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Kinetic energy and the Born-Green-Yvon method for fermion quantum fluids
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The Born-Green-Yvon {BGY)equations for two-body distribution functions of
fermion-Jastrow many-body trial functions are derived using a diagrammatic method.
Also derived are the Jackson-Feenberg and Pandharipande-Bethe expressions for the ki-

netic energy of this function in terms of partial two- and three-body distribution func-
tions. Simple approximations for these three-body functions are then used in the BGY
equations and the kinetic energies and are solved for the ground state of liquid 'He.

I. INTRODUCTION

There has been much progress in recent years in
the microscopic theory of fermion quantum fluids,
the most studied of which are liquid He, neutron
matter, and nuclear matter. ' The most success-
ful approach has been the Feenberg-Jastrow varia-
tional method (and its generalizations) combined
with the method of correlated basis functions. Of
the numerous procedures for calculating the neces-
sary matrix elements in this method, the fermion
generalization of the hypernetted chain method
(FHNC) has gained widest acceptance. ' We re-

cently pointed out, however, that one can gain
some new insights into this general problem by
developing the fermion generalization of the Born-
Green-Yvon method (FBGY) as an alternative to
the FHNC method. ' '" Perhaps the most il-

luminating insight is that the FBGY method is in-

timately related to several often-used expressions
for the kinetic-energy expectation value in a
fermion-Jastrow function, and provides the "na-
tural" way to find approximations which preserve
the identity of these alternative expressions.

In this paper we employ a diagrammatic method
to derive the FBGY equations. At the same time
we give a complete derivation of analytic expres-
sions for the three most common expressions for
the kinetic energy —Jackson-Feenberg (JF), Clark-
Westhaus (CW), and Pandharipande-Bethe (PB)—
and discuss a fourth expression which we find con-
venient. W'e then explore approximation schemes
which are sympathetic to the structure of the

FBGY equations, and apply the method to the
problem of the normal ground state of liquid He.
We find that the numerical accuracy of the sim-

plest approximation scheme is better than the
FHNC/0 approximation while no more difficult to
implement.

The remainder of this section contains a review
of elements of the Jastrow method which we con-
sider important for our present discussion, includ-
irig certain elements of the diagrammatic procedure
which led to the FHNC method. Sections II—V
detail the formal theory of both kinetic energy and
the FBGY equations. Our approximations are de-
fined in Sec. VI and applied to liquid He in Sec.
VII. In Sec. VIII we discuss the results of the
present work and other integral equation methods
applied to the fermion-Jastrow theory of liquid
He.

The Feenberg-Jastrow variational approach and

the method of correlated basis functions was de-
vised in part to deal quantitatively with the strong
short-range interactions present in the above-
mentioned quantum fluids. ' The general ap-
proach is to consider wave functions for the N-

body system of the form

g(1,...,N) =P, (1,.. .,N)4 (1, ,N), .. .

where g, is a symmetric correlation function (or
operator ) which is chosen to deal with the short-
range correlations in an efficient way, and 4~ are
model functions incorporating other properties of
the system, e.g., the correct statistics. The simplest
choices are due to Jastrow'
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E
|I'j,(1, ",N)=y (rl, " r/)= g—f(,J)

(1 2)

which can be made to vanish upon close approach
of two particles by an appropriate choice of f.
The ground state of a boson liquid such as liquid
He may be approximated by the choice 4 = 1,

while for a fermion liquid such as He or neutron
matter a useful trial ground state is obtained by the
choice 4~ equal to the ground state of the nonin-

teracting system, i.e., a Slater determinant with all
of the single-particle states inside the Fermi sea.

The function f in the Jastrow correlation factor in
each of these cases is chosen variationally (parame-
ter variation, ' ' Euler-Lagrange functional varia-
tion, '9 2 or a combination of the two ' ) by
minimizing the expectation value of the Hamiltoni-
an in these trial ground states. While elaborations
of this approach have proven useful, ' ' all
begin at this point and are faced with the general
problem of calculating matrix elements in these
correlated states of the form of Eq. (1.2).

Many of the properties of a quantum fluid may
be expressed in terms of low-index distribution
functions for the square of the trial function, de-
fined by

X dr. +~
' «~

i
4(1

(N n)—!
2

plug II
1 n

(1.3)

( V) = fg(r) V(r)d rNp
2

(1.4)

S(k)= 1+pfe'"'[g(r) 1]d r . — (1.5)

With the choice of g, in the Jastrow form [Eq.
(1.2)], the kinetic-energy expectation value requires
only g(r~2) and g3(r&, r2, r3). A three-body poten-
tial would require g3 while the second-order light-
scattering intensity requires a linear combination of
g, g3, and g4.

