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%e report a model calculation with an intersite-dependent Hubbard Hamiltonian, showing

that the well-known Peierls transition has a 2k~ and a 4kF component when the intrasite

Coulomb repulsion U is less than the transfer integral t. At higher values of U the two com-

ponents are split and each forms a proper phase transition; the electronic Peierls transition

(4kF) remaining at about the same temperature while the magnetic Peierls transition (2k+) is

driven towards lower temperatures as U increases. For lower temperatures and lower Ua new

phase transition occurs, leading from a mixed (2k++4kF) phase to a pure 2k+ phase. The cal-

culation was performed for two electrons distributed over four sites, but group-theoretical argu-

ments are put forward to show that one may expect an infinitely long chain with a quarter-filled

band to show the same behavior.

I. INTRODUCTION

In 1955, Peierls' first predicted that one-
dimensional metals would, at low temperatures, show
a nuclear distortion of wave vector 2kF, ~here k~ is
the Fermi momentum. Beni and Pincus showed in
1972 that a transition with the same wave vector oc-
curs in one-dimensional spin systems. Such 2kF tran-
sitions are by now well known to occur in, for in-

stance, the tetracyanoquinodimethane (TCNQ) salts.
In tetrathiafulvalenium-tetracyanoquinodimethanide
(TTF-TCNQ), a highly conductive compound, the
Peierls instability manifests itself at first as a dynamic
distortion, as observed in diffuse x-ray scattering for
temperatures up to 150 K (Refs. 3 and 4). After a

suggestion by Torrance, Pouget' and others' have in-

vestigated the 4kF region of the diffuse x-ray reflec-
tance and concluded a dynamic distortion of 4kF as
well, which persists up to room temperature.
MEM(TCNQ)2 (MEM stands for N-methyl-N-ethyl-
morpholinium) was found to have three distinct
phases. 5 At high temperatures it has an (almost) un-
iform TCNQ chain, which at 335 K converts to a
dimerized chain6 (4kF for this quarter-filled band)
while below 19 K the chain becomes tetramerized
(2kF) ~, 8

Some attempts have been made to explain the 4k~
distortions. Emery showed with perturbation theory
that, besides a 2k~ instability, a 4k~ instability is ex-
pected in a Hubbard system when U & 6t, where U is
the on-site electron-electron repulsion and t the elec-
tronic transfer integral. Bernasconi et al. ' pointed
out that for infinite U a Fermi wave vector exists that

would be twice that of the electrons at U =0, and a
"Peierls" transition would thus occur at 4kF. Tor-
rance" suggested that the intersite Coulomb repulsion
might be responsible for the formation of a signer
lattice with wave vector 4kF, while Weger and Gut-
freund in their small U approach also included an in-
tersite Coulomb repulsion. "

Very recently Bray and coworkers"' using a com-
puter renormalization-group technique calculated re-
tarded density autocorrelation functions for systems
of 2, 4, 8, and 16 sites. From their results they con-
clude that an intersite Coulomb repulsion, in addition
to the Hubbard Hamiltonian, is indispensable for ob-
taining a 4kF transition.

It is the purpose of this paper to show that given a
sufficiently steep exponential dependence of the
transfer integral on intersite separation the extended
Hubbard Hamiltonian contains a 2k~ as well as a 4kF
instability. %e also find out how these instabilities
depend on U/t.

