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A torus filled with superfluid helium and a powder of a porous solid which contains
internal pores having diameters comparable to the coherence length should exhibit
Sagnac-Josephson interference when rotated. Analysis is made of the effect of this in-
terference upon the resonance frequency of a torsional oscillator. An inertial mass arising
from quantum-mechanical interference is derived. Connection of this interference to gen-
eral relativistic effects is explored, including the Lense-Thirring effect and gravitational

radiation.

I. INTRODUCTION

There have been many attempts’? to observe the
Josephson effect in superfluid helium in the past.
The original experiment of Richards and Ander-
son! involved a single small orifice connecting two
baths of helium at different heights. Goodkind and
Gregory® attempted to see the ac effect in a torus
without any orifices. Clow and Reppy* did an ex-
periment on powder without internal pores packed
into a torus. Guernsey> attempted to see the effect
with a single orifice which interrupts a torus. In
most of these experiments the effective orifice di-
ameter was much larger than the coherence length.

Here, a new approach to observe a Sagnac-
Josephson interference in superfluid helium is pro-
posed. A powder of a porous solid, which contains
internal pores having diameters comparable to the
coherence length, is packed into a torus and filled
with superfluid. When the system is set into rota-
tional motion, the superfluid within the pores,
which forms a sizable fraction of the total amount
of superfluid in the torus, cannot ignore the mo-
tion of the walls because of the finiteness of the
coherence length. Rather, there should exist a cou-
pling between the powder and the superfluid aris-
ing from the continuous exchange of angular
momentum within the pores. Owing to the
coherent quantum mechanical nature of the super-
fluid, as the angular speed of the torus is gradually
increased, this coupling should exhibit a smoothly
periodic dependence upon the circulation of the ap-
paratus with a period 4 /m, where h is Planck’s
constant and m is the inertial mass of the helium
atom. This periodic behavior can also be viewed
as arising from coherent Josephson currents that
pass through all the pores of the powder due to

Sagnac interference. The recoil from these
currents affects the moment of inertia of the sys-
tem. When the torus is attached to a torsion rod
and thus becomes a torsional oscillator, the change
in moment of inertia of the system can be sensi-
tively measured through the resulting shift in its
resonance frequency. An important difference
from many of the past experiments is that at no
point during the torsional oscillation is the critical
velocity for vortex formation ever exceeded.®

II. THE SAGNAC-JOSEPHSON INTERFERENCE

In order to understand the basic physics of the
interference, let us consider a rotating torus filled

He atom out

Tube 2

FIG. 1. Schematic of superfluid helium interferome-
ter consisting of a superfluid-filled torus with two ex-
tremely fine tubes inserted for admitting and extracting
the superfluid. The diameter of the tubes is comparable
to the coherence length. Interference occurs between
paths 4 and B upon rotation. The velocity field of the
apparatus is V= X T, where ( is the angular velocity
of rotation with respect to the local inertial frame,
which is pointed out of the page, and T is the position
vector relative to the center of the torus. The cross-
sectional width of the torus is much less than its radius
R.
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only with superfluid, into which we stick two ex-
tremely fine tubes (see Fig. 1). The diameters of
these tubes are chosen to be comparable to the
coherence length, which at sufficiently low tem-
peratures is comparable to the size of individual
helium atoms. Let us inject superfluid through
tube 1 and extract it through tube 2. An injected
atom of this superfluid has zero momentum with
respect to the orifice, since it is brought to rest
with respect to the pore when the pore diameter is
comparable to the coherence length. Upon entering
the torus at the orifice of tube 1 this atom has a
choice of either going along path 4 or path B.
Upon arrival at the orifice of tube 2, the atom will
self-interfere with the Sagnac phase shift’

Ap= A¢path AT A¢path B

m ¢ ,— 27QR’m
_—_—h—¢rv-d1=———ﬁ , §))
where V is the velocity field of the apparatus, I is
the circle of radius R, where R is the radius of the
torus, and () is the angular speed of rotation of the
torus, all with respect to the local inertial frame.
Since the “He atom is neutral and spinless, the in-
terference is free from magnetic screening of the
phase shift¥® and from all other electromagnetic
interactions. The only remaining interaction for
the “He atom is the gravitational one, as evidenced
by the fact that A¢ is proportional to the inertial
mass m of the interfering atom.