For the fermion liquids of interest near their sa-
turation density and above, the task of calculating
these quantities with the simplest trial function-
the Jastrow function multiplying a Slater
determinant —is more difficult than the corre-
sponding boson problem. While low-density sys-
tems may be treated by a low-order Ursell-Mayer
type of cluster expansion of the Jastrow factor,
liquid He and nuclear m.atter require a better ac-
count of the short-range correlations. Wu and
Feenberg took an important step toward that goal
by performing the cluster expansion on the Slater
determinant squared (a statistical cluster expansion)

where Io is the normalization integral, p is the
number N over volume, o; refers to spin (isospin)
when appropriate, and the integral over ~; includes
the sum over these discrete degrees of freedom.
The average of a two-body potential energy ( V)
and the x-ray structure factor S(k) require only the
radial distribution function g(r) defined by

g(r12) g2( rl r2)

with the result

while keeping the bosonlike correlation factor in-
tact. ' The results of such a calculation are ex-
pressed in terms of low-index distribution func-
tions for the correlation function |t, alone. These
distribution functions are calculated by the simpler
boson procedures (discussed further below). ' '

While generalizations of the Wu-Feenberg ap-
proach have apparently produced relatively good
results for the energy as a function of density, '
the most commonly used procedure for dealing
with the fermion-Jastrow wave function is the fer-
mion hypernetted chain method (FHNC). ' ' This
is a generalization of the hypernetted chain method
(HNC) derived originally for classical fluids and
applied subsequently to the boson-Jastrow ground-
state problem in liquid He. ' ' ' ' ' It is a for-
mal chain-parallel resummation of the Ursell-
Mayer cluster expansion for the radial distribution
function g(r &2) which produces a nonlinear in-
tegral equation for g (r&2) in terms of the Jastrow
pseudopotential u(r&2) [or the dimensionless poten-
tial —V(r ~2)lksT for a classical fluid at tempera-
ture I], defined by

f(r,2) =exp[ —,u(r, 2)] .
The exact result is written concisely as

g(r)=exp[u (r)+N(r)+E(r)],
where N(r) is the sum of all nodal diagrams and
the bridge function E(r) is the sum of all elemen-
tary diagrams, both of which are illustrated
schematically in Fig. 1. The renormalized bonds
in the cluster expansion are

&(r) =g(r) —1,
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FIG. 1. Schematic diagrammatic expressions for the
nodal sum N(r) and bridge function E(r) for a boson-
Jastrom function, expressed in terms of the renormalized
bond I (r).

which is the Fourier transform of S(k)—1 [Eq.
(1.5}]. Thus, the nodal sum can be written in the
closed form

(1.9)

, l (J
y det[p( r;,o;, r;,~, )],

where p(x;,xj) is the one-body density matrix of
the uncorrelated system (11,=1) which in the case

The elementary diagrams are non-nodal (cannot be
broken into two parts at a single point) and non-

compound (cannot be factorized). The simplest
such diagram E4(r) involves two internal and two
external points; it is the first term in E(r) in Fig.
1. The second term is the simplest five-point dia-
gram. (There are four more topologically distinct
five-point elementary diagrams. ) The approxima-
tion commonly called the HNC approximation but
more properly called the HNC/0 approximation is
obtained by setting E(r) to zero in Eq. (1.7) and
solving the resulting nonlinear integral equation for
g (r) from a given u (r}. The HNC/4 approxima-
tion, obtained by including only E4(r), and esti-
mates of contributions of E5 and higher have been
done for He and give evidence of rapid conver-
gence in both g (r) and the energy per particle. '

The fermion generalization of the HNC method
was complicated by the presence of the Slater
determinant in the wave function. However, since
it is the square of the wave function which enters
into the definition of the distribution functions g„,
Eq. (1.2), the fact that the square of the deter-
minant is the determinant of the square can be
used to isolate the statistical information in a sin-

gle determinant of two-body functions

of a uniform system has the form

P(x;,xj ) = l(k/r;~ )S /v,

where v is the single-particle level degeneracy due
to the discrete degrees of freedom (v=2 for 3He,
v=4 for nuclear matter), kI is the Fermi wave
number, and l(z) is the Slater function

l(z) =3(sinz —z cosz)/z (1.12)

Because of this determinant factor, the Ursell-
Mayer expansion must be supplement by directed
exchange bonds p(x;,xj) which are chained to form
permutation polygons.

Fantoni and Rosati, and Krotscheck and Ristig
showed how to incorporate these statistical bonds
into the HNC resummation to produce the FHNC
method. The result, some parts of which we will
discuss further below, is a coupled set of equations
similar to the boson HNC equation [Eq. (1.7)],
complete with a set of elementary diagrams which
can be set to zero to produce the FHNC/0 approx-
imation or, retaining four-point elementary dia-
grams, to produce the FHNC/4 approximation,
etc. Application of these approximations to neu-
tron matter and liquid He (Ref. 38) show reason-
able convergence to the energy and radial distribu-
tion function as obtained by Monte Carlo evalua-
tion with the same Jastrow function, although
the results for liquid He show a significant
discrepancy in the energy as the density is in-
creased from equilibrium. Another approximation
scheme, FHNC/C gives similar results for the en-

ergy and correct long-wavelength behavior of
S(k).~ This approximation has significant advan-

tages in that it can be solved for liquid He under
elevated pressure ' ' and the solutions of the op-
timization problem are consistent with exact long-
wavelength properties.