II. QUALITATIVE INSIGHT

It is useful to gain some qualitative insight by con-
sidering the essential features of the 2k~ and 4kF in-
stabilities. Mechanisms have been proposed to ex-
plain the 2kF transitions: in the low- U case electronic
energy is gained by modifying the transfer integrals
(t) in a chain (1), while in the other limit it is the
exchange (proportional to t'/U)" that is modified
with wave vector 2kF (2). Both mechanisms require
the possibility of having two electrons share the same
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orbital when their spins are antiparallel. When U ap-
proaches infinity this double occupancy becomes
prohibited, depressing the 2kF transition temperature
to zero, in agreement with Sokoloff's" statement that
for infinite U the spins behave independently.
Remaining, however, is the possibility of accomodat-
ing only one electron in the lowest energy orbital as,
for instance, in the H2+ molecule. The bonding pro-
vided by this electron leads to a 4kF nuclear distor-
tion with one electron per unit cell, instead of two
electrons per unit cell as is the case in a 2kF distor-
tion. This picture closely resembles that described by
Beni et al. "for the infinite U limit. They show a
system of pN electrons (where p is the number of
electrons per site and N is the number of sites) can
be treated as consisting of (1 —p) N spinless fermions
in a tight-binding band. Then the Fermi wave vector
is doubled and the unit cell resulting from the
"Peierls" instability is halved, corresponding to 4k~,
with kF defined for the U =0 system.

As was pointed out in the Introduction, our calcu-
lations use an exponential dependence of the transfer
integral on intersite distance. This is an electron-
phonon coupling quite different from that of other
authors, who either use, '8 or imply, ' a linear on-site
coupling, while this dependence gives, following
Madhukar, ' a coupling:

H, p
= $ /CD Ci, pq uqF(k, q)

with

F(k, q) =+2i Xf„[sinn (k + q) —sinnk]
n 1

where f„ is the nth derivative of t with respect to the
intersite distance and k and q are the electron and
phonon momenta. Using this exponential depen-
dence in a calculation thus means that one treats the
e-p coupling in all orders, and takes into account
that it depends on both q and k.

These arguments lead to the conclusion that the
simple Hubbard Harniltonian with an exponential
dependence of t should contain both the 2kF and 4k+
instabilities.

Distortions are not uncommon for finite ring sys-
tems. Whether they always occur, however, depends
on the number of electrons they contain. This fol-
lows directly from one-electron theory. Then
( U = 0) the orbital energies are given by
E = 2rpcoska, with k = n m/Na, with N the number of
sites, and n = N, N+1, 0. . . (N —1—).—When the
number of electrons on the ring does not equal
4m +2, where m is an integer, the ground state will

be electronically degenerate and show a Jahn-Teller
distortion. The decrease in the electronic energy will

then contain a linear term in the distortion parame-
ter, and the distortion will always occur. On the oth-
er hand, if there are 4m +2 electrons on the ring, the

ground state is totally symmetric and a distortion can,
but does not have to occur. Given a sufficiently
strong "electron-phonon" interaction, however, it
will.

This can most easily be seen for our case here of
two electrons on four sites in the limit of U =0. The
undistorted square has energy —4to. If we allow a
distortion of the square to a rectangle the ground
state has energy

2(r[+ r2) = 4 rp cosh(cr p()

where g is the distortion and cr p describes the steep-
ness of the variation of the transfer integral. This
energy is lower by at least 2(crpg)'. If the lattice en-

ergy, written as 2
ng' does not increase more than

that, i.e., when 2(crp) )
2

a then and only then the

system will distort. Note, that if only a linear depen-
dence of t on r is used, no distortion would be ob-
served. The exponential dependence of the transfer
integral is now of crucial importance!

For infinitely large rings, as for instance Rice and
Strissler' have shown, this difference between
4m + 2 and other numbers of electrons is of course
lost and the electronic energy is lowered by a term
proportional to $2lng, which is indeed between the
two previously discussed dependencies, and will al-

ways lead to a phase transition. We feel confident
therefore that our calculations will carry over to an
infinite chain, as long as we make sure that the
electron-phonon coupling (in this case the steepness
of the transfer integral) is larger than the threshold
value set by the (4m +2) systems.