Note that A¢ is independent of the position of
tube 2, and that therefore it is identically the same
for the extraction of the atom through any other
tubes inserted at arbitrary points into the torus.
Now let us set the torus into rotation at a speed
such that A¢=m. Then universal destructive in-
terference occurs at all orifices, so that no helium
atoms can enter into or emerge from any inserted
tubes. Now let us pack powder with coherence-
length-sized internal pores inside the torus. The
powder is tightly packed so that it rotates as a rig-
id body along with the torus. When A¢ =, all the
pores are effectively closed and the superflow
through all pores vanishes. Note that the presence
of superfluid in the space between particles does
not alter this argument.¥® When A¢=0 (i.e., no
rotation) all the pores are open due to universal
constructive interference, but no superflow occurs
since the entire system is at rest. Now the interfer-
ence must be periodic when the phase shift is in-
cremented by 27n, where n is an integer. Hence
we expect nulls in the superflow when A¢
=0,7,2m,3m, etc. At intermediate rotation speeds
the superflow alternately rises to maxima and

drops to minima in a smooth fashion. As the rota-
tion speed is gradually changed, the system
remains adiabatically in its lowest energy state. A
generalization of the above argument shows that
the simplest form the superflow through the inter-
nal pores of powder can have is

I=I_sinA¢ , 2)

where I, is a constant having units of mass per
unit time. This relationship can also be derived
from a general argument given by Bloch® for a
Josephson junction in a superconducting ring, and
applied to superfluid helium in a torus without an
internally porous powder by Schick and Zilsel.!
However, without a porous powder, the magnitude
of I, will be very small.

III. THE CRITICAL CURRENT

The magnitude of the Josephson critical current
density j. has been calculated for a porous solid by
Mamaladze and Cheishvili'! using the Ginzburg-
Pitaevskii equations'? applied to cylindrical pores:

j= 1.7%b
[+ mBD3 ’

where B=4X10"% ergcm? is the coefficient of the
cubic term in the Ginzburg-Pitaevskii equation,
and where b is the fraction by volume of pores in
the solid, and D is the thickness of the solid. For
Vycor with D=1000 A and b =0.28, one obtains
Je=9%x10"* gem~2s~!. To calculate the critical
current I, for powder in a torus of cross-sectional
area a one forms the product I, =gj.a, where g is a
geometrical factor associated with the distribution
of shape, size, packing, and pore orientation of the
particles. Assuming a model for the powder con-
sisting of a simple cubic close packing of spheres
of uniform diameter D, one gets g =7/3, assuming
random orientation of the pores. For a =1 mm?
and the above numbers, one deduces I, =1x10~%
g/s.

The Josephson effect given by Eq. (3) sets in im-
mediately below the temperature at which there is
the onset of superfluidity in the pores. This occurs
when the pore size is comparable to the temper-
ature-dependent coherence length, which according
to the Ginzburg-Pitaevskii theory is £=4 A/
(To—T)"2 Thus for £=d =40 A, one estimates
the onset of the Josephson effect to be around 10
mK below the A point. However, measurements
show that for a 70 A pore diameter the onset of
superfluidity within the pores actually occurs
around 100 mK below the A point.!* Possible can-
didates for internally porous powders are Vycor

(3)
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(40—70 A pore diameter), silica gel (40 or 60 or
100 .z\), activated carbons (10— 100 A), and zeolite
(10 A for 13X).