The HNC method is only one of several
methods which have been successful in the calcula-
tions of properties of classical fluids and boson
quantum fluids. A similar cluster resummation
scheme is the Percus-Yevick approximation. ' '
Both are predated, however, by the Born-Green-
Yvon (BGY) method. These alternative methods
have given different insights into the general struc-
ture of the theory and, in some instances, improved
results. A good example is the convergence of the
HNC/n and BGY/n calculations of g(r) and E to
common results, illustrated for liquid He in Ref.
36.

The BGY method is based upon the BGY
hierarchy of equations for the distribution func-
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g3( 1 2 3} g( 12 }g( 23 }g(r31} ~ (1.14)

The resulting approximate integral-differential
equation, written in the form,

V]lng(r]2) = V]u(r]2)

+p Ig(r]3 }g(r23 }Vlu (r]3 }d r3

(1.15)
is the BOY approximation for g (r)

In the fermion case, the presence of the factor
det](]'," in ll]2 produces two additional terms on the
right-hand side of Eq. (1.14), one proportional to
V']l(kf r]2) and one in the integral proportional to
V]l(kfr]3):

V ]g(r] ) = g(r ) V]u(r]2)+1'(r]2)V]l(kfr]2 }~v

+p I [g3(r]r2r3}V lu("]3)

+1 3( 1 ]1 21 3)V ]l(kfr]3 )/v]
(1.16)

Since the determinant is not a simple exponential,
the new functions y(r]2) and y3(r]r2r3) are not
simple distribution functions. These new functions
require additional definitions and additional equa-
tions as is the case in the FHNC method. In our
earlier work on the FBGY method, ' '" we at-
tempted to define these new functions and the fer-
mion generalization of the superposition approxi-
mation without reference to the diagrammatic
analysis, as was done originally for the classical
fluids. This approach, however, produced some-
what incomplete results due to the difficulty of de-
fining certain sets of "non-nodal" diagrams entire-
ly in terms of distribution functions. We will com-
ment more on this difficulty in some more detail
below.

tions obtained by operating with V ~ on the defini-
tion of g„, Eq. (1.3}. For the uniform fluid the
n =1 equation is trivial. The n =2 equation is an
equation for the radial distribution function which,
in the case of a boson-Jastrow wave function [Eq.
(1.7)], involves only u(r]2) and g3(1] r2 13):

V]g(r]2}=g(r]2) V]u(r]2)

+p Jg3(r], r2, r3)V]u(r]3)d r3 . (1.13)

Since ])'] involves only the two-body function u (r),
g3 can be expressed as a functional of g. Conse-
quently Eq. (1.13) is an integral equation for g(r).
It is made tractable by approximating the depen-
dence of g3 or g. ' The simplest choice is the
Kirkwood superposition approximation (KSA),
where g3 is approximated by

In this paper we make use of a diagrammatic
analysis to derive the set of n =2 BGY equations.
We begin in Sec. II with the definition of partial
two-body and three-body distribution functions
classified according to the exchange characteristics
of their external points. These are then decom-
posed further to exhibit their nodal structure. This
analysis is then used in Sec. III to derive complete
expressions for the three commonly used forms of
the fermion-Jastrow kinetic energy (Jackson-
Feenberg, Clark-Westhaus, and Pandharipande-
Bethe). Section IV contains the derivation of the
n =2 FBGY equations. We also show how one
uses these equations to derive the alternative ex-
pressions for the kinetic energy beginning with one
of them. In the process we gain some insight into
the relationship between the FBGY approach and
the FHNC approach. The fermion generalization
of the Kirkwood superposition approximation is
presented in Sec. VI. There, it is seen that the na-

tural approximation scheme preserves the
equivalence of the different expressions for the ki-
netic energy (in contrast to the natural approxima-
tions within the FHNC method). Numerical re-
sults for liquid He are compared to other results
in Sec. VII. We close with a summary and discus-
sion in Sec. VIII.