III. GROUP-THEORETICAL APPROACH

For classifying the symmetries of the distortions
along a chain and finding general expressions for the
free energies of the various phases group theory can
be helpful. The symmetry operators for a regular
one-dimensional chain with intersite spacing a are the
sets {ET„}and {iT„},where Eis the identity, i is the
inversion, and T„ is the translation operator over n

sites. Since we will only deal with the 4k~ and 2k~
distortions for a quarter-filled system, we can limit
the translations to To, T~, T2, and T3, a translation
T„+4 yielding the same result as T„. The sets {ET„}
and {I'T„},where n =0, 1, 2, or 3 then form a sub-
group of the space group for the chain.

By letting the elements of the subgroup operate on
a function with the symmetry of our problem we can
find the transformation matrices corresponding to
these elements, and reduce these to find the irreduci-
ble representations (I.R.). Since we have taken
T„+4= T„ four functions with wave vectors,
0, + n/2a, and m/a suffice to generate all I.R. From
k =0 we obtain I'~ and I'2, from k = m/a we find I'3
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TABLE I. The subgroup G of the space group of a regular one-dimensional lattice, describing
functions with wave vector 0, m/2a, and n/a. As indicated, there is a one-to-one correspondence
between the elements and I.R.'s of G and C4„.

ETp ET2 ETi, ET3 ITpp IT2 /Ty, IT3

I
&

(k =0)

I 2 (k =0)

r3 (k =m/a)

I 4 (k = n/a)

r, , r6 (k =+m/2a)

Bi

B2

E

E C2 2C4

The possible phases of the linear chain correspond to

0 —-0

Q 3

Q5

6

Q5+Q6

FIG. 1, The 4kF and the 2k~ distortions for a quarter-

filled one-dimensional chain. Q3 denotes the 4k~ distortion,

Q5 and Q6 the degenerate 2kF distortions, and Q5+ Q6 and

Q5 —Q6 are different linear combinations of the 2k+ distor-

tions.

and I'4, and from k = +sr/2a we find the two-
dimensional I 5. The character table of this group is
given in Table I, where we have ordered the ele-
ments in classes.

Inspection shows that the 4kF and 2k~ distortions
form bases for I'3 and I' s, respectively (see Fig. 1).
We will therefore call the normal modes giving the
distortions Q3 and, Qs, Q6, resPectively, where Qs
and Q6 are degenerate. A Landau series expansion
of the free energy (F) in terms of these modes can
only contain powers of Q; that transform like the to-

tally symmetric I ~ representation. " An analysis of
the terms up to fourth order shows that I' must be of
the following form:

F(Q3 Qs Q6) ~Q3 +B(Qs +Q6)

+ CQ3(Qs —Q6 ) +DQ3

+E(Q4+ Q4) +FQ'Q'

+GQ3 (Qs +Q6)

minima in F(QS, QS, Q6) given by the conditions:

=2AQ3+C(Qs Q6 ) +4DQ3
8 3

+2GQ3(Qs +Q6') =o,

=2BQS+2CQSQS+4EQS
s

+2FQSQ6 +2GQSQS ——0

= 2BQ6 —2CQSQ6+4EQ63

8

+2FQs Q6+2Q3'Q6=0,

which admit the following solutions (see Fig. 1):
(I) Q3 Qs = Q6 =0 the undistorted chain (SkF);
(II) Qs = Q6=0 and Q3 WO, a purely 4kF distorted

chain (dimers);
(III) Two degenerate solutions with Q3 &0 and ei-

ther Qs or Q6=0, a mixed 2kF+4kF distorted chain
(dimerized dimers);

(IV) Q3=0 and Qs= + Q6, the purely 2kF distorted
chain (trimers). Other solutions lead to maxima of
F(QS.Qs Q6).

Especially note that a purely Qs or Q6 distorted
phase does not exist. On the introduction of such a
distortion in the uniform chain the term
CQ3(QS —Q6 ) in F will cause Q3 to become finite as
well, and in addition to a purely 4kF distorted chain
the mixed phase (III) is obtained.