Inhomogeneities in pore diameter and particle
size influence the magnitude I, but not the phase
shift A@, which is universally the same for all par-
ticles, as long as they all co-rotate with the walls
of the torus. Inhomogeneities in pore diameter
will spread out the temperature at which the onset
of the Josephson effect occurs.

IV. THE TORSIONAL OSCILLATOR

Let us analyze the influence of the Sagnac-
Josephson effect on the resonance frequency of a
torsional oscillator. Assume that any change in
the moment of inertia arising from the Josephson
currents to be small, so that the motion is simple
harmonic.

The total instantaneous angular speed of the
torus is

0= Qe + Qosinwot s
where (), is the angular velocity of the Earth’s ro-
tation projected along the axis of torsion, £} is the
maximum of the oscillating angular speed of the

torus, and wy is the resonance frequency of the tor-
sional oscillator. From Egs. (1) and (2), one gets

I=I_sin(8+asinwgt) , 4)
where
2mmQ,.R?
=_1TT_C_ , (5)
#
2rmQR?
o 2R 0

Expanding (4) one obtains:

Jol@)+2 3, Jola)cos2kwot
k=1

I=1I_sind

)

+1.c088 |2 Y, Jop 41 (@)sin(2k + 1wyt
k=0

The component at wy is

I1,=2I_J,(a)cosd sinwgt . (8)
By angular momentum conservation, the mass
current I, through the pores will produce a recoil
of the powder and thereby the rest of the system.
One can express this in another way: Eq. (8)
describes a co-oscillating mass at radius R of an
amount

where s =27R. For small a, this becomes,

2
M, =Icién—cos8 , (10)
independent of a. The physical significance of this
quantity is that it is the inertial mass of the
superfluid-powder system arising from quantum
mechanical interference. It is analogous to the
Josephson inductance of the superconducting
quantum-interference device (SQUID). Numerical-
ly, M, =2 g, assuming cos6=1, R=1 cm, a cross-
sectional area of the torus ¢ =1 mm?, and I, =1
X107 g/s. This value of M, is much larger than
the classical mass of the helium in the torus, which
is M ,s =psa =4 mg for the above assumptions,
using p=0.0675 g/cm? near the A point. Note
that whereas the classical mass M, increases
linearly with s, the quantum mechanical mass M,
increases quadratically, and therefore dominates
over the classical mass for large s.
The resonance frequency of the torsion pendu-
lum is affected by M, according to the equation
wo=k/[Io+M_,R?*]'/? | (11
where « is the torque constant of the torsion rod
and I, is the background moment of inertia of the
system, including that of the walls of the torus, the
particles with empty pores, the normal component
of the helium, and the Kelvin inertia arising from
the superfluid flow in the space between particles.
Assuming that ;=10 g cm?, one sees that the
fractional change in the resonance frequency is, for
the above numbers, nearly 10%. Since the experi-
mentally determined Q for torsion oscillators is of
the order of 10° ,'* this means that I, can be a fac-
tor of 10* smaller, and the effect can still be seen.
The Josephson effect can be observed through the
dependence J(a)/a of the resonance frequency
upon the torsional amplitude a.!* The Sagnac ef-
fect from the Earth’s rotation can be observed by
changing the angle between the interferometer axis
and the polar axis and observing the change in
resonance frequency due to the cosd dependence in
Eq. (10)."® For R =1 cm, one obtains from Eq. (5)
that 8=166° when the interferometer and polar
axes are parallel, so that the A¢ =7 null can be
seen with a small interferometer.

V. AN INERTIAL ANALOG OF LENZ’S LAW

The sign of the mass M, can be determined by a
physical argument independent of arbitrary conven-
tions about signs and directions in Fig. 1 and Egs.
(1) and (2). Let us consider a torus which is ini-
tially at rest and focus our attention on the
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behavior of a single representative porous particle.
When one applies a torque to the torus, the particle
begins to move with a certain velocity V. This
produces a jet of superfluid through the pores of
the particle due to the Sagnac-Josephson effect
either in the same direction or in the opposite
direction to V. Suppose that the jet is in the oppo-
site direction to V. Then there will be a recoil of
the particle from this jet which will tend to further
increase V. But a further increase of V will cause
the jet to become yet stronger, etc. Hence, the sys-
tem at rest is no longer stable, which means that it
is not the state of lowest energy. This is physically
impossible.