II. PARTIAL DISTRIBUTION FUNCTIONS
AND NODAL EQUATIONS

Some general features of the functional structure
of the reduced distribution functions
g„(r] . . . r„) come naturally out of the fermion
generalization of an Ursell-Mayer diagrammatic
analysis which leads to the FHNC method. As we
noted in the last section the diagrammatic elements

are both the dynamical bonds h(r;l )

=exp[u(r;l )]—1 (present in a Jastrow-boson or
classical theory) and the exchange bonds l(kf r 1 ).
The diagram rules for the dynamical correlation
lines are identical to the boson (or classical) case
while the rules for the exchange bonds follow from
the fact that detl(kfr~„) can be written as the sum
of the product of all exchange polygons, with every
coordinate rz having exactly one exchange bond
entering, l (kf r~z) and one (possibly the same) ex-
change bond leaving, 1(kfr&„). These are
represented in Figs. 2(a) and 2(b), where l (kf r 1) is
a line with an arrow from point i to point j. Fi-
nally, before classifying various diagrammatic con-
tributions one must Inake use of the convolution
property of the statistical bonds
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P(n~n
(a)

Qp

(b)

(2.5)g«("» )=r«(r]2)+ 1,
and I „(r]2) is a dressed exchange line between

points 1 and 2:

FIG. 2. (a) Exchange bonds in an exchange polygon.
(b) Exchange bond of coordinate p with itself.

Jl(kfr]3)1(kfr22)d ri ——l(kfr]2),
V

(2.1)

which is a consequence of the Pauli exclusion prin-
ciple. In diagrammatic terms, this means that no
diagram appears which contains an integral point
(integration point) which is only exchange-
correlated with other particles. The importance of
this result is clear from the example of the free
Fermi gas, where there are no dynamical bonds
and thus no internal points after the application of
(2.1). Then the free-particle radial distribution gF
becomes

g~(r 12)=1(kfr]] )l(kf r22) —l(kf r ]2)l(kf r2] )/v

= 1 —l(kf r]2)l(kf 721)/v . (2.2)

In the more general case, g(r]2) —1 can be shown
to be the sum of all irreducible diagrams contain-
ing the two external points (1 and 2) which are
constructed from dynamical and exchange bonds,
and in which all internal points are at least singly
connected to the remainder of the diagram. It is
then convenient to regroup these diagrams in ac-
cord with the exchange character of their external
points:

g(r») —1 =r«(r»)+r„(r»)+r„(r]2)+r„(r12),

(2.3)

where an external point labeled d is a direct point
(no exchange bond with any other point) and one
labeled e is connected by an exchange bond to
some other point.

The function I'„(r12) includes among others all
of the terms in g(r]2) proportional to l(kf r 12) or
l(kf r2]) and thus is decomposed as

I „(r,2) =l(kfr]2)+ I «(r]2 )l(kf P ]2)+g (r]2) .

(2 6)

The first two terms in (2.6) exhibit all terms in
I „(r]2)proportional to l(kf r]2) so that g„(r,2) is
that part of I „(r]2)which has at least one inter-
nal point on the exchange line linking 1 and 2.
With these definitions, Eq. (2.3) can be rewritten so
as to explicitly exhibit all exchange lines between
the external points:

g(r]2) [ 1 I(kf r]2)l(kfr21 )/v]g«(r]2 }

+I (],(r]2}+r,(](r]2}

—v [1(kf1 12 )g((,'( r21}+ (kf 21 )g~ ( r]2}]

+g-(r]2) . (2.7)

g(r»)= o]Qlllj]o+ '"l'll' + il'& + II+
I

+ ' (I] + (,"&] + '((((

(a)

~dd( l2)

(b)

~~«»)= ~tp 2l~
(c)

This equation for g(r 12) is represented graphically
in Fig. 3(a), with each of the partial two-body dis-
tribution functions represented as a "two-sided"

polygon [the lens-shaped figures in Figs. 3(b)—3(f}]
to be thought of as a black box containing all of
the connected internal points. The I ~~(r]2), which
are best thought of as dressed bonds with external
points of an a and P character, respectively, are
defined graphically in Fig. 3(c) and Fig. 4. Note
that by comparing Eq. (2.2) to Eq. (2.7) it can be
seen that g~~

——1 while I ~„g„,and g„all vanish
in the free Fermi gas.

The three-body distribution function gi(r] 12 13)
can also be decomposed into partial distribution
functions according to the exchange character of

I'„(r]2)= g«(r]2)+ v

x [ l(kf r]2)l(kf r2])g«(r]2)

A

gee(~») -v ()e (rj~]- Qii)i ]

(e)

—l(kf I »)I;, (r21)—l(kf r2])I'„(r]2)],

(2.4)

gd. (f»)= II 'I( + ~lg'/I, ((((

(f)

where g„ is defined as I «except that it contains
no exchange bonds which are direct links between
the external points, the function g~~ is a dressed
version of f (r]2);

FIG. 3. Schematic diagrammatic expression for

g(r~2) (a) in terms of partial distribution functions

(b) —(fl exhibiting the termination points of the statisti-

cal correlation lines which are attached to the external

points 1 and 2.
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pdd(r, p) =-

rcc(~ip)

1~(~)2)= d.I
= ~I'' +, ~~0

FIG. 4. Together with Fig. 3(c), the dressed bonds

between two points 1 and 2.
f'd ( 12) Xd (r]2)+p f [Xd (r]3)~d (r32)

(2.9)

according to the exchange character, and the nodal
terms are compounded with attention paid to the
restriction that each point can be part of only one
exchange cycle:

I'dd(r 12)=Xdd(r]2)+p f [Xde(r]3)Pdd(r32)

+Xdd(r») ~dd(r32)

+Xdd(r)3) ~,d(r32)]d'r3,

The second term is the sum of the nodal diagrams
X(r)2) which can also be written as in Eq. (1.9).

