentials at equal values of T and p..

Figures 2 and 3 show the temperature-chemical po-
tential phase diagrams for the fcc lattice, calculated in
the TO approximation with the ratio 0, of first- to
second-neighbor pair interactions equal to 0.35 and
0.45. The temperature and chemical potential in Figs.
2 and 3 are normalized by the first-neighbor pair in-
teraction u~ (positive). Since the alloy model of Sec.
II is isomorphic to the spin- —, Ising model, the phase

diagrams shown in Figs. 2 and 3 also describe an an-
tiferromagnet. The chemical potential in the latter
case should be taken proportional to the magnetic
field.

In addition to the equilibrium phase boundaries,
the phase diagrams of Figs. 2 and 3 show, in broken
lines, the loci of the highest instability temperature
for the disordered solid solution. ' The instability
temperature, or ordering spinodal, acquires definite
meaning within the realm of thermodynamics at
those regions ~here the ordering transition is second
order. Such is the case for A38 ordering for o. =0.45,
and for A~8~ ordering for o, =0.35 and large negative
values of the chemical potential.

q) = —,
' [g)(d) —g)(a) ]

gg= —,
'

lg&(g) —g)(a)],

q, =-,' [g, (b) -g, (a)] .

(8a)

(gb)

(8c)

04 ~
/ I

/
~

/
I

There are, in all, 76 variational parameters in the TO
approximation for the A58 phase.

IV. PHASE DIAGRAM CALCULATION

The computation of phase diagrams in the CVM
centers around the minimization of the free energy
'functional. For each value of temperature and aver-
age concentration considered, one must numerically
solve a relatively large number of nonlinear algebraic
equations. The procedure is carried out for the disor-
dered and for each of the ordered phases of interest;
namely, those structures which are ground states.

o
-lsO -i4O -im -laO -ao -tO -4O 0

FIG. 2. Temperature-chemical potential phase diagram
for a =0.35.
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FIG. 3. Temperature-chemical potential phase diagram

for 0. =0.45. FIG. 4. Temperature-composition phase diagram for
u =0.35.

The interpretation of the ordering spinodal, which
in the present case corresponds to the instability of a
composition wave of wave vector (1, 2, 0), becomes

considerably more subtle below a first-order transi-
tion. In fact it can only be interpreted in terms of
nonequilibrium processes: if the disordered solid
solution is rapidly quenched to a temperature below
the spinodal, the ordering reaction will first proceed
through the growth of the unstable composition
wave. In general, such unstable composition wave
will decay before the equilibrium ordered phase
develops. An ordering mechanism along the lines
described above appears to have been observed in the
NiMo system. ' '

The existence of an ordering spinodal below a
first-order transition is, of course, a direct conse-
quence of the approximate nature of the free energy.
Thus the actual location of the instability in the
equilibrium phase diagram is expected to be model
dependent. Nevertheless, the instability loci in Figs.
2 and 3 have been included since they suggest an in-

teresting way of rationalizing the experimental evi-
dence in the NiMo system.

A salient feature of the phase diagrams shown in
Figs. 2 and 3 concerns the relative stability of the dif-
ferent ordered structures as the ratio of second- to
first-neighbor interactions changes. As shown in Ref.
9, the phase diagram for a =0.25 prominently
displays the A282 and A3B phases. When o. increases
in the range of 0 to 0.5, the stability field of the A2B
phases becomes larger, whereas that of the A3B
phase decreases. For a =0.45, the A3B phase is seen
to be stable only at very low temperatures and for a
small range of chemical potentials (see Fig. 3).

The overall behavior of the phase diagram is, as
expected, closely related to that of the ground-states
structures for different values of o,. For n approach-
ing zero, the phase diagram should match the one
obtained for e slightly negative, which only contains

I.O

fCC
a =045

GB-

k T/v,

04

02

0
O.I

l

0.2 0.5

ATOMIC CONCENTRATION

04 0.5

FIG. 5. Temperature-composition phase diagram for
e 0.45.

ground states of stoichiometry —,(Llo) and —,(L12).1 1

Thus the field of stability for both the A5B and A2B
phases must become progressively smaller as o. de-
creases, completely disappearing at o, =0. On the
other hand, and since for a larger than 0.5 the