Therefore the jet must be in the same direction
as V. This implies that there exists a recoil of the
particle which opposes the further increase of V.
Hence it becomes harder to push on the particle.
This means that the particle’s inertial mass has in-
creased. Therefore the sign of M, for §=a=0
(i.e., for the system at rest) in Eq. (9) is always pos-
itive. The inertial analog of Lenz’s law can be stat-
ed thus: The induced mass current due to Sagnac-
Josephson interference will appear in such a direc-
tion that it opposes the change that produced it.

VI. THE SPEED OF RESPONSE
OF THE INTERFEROMETER

How quickly does this interferometer respond to
sudden changes in A¢ (due, for example, to sudden
changes in )? By symmetry, only the azimuthally
symmetric m =0 sound wave mode in the super-
fluid and in the torus walls can be excited by such
a change. But this mode has zero frequency and
cannot be excited. Hence, no low-frequency sound
modes can be excited at all. Therefore the transit
time for sound to propagate around the torus ei-
ther in the superfluid or in the walls of the torus is
irrelevant. Rather, the response time must be
given by 7=%/A~10"12 5, where A is the roton
energy gap, since there exist no low-lying excita-
tions of the superfluid-powder system of the prop-
er symmetry with energy less than A above the
ground state.!”?® This also implies that the ac
Josephson currents given by Eq. (7) should exist up
to a cutoff frequency given by A /4.

VII. THE GENERAL RELATIVISTIC
CONNECTION

This interferometer, if experimentally demon-
strated, will form an important laboratory connec-

25

tion between quantum mechanics and general rela-
tivity, since the phase shift is a direct measure of
the rotational components of the metric tensor
ho=(hoy, hoy, ho3), where h,,, are the deviations
of the metric from flat spacetime, through!8—20

mc g b
Ap="5 gir hpd T, (12)

where I is a closed curve. In the limit of weak
gravitational fields, one obtains the linear form of
Eq. (2):

I=I,A¢ . (13)

This implies that there exists a linear coupling be-
tween the field HO and the mass current I. It also
follows from Eq. (13) that the superfluid-powder
system acquires an inertial mass given by?!

M, =I1.s’m /%, (14)

where s is the length of the closed curve T.

The Lense-Thirring effect produces a detectable
phase shift through Eq. (12), which should afford
us an important test for general relativity.!8—2%22

As was shown above, the response time of the
interferometer to sudden changes in A¢ is T=%/A.
Now let us consider a slowly varying gravitational
field, e.g., gravitational radiation, whose period is
long compared with 7. Then the system changes
adiabatically with time. One sees from Egs. (12)
and (13) that a time-varying HO( T,t) will generate a
time-varying I (z). Specifically, consider a figure-8
tube filled uniformly along its interior with porous
powder. When a low-frequency gravitational plane
wave impinges on the figure-8 tube in the orienta-
tion shown in Fig. 2, it should cause mechanical

FIG. 2. Schematic of a gravitational wave antenna
consisting of a figure-8 tube filled with superfluid and a
powder with coherence-length-sized internal pores. The
dots represent the powder. A plane-polarized gravita-
tional plane wave with one of its planes of polarization
lying in the plane of the antenna is propagating to the
right. A is the wavelength of gravitational wave.
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vibrations due the recoil from I (¢) uniformly along
its perimeter. Conversely, vibrating the figure-8
tube uniformly along its perimeter should generate
gravitational radiation by reciprocity.
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APPENDIX A: DERIVATION OF M,
FROM THE COUPLING ENERGY

There are actually fwo equations

. dM
I=I_sinA¢= a (A1)
p= ﬁ%ﬂ , (A2)

which govern the Sagnac-Josephson interference.
The second of these, Eq. (A2), is known as
Beliaev’s equation.”* Here u is the chemical poten-
tial difference obtained by transporting a single
helium atom around the closed curve T, or from
Egs. (1) and (A2),

p=P Fdi=m gﬁr%-(ﬁ , (A3)

where F is the force field exerted by the pores of
the powder on the superfluid which couples to
them, per atom.