In fermion quantum fluids the Pauli exclusion
principle introduces long-range correlations which
are conveniently dealt with through the generaliza-
tion of this type of nodal equation. The non-nodal
sums (direct correlation functions) are subscripted

3

gddd(rl le73)
h 4
gccd(rt dr2 r3) v ~l', , ))h

gdde[ t dr2&r3)

h
geed(rt, r2,r3)=;Il

h
gcce[ l r2 3)

h
~eee[rt r2 r3)

FIG. 5. Partial three-body distribution functions
which appear in the diagrammatic expression for the
full three-body distribution function g3(l ] r2 r3).

the three external points. While there are 34 terms
in this expression compared to the seven terms in
Eq. (2.7) for g(r]2), it is composed of only six dif-
ferent partial distribution functions: gdgd, gdd„
g„d, g„„g„~,and g„,. These are represented
graphically by the shaded triangles in Fig. 5.
Completing these diagrams with external exchange
bonds in all possible ways and taking all distinct
permutations of the external points gives all of the
terms included in g3.

Qrnstein and Zernike first introduced the con-
cept of a direct correlation function to facilitate
the treatment of long-range correlations in classical
fluids, and it plays a similar role in the theory of
quantum fluids. Graphically a direct correlation
function X(r]2) is the sum of non-nodal diagrams
which appear in the two-body corre1ation function
g(r]2) —1. For the classical or boson system, the
relationship between g —1 and X is

g(r)2) —1=X(r,2)+p f [g(r,3)—1]X(r32)d r3 .

(2.8)

+Xd()]3)l„(r32)Id r3, (2.11)

(r12) 1(kfr)2) vX (r]2)

+p fX (r )3) I (r32)d r3 (2 12)

These equations can be taken as definitions of the
X-& except that Eq. (2.12) defines X«only for
wave numbers larger than the Fermi wave number
kF. In that case the graphical definition must sup-
plement (2.12). The second term on the right-hand
side of each of these equations is the corresponding
nodal function, N p.

The convolution property of Eq. (2.1) together
with the cc nodal equation (2.12) can be combined
to demonstrate an important convolution property
of the dressed exchange bond:

~f [I „(r]3)—1(kFr)3)]1(kFr32)d r3 ——0, (2.13)

provided that X„(k)$1 for k &k~. Thus, any di-

agram which has an internal point with only l
entering and only [I„—I] leaving or vice versa,
integrates to zero. This is a special realization of a
more general cancellation property of exchange di-

agrams introduced by the Pauli principle. '

In the next sections we derive the FBGY equa-
tions and expressions for the kinetic energy, all of
which involve (partial) three-body distribution
functions with integration over one or three of the
external points. It will be seen that in some cases
these external points become effectively internal

points, and cannot, therefore, be correlated only by
exchange bonds or only by one exchange and one

+Xdd(r]3)~d (r32)

+Xdd(r]3)I'„(r32)]d'r3,

(2.10)
I „(r12)= X„(r)2)

+v &- ~» +&,d I » I d, I32
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cc bond. Consequently, it is convenient to examine
the nodal properties of the partial three-body func-
tions g„~ and g„.. We first define auxiliary func-
tions I „~ and I „.similarly to the definition of
I„:

I'„d( r], r2, r3) = g d( r], r2, r 3)

+l(kf 12)gddd(r], r2, r3) (2.14)

and

I'«.(r], r2, r3) =g„,(r], r2, r3)+l(kfr]2)gdd (r] 12 13)+I gd(r] 12 13)

v—'[l(kfr]3)l(kfr23)gddd(r], r2, r3)+l(kfr»}gd«(r], r2, r3)+1(kfr23)gcdc(r], r2, r3)], (2.15)

which are shown graphically in Fig. 6. Since there
are three external points in these functions, there
are diagrammatic parts of each function which are
nodal in one point, in two points, or in all three
points, where being nodal in point p means there is
an internal point through which pass all diagram-
matic paths connecting point p to any other exter-
nal point. Three-body functions Z~p&, Y~p&, and

X~p& are defined as functions which are non-nodal
in one, two, or three external points. In particular,
we need Z„~, Y„~, and Z„., defined in the follow-

ing equations and in Fig. 7:

I „d(r],r2, r3) = gdd(r]3)I «(r]2)+Zd, (r „r3', r2)

fZ,d, (r], r3 r4)I «(742)d r4,
V

(2.16)

where Z,d, (1,3;2) is non-nodal in point 2:

Z,d, ( r], r3 12)—I dd(123)I „(r]2)+Yd„(r3, r], r2)

Id«( r3 r4 r2)l «(r4] )d'~4

(2.17)
where I'd«(3;1, 2) is non-nodal in both points 1

and 2; and

I'„.( r], r2, r3) —gd. (f ]3)I'«(r]2)—I «(r]3)I'«(r32)lv+Z, ,(r], r3', r2) — fZ, ,( r], r3', r4)I «(r42)d r4,
(2.18)

where Z, ,(1,3;2) is non-nodal in point 2 and

gd (r]2)=~d (r]2}+gdd(r]2) (2.19)

I

fZ„,(r4, r3 r2)l(kFP4] }d'r4

Note that the convolution property of I „[Eq.
(2.13)] and these definitions of Z and F combine to
give similar convolution properties for three-body
functions:

f r«d(r], r4, r3)l(k, r42}d r4

=I dd(r23)l(kFr]2), (2.21)

f r„(r],r4, r3. )l(kFr42)d r4

=gd.(r]3)1(kfr]2)—I «(r]3)l(kFr32)/v . (2.22)

gdd(r]3 )1(kFr]2 } ~ (2.20}
I

Zcdc (fl &airy) v
]]

dcc~"5i I ~2~=

rp ~3) v, ~~ „=-,'], , +

~cc (Yl l2 f$)

~" [ .a. ~-
,i 4 & ]]

+ n(]], +

+ I]] + ]A

A

I

c~c~"l "5' 2~=

w 4.
]Y

FIG. 6. Schematic graphical definitions of some
three-body functions in terms of partial three-body func-
tions of Fig. 5.

FIG. 7. Some partial three-body nodal equations, dis-
cussed in detail in the text.
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III. KINETIC ENERGY

Various prescriptions have been discussed for the
computation of the expectation value of the kinetic
energy operator with respect to a correlated
ground-state trial function [Eq. (1.1)]. These
prescriptions, being in principle equivalent to each
other, are generated by integration by parts in the
kinetic-energy expectation value. They may be
transformed into one another by using the
Jackson-Feenberg identity for a real correlation
operator g, (Ref. 1):

q, V'y, = ,
'

(V—'y,'+q,'V')+ ,
'
q,—'[V,[V,Iny, ]]

——,
'
[v,[v,4,'l] .

the Iackson-Feenberg (JF) form:

(3.2)

The most frequently used formulas for the varia-

tional kinetic energy derived by this procedure are
the Clark-Westhaus (CW) form:

f2
Tcw=TF+Io 'X f I Vitt. I'I @oI'«i «w

2

TJF =TF——,'Io 'X f I I @o I'v'Inf. ——,
'
v,'I @oI'j4,'«i «N,

2m
(3 3)

and the Iwamoto-Yamada or Pandharipande-Bethe form (PB):

Tpa=Tz ——,'Io 'g
2 f [(W.Vi'fc)

I
@o I'+ z(v &') Vi I@. 'o I']«i «~

l

(3.4)

where Tz is the free fermion kinetic energy

3 f
TF ——X—

5 2@i

These different forms of the kinetic-energy ex-
pectation value are, of course, identical as long as
an exact (e.g., Monte Carlo) computation of the en-

ergy is performed. This is, however, in general no
longer true if cluster expansion or integral equation
approximations are used for their evaluation.

Nevertheless, each of the above-mentioned pre-

scriptions has its specific advantages and disadvan-

tages. This has been discussed amply in the litera-

ture, ' there is no need to reiterate the arguments
here.

One of the main attractive features of the boson
BGY equation is that the equivalence of these
prescriptions for calculating the kinetic energy [ob-
tained from Eqs. (3.2) —(3.4) by letting v~ ao at

fixed density] is maintained at each level of ap-

proximation. ' We will see in Secs. IV and V that

the fermion BOY equations maintain the

equivalence between the CW and the PB forms, ' "
but some additional care must be exercised to re-

tain the equivalence of the JF form to the other

two. In the remainder of this section we formulate

the expressions for the kinetic energy in terms of
the two- and three-body functions defined in the

last section.
We reiterate that we are concerned here with the

case when the correlation operator is a Jastrow
function [Eq. (1.2)]. In that case the terms in Eqs.
(3.2)—(3.4) in which the gradient does not operate
on the Slater determinant can be expressed simply
in terms of the full two-body and three-body distri-
bution functions, g (r ~x ) and g3( r ~, rq, r 3). The CW
energy only has terms of this form, and can there-
fore be written as

2

Tcw TF+ d rl d rpg(r~~)v~u(r~~). v~u(r~~)
P 3

2 3

d r& fd rz fd r3g3(r&, rz, r3)v~u(r~q) V~u(r~3) .
Sm

(3.5)