1 1 1
ground states occur at stoichiometries —,, —,, and 6,
the A3B phase should become less stable as the limit-

ing value of a =0.5 is reached from below.
The temperature-composition phase diagrams for o.

equal to 0.35 and 0.45 are shown, respectively, in

Figs. 4 and 5. A conspicuous feature of the phase di-

agram for o, =0.35 is the recurrence of the A2B2
phase for concentrations in the neighborhood of 0.29
and for temperatures in the range 0.64 to 0.8. The
A2B2 phase appears in this region through a second-
order transition, and it disappears at low tempera-
tures at a eutectoid or triple point where it coexists
with the A2B and A3B phases.
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FIG. 6. Energy per lattice point vs temperature as constant f&eld: (a) p, =0; (b) p, =—5.7m~ (n =0.35) and

p, =—0.6vy(o.'=0.45); (c) p, =—8.5v&', (d) p = &&.5&~(o.'=0.35) and p, =—11.8v~(n=0. 45).

The Monte Carlo simulation of the CuAu-type
phase diagram' indicates that the CVM is significantly
more accurate near stoichiometric compositions
where the transitions are strongly first order. Away
from stoichiometry, the transitions tend to become
second order or weakly first order. In this region,
small errors in the calculated free energies can signi-
ficantly affect the phase diagrams since the slopes of
the grand potentials at their intersection points are
essentially the same.

The tendency for the transitions to become second
order or weakly first order away from stoichiometry,
as seen in the tetrahedron approximation for n =0, is
also observed in our calculations for n in the range of
0 to 0.5. Thus, and although we are using here a
slightly improved CVM approximation (TO), the
phase diagrams shown in Figs. 2—5 are expected to
be more reliable near stoichiometric compositions.

Figure 6 shows the average configurational energy,
normalized by the first-neighbor pair interaction v~,
for o. =0.35 and 0. =0.45. The energy has been cal-
culated at constant field {chemical potentials), for
values of p, which correspond approximately to the
stoichiometric compositions of the structures of the
(l, 2, 0) family. Except for the A38 ordering reac-

tion for n =0.45, the transitions are seen to be
strongly first order. The values of configurational
energies shown in Fig. 6 are expected to be correct
within a few percent.

V. CONCLUSIONS

The advantage of using the CVM for phase dia-

gram calculations rests essentially on the fact that
reasonably accurate results are obtained with a
minimum of computational difficulty. The computa-
tional task in the CVM centers around the minimiza-
tion of the free energy which, in the present case, re-
quires the solution of approximately 30 to 70 non-
linear algebraic equations. The nature of the equa-
tions is such that the Newton-Raphson iteration
method can be used quite efficiently, particularly at
high temperatures. Numerical difficulties are invari-

ably found at low temperatures, however, where
some of the cluster probabilities tend exponentially to
zero. Nevertheless, by taking those cluster probabili-
ties that vanish at T =0 as the independent variables,
one can reach temperatures of the order of 0.2TO,
with To the highest transition temperature. Since the
calculations directly give the grand potential, the con-
struction of the phase diagram does not require the
laborious data analysis of the Monte Carlo simula-
tions. Thus the method bridges the gap between the
too often unsatisfactory molecular-field approxima-
tion and the computer simulation approach of the
Monte Carlo method.

In evaluating the CVM results, one is usually con-
fronted with uncertainties regarding the exact degree
of accuracy that has been achieved. Fortunately, re-
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cent Monte Carlo simulations have helped to clarify
this point considerably. In fcc lattices at
stoichiometric compositions, the CVM results agree
remarkably well with the computer simulations. In
fact the transition temperature for L 10 ordering, cal-
culated in the tetrahedron approximation, differs
by about 5% from the value estimated by the Monte
Carlo method. " The results of the TO approxima-
tion, used here and in Ref. 9, are in even better
agreement with the Monte Carlo calculations. "

Away from stoichiometry, and according to recent
computer simulations by Binder, 8 the tetrahedron ap-
proximation with first-neighbor interactions (a =0)
appear to be in serious error. It should be pointed
out, however, that the tetrahedron approximation is

at the lowest meaningful level in the CVM hierarchy
and, thus, one can realistically hope to narrow down
the discrepancies with the Monte Carlo results by us-
ing larger cluster approximations. Nevertheless, how
closely the CVM can be brought into agreement with
the Monte Carlo simulations remains at the present
time an open question.
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