The transitions between the various phases can
have the following order (16):

SkF 2k'. No third-order term in Qs or Q6, i.e.,
first or second order;

SkF 2kF+4kq. Qs is the order parameter for this
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transition because Q2 is determined by it and not the
other way around. Near the transition temperature

Q3 contains only even-order terms in Q5 and there-
fore F will contain only even-order terms in Qq. The
transition can then be first or second order;

8kr 4kr. No third-order term in Q2, i.e., first or
second order;

4kr 2kF+4kF. No third-order term in Q5, i.e.,
first or second order;

2kq+4kF 2k~. The symmetry group of one
phase is not a subgroup of that of the other, i.e., first
order only.

Which phases are stable at what temperatures will,
of course, depend on the values of the coefficients A,

B, C, etc. , which in their turn depend on the electron-
ic and lattice properties of the chain, as well as on
their coupling. To come to any predictions a calcula-
tion, including the electron-electron repulson has to
be performed. It is well known that even the sim-
plest model taking this repulsion into account (the
Hubbard model) cannot be solved analytically for a
quarter-filled infinitely long chain, Therefore
recourse was taken to a simple model, which does,
however, conserve all the symmetry properties out-
lined above.

I'p

FIG. 2, Conformations of the four sites. The square
(8k~) has no distortion, the rectangle (4kF) has distortion

Q3 the trapezoid (2kF +4k+) has Q3 and Q5 or Q6, while

the kite (2k+) has Q5+ Q6 or Q5 —Q6 as a distortion. The
possible phase transitions are indicated by the arrows,

IV. MODEL CALCULATION

In order to gain quantitative insight in the phase
transitions one would like to exactly calculate the free
energy of an infinite one-dimensional chain using the
Hubbard Hamiltonian extended with a lattice term.
Since this is as yet impossible we have calculated the
properties of a simple model system, consisting of
two electrons distributed over four sites, each carry-
ing one orbital and arranged in a square. This is the
simplest model of a quarter-filled band system that
can show 2k~ and 4k' distortions.

Of course, such a finite system by itself will not
show a phase transition. We therefore consider an
ensemble of these squares for which we require that
all squares show the same distortions at the same
temperatures. The "cooperativeness" of the phase
transition is simulated in this manner and phase tran-
sitions are indeed obtained.

This model may seem to be an oversimplification
but, as we will show, the relevant symmetries are in
fact the same as derived in the previous section for
the infinite chain. The four sites transform according
to the C4„group, which is isomorphous with the
group given in Table I: there is a one-to-one
correspondence between the symmetry elements and
the I.R.'s, as is indicated in the same table. A dimer-
ization (Q2), tetramerization (Q5), and trimerization
(Qq+ Q6) of the square are depicted in Fig. 2, the
former transforming in C4„as B~ and the latter two

as E. If we expand the free energy in the normal
modes we find the same general expression as for an
infinite chain. Of course, the magnitude of the free
energy will differ between a square and a chain, but
the conclusions of the previous section will still hold.

We now proceed with a more detailed description
of the model and report the quantitative resu1ts of
the computation in Sec. V.

The four sites are arranged on a circle as depicted
in Fig. 2 and are connected by one-electron transfer
integrals t;, which are taken to depend on the inter-
site distances along the circle r; as

t(:)r2e "
with

c =Z'/2ap,

rg 2
= (l —g) (1 + v)t) rp,

r24=(i+4)(l +52)ro
(2)

The various distortions of the square as depicted in

where Z' is the effective nuclear charge (Z' =3.4 in
use for TCNQ salts) and ap the Bohr radius. To con-
veniently describe the 4k~, 2kF+4kF, and 2k~ distor-
tions we introduce the parameters g, Ti~, and 2i2, de-
fined in the following equations'.
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Fig. 2 are then given by

g = qt = Vt2=0 (square, gkr)

gW0, q~=q2=0 (rectangle, 4k')

g &0, qt =0, g2 &0 (trapezoid, 2kr+4kr)