(This will be the beginning point in Sec. IV for
deriving Tpz and TJF using the BGY equations. )

The last term in TJF and in Tpz each involve a
gradient of the square of the Slater determinent,

and so will contain V;l(kyar;;). The operator is the

Laplacian in TJF, producing reduced two-body
terms proportional to (R /4mv )[V&l(kFr&z)] and

(R /4mv)v) 1(kFr&z) and a reduced three-body term

proportional to (fi /4mv )V~1(kyar & ) V, l(kf 1 f3).
To obtain a diagrammatic prescription for calculat-
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ing the coefficients of these terms, we start with
the generating function

Go =ln10

where Ip is the normalization integral of the corre-
lated trial function. Go is diagramatically rep-
resented by the sum of all biconnected diagrams
which can be constructed from the dynamical lines

u(rI. )
h (r 1 ) =e " —1 and the exchange lines l(kfr~ }lv.
The contribution of the differentiated exchange
functions to the JF kinetic energy are then ob-
tained by (1) replacing in turn each exchange line
l(kF r J) lv by (A /4m v)V; l(kFr I), (2) replacing in
turn each connected pair of exchange lines

l(kyar;; )l(kFrtk)/v by (&'/4trtv')
X V; l(kF r 1

).V; l(kF r k ), and (3) collecting all
equivalent diagrams after steps (1) and (2). Clearly
then, the coefficient of [Vil (kFriz)] is a subset of
the diagrams in gd~(r iz), the coefficient of
V ~l(kyar, z) is a subset of I'«(riz), and the coeffi-
cient of V&l(krriz) V&l(krri3) is a subset of
I q«(r„rz, r, ). However, points ri, rz, and r3 are
now effectively internal points, and therefore must

participate in the reduction to equivalent diagrams
in step (3).

Equivalent diagrams are those diagrams which
are not topologically equivalent until the convolu-
tion property of the statistical bonds, Eq. (2.1},is
used to remove as many internal points as possible.
Thus, the points r&, r2, and r3 must each be con-
nected to at least one dynamical correlation line h.
For example, the coefficient of [V'il] is I dd(riz),
the term with no correlation lines between r

&
and

r2 having been eliminated. Moreover, as discussed
in Sec. II, the convolution property of I «[Eq.
(2.13)] together with the reduction rule has the
consequence that c points which become internal
points are not nodal points between I „and I.
Thus the coefficient of [Vil(kfriz)] is the non-
nodal part of I'„(riz) namely X«(riz) and the
coefficient of Vil(kfr, z) Vil(kfri3) is that part of
r„,(ri, rz, r3) which is non-nodal in points rz and
r3 and dynamically connected in point r&, which is
the function Yd«(r»rz, rz) defined in Eq. (2.17)
and Fig. 7. The total contribution of Vl terms to
the JF kinetic energy is shown in Fig. 8(a). Includ-
ing the other terms in TJF, the final result is

2

TJr ——Tr+ d rid rz —g(riz)V u(riz) — I'~(r—iz)Vil(k~riz) Vil(k~riz)+2X„(riz)V l(krriz)P 3 3 2 2 2

8m V

2 3

+ J d rid rzd r 3Y~«(r ,irz, r3)V li('kyar iz) Vil(krr\3)/v. (3.6)

We emphasize that this is the most general form of
the JF kinetic energy. Other forms have been

given elsewhere which represent special approxima-
tions of the three-body function Y~«(e.g., superpo-
sition approximation, summation of "fan-like" dia-
grams, etc.).

A similar analysis is applicable to the last term
of the PB kinetic-energy expression [Eq. (3.4)]
which is proportional to Vu. Vl cross terms. The
factor Viu(riz) provides a dynamical correlation

between points r& and r2, allowing for no further
reduction to equivalent terms in those points.
However, the third point in the three-body term is
a c point and must be reduced. Thus, the coeffi-
cient of Viu(riz). Vil(kfr») is non-nodal in point
three, which is the function Z, ,(ri, rz, r3) defined
in Eq. (2.18) and Fig. 7 (which must be "rotated"
so that the non-nodal point is r&). The Vl term in
the PB kinetic energy is shown in Fig. 8(b), giving
the total PB kinetic energy as

2

Tps ——TF
8 fd rid rz—I [2V u(riz)+Viu(riz). Viu(riz)]g(riz} —4I „(r,z)V', u(riz) Vil(kfriz)/vj

fop Jd rid rzd r3[g3(ri rz r3)Viu(r, z).Viu(r, 3)—4Z, ,(r„rz, r3)V', u(r, z).V', l(kfr»)/v] .