The energy for producing a phase shift A¢ in the
superfluid-powder system, for example, by spinning
it up to a rotation speed corresponding to the
phase shift Ag, is, from Egs. (A1) and (A2),

W, = -:’716( 1—cosAd) . (A4)

This is analogous to the Josephson coupling ener-
gy. For small Ag, e.g., low rotation speeds, one
can rewrite the coupling energy in the form

! 2
W.=3M.?,

where V is the linear velocity of the coupled
superfluid-powder system. From Egs. (1) and
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(A4), one obtains
M, =I,ms*/#% . (A5)

The sign of M, is always positive by the analog of
Lenz’s law (see Sec. V).

There is an important corollary that follows
from Egs. (A2) and (12):

- o d g - -
= ¢FF~dl:mcE§ﬁrho-d1 . (A6)

This is analogous to Faraday’s law. From Eq.
(A6) it follows that
- dh,
F=mc—— . (A7)
ot
The physical significance of F is discussed in Ap-
pendix B.

APPENDIX B: FURTHER PROPERTIES OF M,

1. Its nonactivity
as a gravitational mass

While M, is the bona fide inertial mass of the
coupled superfluid-powder system it does not obey
the equivalence principle: It is not an active gravi-
tational mass which can be used as a source for a
longitudinal gravitational field. For it to obey the
equivalence principle, it must satisfy (1) locality
and (2) the conservation of mass-energy.

Locality means that the mass is localized in a
sufficiently small volume of space such that it can
undergo free fall along with other localized masses
in its vicinity, in accordance with the weak
equivalence principle. By virtue of its origin from
interference over extended distances, it is obvious
that M, is a nonlocal mass, since it cannot undergo
free fall, for example, along with superfluid placed
in the vicinity outside of the torus. Moreover, as
one lowers the temperature of the system below the
A point, the mass M, appears ex nihilo, along with
the onset of the Josephson critical current I,, ap-
parently violating the conservation of mass-energy.
Hence this mass is similar, for example, to the ef-
fective mass of an election in a crystal, which
enters into cyclotron resonance. This does not
mean, however, that there are no important
dynamical consequences of this mass. In fact, be-
cause of its rigidity (see below), it drastically alters
the acoustical eigenmodes of the coupled super-
fluid-powder system.
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2. Its tangential rigidity

It is a remarkable fact that the single-atom in-
terference in Fig. 1, in the absence of the con-
densed superfluid state, is actually very slow,
whereas in its presence, it is very fast. For a single
helium atom to interfere in the absence of any su-
perfluid, it must travel from the orifice of tube 1 to
the orifice of tube 2. This requires a very long
transit time for either path A or path B, due to its
very slow speed at liquid-helium temperatures and
energies. However, in the presence of the super-
fluid, there exist simultaneously (1) a Bose conden-
sation which creates an energy gap A, and (2) an
instantaneous exchange of identical Bose particles
(*He atoms) over extended distances, ignoring for
the moment the finiteness of the speed of light (see
below). Hence, the helium atom can effectively
make the trip from tube 1 to tube 2 in a very short
time, by exchanging positions with other helium
atoms in the superfluid. This time is limited by
the uncertainty principle to times greater than
#i/A, lest the system make a transition out of the
ground state, thereby destroying phase coherence
during this process.”> Then only adiabatic changes
in the system occur, and the interference phase
shift changes smoothly with time. Since 7
=#/A~10""% s is a very short time, this change,
although adiabatic, can be a very fast one.