)=0, gt=q2&0 (kite, 2kr)

X tt~ct c + X Un~ nt
1&m

(4)

where 1 and m label the sites, c~ and c~ are the
usual creation and annihilation operators for an elec-
tron with spin o- at site 1, and n& is the number op-
erator c~ c& . As a basis set we take the m, =0 two
electron states ct e ~0), which is permitted in the
absence of a magnetic field and spin-orbit coupling.
To facilitate the calculation we formed linear com-
binations which were bases for the irreducible
representations of the group C2„, appropriate for the
rectangle. Inspection of the parity of the spin part of
the linear combinations divides these up in ten
singlet states and six triplet states.

Some lattice terms should also be included. The
aim of this paper was to show the effect of the
electron-electron repulsion on the phase transitions.
The lattice entropy can therefore be neglected, since
it will only affect the value of the phase-transition
temperatures, but not the general behavior of the
system as a function of U.

To allow for distortions, as Vegter already pointed
out a steep lattice repulsion is needed, counteracting
the exponential dependence of the electron transfer
on intersite distance. We therefore, in our calcula-
tion, use the Born expression for the lattice free en-

ergy, neglecting the dynamics of the lattice and hence
the vibronic entropy thereof:

F„,=B Xrj ",
J

(5)

where 8 is a proportionality constant, n is the repul-
sive exponent, and the summation runs over all four
bonds. By rewriting this in terms of g, g~, and q2,
substituting a/4n(n +1) for Brp, and expanding in

a power series up to quadratic terms we obtain the

By keeping ro fixed the perimeter of the ring is kept
constant, forbidding lattice expansion or contraction.
For the transfer integrals we then obtain

t, ,= to(1 —4') '(1 + 7ii)'exp (
—cro[+g)(1 —g) —(]]

t2 4= tp(1+ g) (1 + q2) exp [—crp[+q2(1+ g) + g])

(3)

where cro can be treated as a single parameter with a
value of about 10 for the TCNQ salts. " The elec-
tronic system is described by the Hubbard Hamiltoni-
an:

form

Fat=a/n(n+1)+ 2m[('+ 2(q2&+q22)], (6)

which enables us to relate n to the linear lattice
compressibility. The restriction of the displacements
to a constant perimeter, implicitly included in Eq. (5)
by substituting g, Yt~, and q2 from Eq. (2), acts as an
attractive interaction counteracting the Born repul-
sion, and thus obviates the need for an extra attrac-
tive term.

The value chosen for n in our calculations is 12,
which is sufficiently strong to limit the distortions to
reasonable fractions of the intersite distance. For o.

we take 160 in units of to, which is in accordance
with for instance a compressibility of 4 x 10 "cm /

dyne and a one electron transfer integral to of 0.1 eV.
These numbers are comparable to those found for in-
stance RbTCNQ. '2 Because the electronic system we
consider has a nondegenerate ground state the Jahn-
Teller argument does not apply, and it is possible to
choose a set of parameters for which no distortion of
the square will occur even at very low temperature.
The numbers we have introduced above (10, 12, and
160 for crp, n, and a, respectively) are such that for a

wide range of U/to values reasonable distortions oc-
cur. Since the Hamiltonian matrix can only be
analytically diagonalized for zero and infinite U, we

use computer procedures to obtain eigenvalues and
eigenfunctions for a large set of g, g~, and g2 values
at varying values of U. As a function of temperature
( T) the free energy is then obtained for each set of
eigenvalues. We are thus able to find the most
favorable conformation of the four sites for any U
and T. The magnetic susceptibility was obtained by
multiplying the triplet occupancy by the appropriate
Curie constant, while the charge densities were calcu-
lated from the wave functions.

V. RESULTS

In Fig. 3 we show contour plots of the free energy
as a function of the distortion parameters $(4kF) and
q2(2k') for U=6tp at three different temperatures.
At T =0.002tp a minimum is found at nonzero ( and

q2, meaning that the trapezoid is the stable configura-
tion. At T =1.2tp we find a minimum at (=0.093
and F2=0 (the rectangle), while at T =1.8tp the un-
distorted square has the lowest free energy,
remains zero at all temperatures.

In Fig. 4(a) the complete temperature dependence
of g and q2 for U =6tp is displayed. At T =1.66tp,
the 4k' transition occurs (g) while at T =0.65 tp, g2
becomes nonzero in the 2kF transition. For U =0,
Fig. 5(a) gives the temperature dependence of
y[equal to —,(gt+g2)], being the 2k& distortion

parameter leading to the kite (trimers and monomers
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0.20—
T = 0.00 2 to

FIG. 4. Phase transitions at U =6tp. Temperature depen-
dences of (a) the 2k+ parameter q~ and the 4k+ parameter

(, and (b) the charge densities (broken lines, site number-
ing as in Fig. 2) and the double occupancy in the distorted
(solid line) and undistorted (dotted line) system.

0.1 0

0
0 0.10 0.20

FIG. 3. Contour plots of the free energy vs 4kF(() and

2kF(g~) distortions for U =6tp at T =0.002tp, 1.2tp, and

1.8tp. The levels of free energy indicated are chosen to

show the important features; the broken line has the same

free energy as the square (g =q~ =0). The X indicates the

minimum of the free energy: for T =0.002tp it is at
(=0.098 and g~ =0.0204 (trapezoid); for T =1.2tp at

(=0.093 and g~ =0 (rectangle); and for T =1.8tp at

g = q~ =0 (square).

of Fig. I). Here we only find a 2k~ transition at
T =1.8S tp.

Figures 4(b) and 5(b) show the behavior of charge
densities (broken lines) and double occupancy (soiid
lines) as a function of temperature. In the square
(Skq) and rectangle (4kF) each site of course has the
same charge density, but in the trapezoid (2kq+4kF)
charge is concentrated on the sites labeled I. and 2 in
Fig. 2, and in the kite (2kF) it is concentrated on the
sites encompassing the two shorter bonds (trimer) at
T =0, leaving the "faraway" site (3) completely un-
bound. The double occupancy, defined by

~ ~

, n~ n~, measures the correlation energy in the
J t

system when multiplied by U. In Fig. 4 ( U = 6ro),
we see that at the 4kF transition it is hardly affected,
but below the 2k~ transition it rises sharply relative to
the value for the undistorted system (dotted line).
Also in Fig. 5, the double occupancy rises below the
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sharply. The transition temperature from the regular
(Sk~) to the dimerized chain (4k~) is hardly affected
by U.

VI. DISCUSSION

Our model calculation appears to mimic very well
the behavior of a one-dimensional quarter-filled band
as a function of temperature and on-site repulsion U.

Both a 4k' and a 2k~ phase transition occur, indeed
all the phases predicted by the Landau expansion are
found at some range of U/ro and temperature.

These results should be contrasted with the calcula-
tions of Bray and co-workers, ' ' who found for in-

stance the 4kF instability too weak compared to the
2kF instability, to allow the 4kF transition to occur at
a higher temperature than the 2kF transition. We
want to point out, however, that in their calculation
they did not explicitly consider the electron-phonon
coupling. They calculated (retarded) density auto-
correlation functions, implicitly assuming on-site cou-
pling only. Similarly, analytical work by Chui, Rice,
and karma' take the electron-phonon coupling to be
independent of electron momentum; it is therefore
the same for all electron wave vectors, and therefore
also exclusively on site. But soon after, Madhukar'
maintained that such an electron-phonon coupling
cannot lead to a Peierls transition, and that is indeed
true if internal degrees of freedom of the sites are
not taken into account.