Let us now consider the case when tube 2 in Fig.
1 is moved to a position very close to tube 1, as is
the case for a pore in a single powder particle in
the superfluid. When A¢ changes adiabatically,
due, for example, to the motion of this particle, the
Sagnac-Josephson interference mass current
changes adiabatically in accordance to Egs.
(A1)—(A3), not only within the pore of the parti-
cle, but also uniformly throughout the longer path
B, i.e., around the entire torus. If the interference
current does not develop throughout path B, then
one of the two paths essential for interference
would effectively not be present, and the interfer-
ence mass current given by Eq. (A1) would not
develop locally, i.e., inside the pore of the particle,
either. Therefore Eqs. (A1) —(A3) governing the
behavior of the interference current are all nonlocal
for the topology of a torus. Note that this argu-
ment is true, independent of the size of the torus.?®
(However, see below.)

Now consider a torus filled uniformly with a
superfluid-powder system which is initially at rest.
Let us give a tangential push on a small sector of
the torus. The powder inside the pushed sector be-

gins to move with a certain velocity V. As was
shown above, the Sagnac-Josephson interference
sets in very quickly and an interference mass
current is set up not only inside the pores of the
pushed powder, but also uniformly throughout the
entire torus. Now consider what happens in an un-
pushed sector on the opposite side of the torus.
Suppose that the powder there remains at rest.
Then all the pores of this power are open to the
flow of this interference current through them, due
to universal constructive interference for all the
pores of this sector of the powder, where A¢=0.
But the flow of such a current through the pores
of a stationary powder is not consistent with Eq.
(13). Therefore the powder must begin to move in
a self-consistent way in response to this current,
such that it co-rotates with the pushed sector on
the other side of the torus. Hence the torus begins
to rotate as a rigid body in a time 7=7%/A, in-
dependent of the size of the torus. (However, see
below.) The torus is extremely rigid, having been
rigidized by the Sagnac-Josephson interference
currents set up uniformly throughout the entire
torus. This tangential rigidity can also be under-
stood as arising from a force field F which is
transmitted extremely quickly from the pores of
the powder in the pushed sector to the rest of the
torus by means of the Bose exchange of helium
atoms. It is this same Bose force field F which
enters into the chemical potential through Eq.
(A3).

However, the above argument would seem to
violate causality, since one could, in principle,
communicate via F faster than the speed of light
whenever 27R >c7. But the exchange interaction
cannot propagate faster than the speed of light.
Mathematically, this is already implicit in Egs.
(A6) and (A7). The Bose force field F obeys the
analog of Faraday’s law, which involves Ho(f',t).
But hy(T,?) is a solution to the linearized Einstein
field equations, which obey causality. Hence the
speed at which mechanical signals propagate
through the coupled superfluid-powder system is
the speed of light. Telegraphy by means of such a
system should be possible.

These arguments justify the key assumption of
quasirigidity of the apparatus of Ref. 23. It is also
this rigidity that makes this antenna much more
efficient than the classical Weber bar. The latter is
not very rigid, and is therefore limited in its length
to [/ <v;,T/2 where v, is the velocity of sound in
the bar and 7' /2 is the half-period of the gravita-
tional wave, whereas the former is limited by the
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speed of light ¢ to a length / <cT/2=A/2. Since
a quadrupole antenna’s efficiency is proportional to
1* for short lengths, the figure-8 antenna shown in
Fig. 2 is more efficient than the Weber bar by the
factor (c /v;)*~10". More importantly, the abso-
lute radiative efficiency approaches unity for an
antenna of size comparable to wavelength. When
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struck tangentially at any point along its perimeter,
the figure-8 tube of Fig. 2 should propagate vibra-
tions along its perimeter at the speed of light, and
therefore should radiate efficiently, since its size is
comparable to a wavelength. Communication by
means of gravitational radiation should therefore
be possible.
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