In contrast, in the present calculations we let the
transfer integral depend on intersite distance in an
exponential manner. This implies an electron-
phonon coupling strongly varying as a function of
both electron and phonon wave vectors, as well as
coupling to all orders. For instance, the 4kF phase
transition does not occur in these calculations if only a
linear dependence of the transfer integral on intersite
distance is used, i.e., when the electron-phonon cou-
pling is treated in first order. This is also clear when
one realizes that in a quarter-filled band a 4kF insta-
bility amounts to a dimerization. A linear depen-
dence then means, that whatever is gained in energy
on one side is lost on the other. Such arguments do
not apply to the 2k~ transition, since the bonds
between the sites are then somewhat inequivalent to
start with, but again higher-order terms are very im-
portant.

In summary, therefore, previous calculations were
aiming for on-site charge-density waves, while this
calculation yields intersite charge density waves, or
simply bond alternations. Of course, these are the
only Peierls transitions one can expect, if internal site
structure is not considered. Also, it appears to us
that the distortions actually observed in, for instance,
MEM(TCNQ)2, 6 indeed amount to modulations of
the transfer integral. To illustrate these "intersite

e + e + ~ y ~ + e + e + ~ + o + ~

regular chain

o + e + o + ~ + o + o + e + o + o

dimerized chain

+ Sit&

inversion center

tetra merized chain

FIG, 8. Schematic representation of electron densities of
a quarter-filled band system in the regular (8kF), the dimer-
ized (4k+), and thy tetramerized (2k++4k~) phase. Note
that in the dimerized phase all inversion centers are re-
tained.

charge-density waves", we show their electron densi-
ty distribution in Fig. 8. This figure also shows how
the sites in the 4k' phase are still connected by inver-
sion centers, forbidding on-site charge-density ~aves,
unless these inversion centers are lost through an
internal structural change of the site.

Figure 8 also shows how the microscopic mechan-
isms for the two phase transitions can be viewed.
The 4kF transition amounts to the alternate weaken-
ing and strengthening of the one-electron bonds
between the sites. The 2kF transition can be seen as
the alternate strengthening and weakening of the
two-electron character of the bonds between the sites
that were least bound in the 4kF phase. In agreement
with this picture, U strongly affects the 2kF transition
temperature, while it leaves the 4k~ transition tern-
perature essentially unchanged. When there is no
energetic difference between a one-electron and half
of a two-electron bond, i.e., when U =0, the two
transitions occur together. It can be said that for
U ) to it is the electron-electron repulsion that splits
the transition into a 2k' and a 4kF component.

At sufficiently high U/r a distinction can be made
into charge-density and spin-density waves (CDW
and SDW) since the charge and spin can be con-
sidered almost independently. In this particular case
the 4kF distortion can be dynamically considered as a
CDW, while the 2kF distortion is then, similarly, a
SDW. At low U/r this distinction becomes unclear,
both waves consisting of mixtures, while at U/t & l
the two types of waves merge completely.

Finally, it appears worthwhile to register some
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surprise that such meaningful results can be obtained
from a calculation on such a small system that con-
sists of only two electrons on four sites. It should be
pointed out, however, that a total of 28 states (10
singlets and 6 triplets) is calculated and that for phase
transitions one compares energies of two closely simi-
lar systems calculated in the same approximation.
Although the absolute energies will be in error, in

the energy differences the errors appear to cancel. So
far, the calculation finds its justification in the
results, which do indeed clarify the effect of the on-
site electron-electron repulsion on the 4k' and 2k'

phase transitions.
Both transitions are contained in the original

Peierls transition, in which electron-electron repul-
sion was not considered. It seems appropriate there-
fore, to call the 4kF transition in which the electronic
degrees of freedom are lost the electronic Peierts tran-
sition, while the 2kF transition in which the spin de-
grees of freedom are lost can be called the spin Peierls
transition. These are both contained in the Hubbard
Hamiltonian as long as a lattice term is added and the
transfer integral is made to depend on the inter-site
separation.
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