(3.7)

IV. FERMION BGY EQUATIONS

The same type of analysis applied to the kinetic
energy in the last section can be applied to the

I

derivation of the fermion BGY equation for g(r, z)
[Eq. (1.16)]. Indeed, the generating function
Gp = lilIp can be used to generate g (r) by function-
al differentiation '



1642 C. E. CAMPBELL, K. E. KURTEN, AND E. KROTSCHECK 25

gl
, 1 t, +

Sm

(a)

Xp ~Go
g(r)= (4.1)

Similarly, p g(r»)I2 can be obtained as the coeffi-
cient of V(r12) in the expectation value of the po-
tential energy. Thus, g(r12) is diagrammatically
represented by replacing in turn each dynamical

u(r;. )
correlation h(r;1 ) in Go by e " and relabeling the
points i and j as the external points 1 and 2. Con-
sequently, all internal points in g(r12) are bicon-
nected and the two external points are at least sing-

ly connected to the remainder of the diagram. The
diagrammatic expression for Vig(r, 2) is obtained
from the diagrammatic expression for g(r12) by (1)
replacing in turn each dynamical correlation line

u(r&;)
connected to point 1 by Vih (r») =Viu(ri;)e
(2) replacing in turn each exchange line connected
to point 1, l(kfri; )Iv by V, l(kfr„)lv, and (3) col
lecting all equivalent diagrams after steps 1 and 2.
Note that r& and r2 are external points and thus

are not involved in the reduction to equivalent dia-

grams.
The point i which appears in steps 1 and 2 may

be either the other external point r2 or one of the

(b)

FIG. 8. VI contributions to the JF kinetic-energy ex-
pression (a) and the PB kinetic-energy expression (b).

y(r12) = —2I'„(r12), (4-2)

where the factor of 2 is due to the two different
directions of the exchange bond. Similarly, the
coefficient of V&l(kfr13) is the sum of all of the
terms in g3( r 1, r2, r 3) which have at least one ex-
change path between ri and r3. However, since r3
is an internal point, equivalent terms must be col-
lected at r3. Thus, the three-body coefficient is
non-nodal in point r3, giving

) 3(ri r2 r3)= —Z, ,(ri, r2 13), (4.3)

where Z, , is defined in Eq. (2.18) and Fig. 7. The
two Vl terms are shown diagrammatically in Fig.
9. The two-body FSGY equation is, then,

internal points which mill be labeled r3. It was
pointed out in Sec. III that because of the exponen-
tial form of i)j„ the terms multiplying Viu(r12)
add up to g(r, 2) and the terms multiplying
Viu(r, 3) add up to g3(ri, r2, r3). That this is con-
sistent with step 1 above has to do with the fact
that V,u(ri;)e "=V,u(r12)[h(ri;)+1] so that
diagrams which do not contribute to the Viu(r 1;)
term because the dynamic bond h(ri;) is absent are
exactly compensated by the term 1 in the bracket.

A similar compensation does not occur in the
factor multiplying Vil(kfr„). Thus, it consists of
all the diagrams which have an exchange connec-
tion between r& and r; before collecting equivalent
diagrams. In the case when i =2 so there is at
least one direct exchange connection between r]
and rz, the coefficient is just the dressed exchange
bond I „(r12). Thus, the two-body function in the
BGY equations [Eq. (1.16)] is

Vig(r» ) =g(r 12)Viu (r 12)—21 „(r12)Vil(r 12)~v

+pf [g,(ri, r2, r3)V, u(r13) —2Z, ,(ri, r2,'r3)V1&(kFr13)&v]d'r3 . (4.4)

Any method for solving this equation requires
both I „and the two three-body functions g3 and

Z, , These three-body functions can be expressed
as functionals of the partial distribution functions
defined in Sec. III, as will any useful approxima-
tion scheme. Thus, we are not only required to

I

find an equation for I «, but also for all of the
two-body partial distribution functions.

The expression of g(r12) in terms of the partial
distribution functions, Eq. (2.7) which we repeat
here for convenience,

g(r12) = [1—I(kFr12) /v]g~(r12)

+I ~.(r 12)+l,g(r 12)

—2l(kFr12)gee( 12)1~v+gee(r12) (4.5)

FIG. 9. V/ terms in the FBGY equation for Vg(r»). has the advantage that all exchange correlations
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directly between r
&

and rz are exhibited explicitly.
Operating with V

&
does not change that fact.

Indeed, collecting the V 11(kfrlz) terms provides a
more direct demonstration of the result (4.2) for
the coefficient of this factor. Moreover, the di-

agrammatic expressions for the g~~(r 12) (by which
we mean g~d, I d„ I,d, gee, and g„}follow the
same rules (stated above) for g(rlz) except that the

diagrams are restricted to those having the (u, P)
exchange character of ( r „rz). Consequently, the
coefficient of V,u(r, z) is just g I3(r,z) [which com-
bine to give g(rlz) in the first term of Eq. (4.4)],
there are no Vll(kfrlz) terms in Vlg 13(rlz) and the
three-body terms must combine to give g& and
—2Z, .„respectively [using the weighting given the
corresponding two-body term in Eq. (4.5)]. Thus,

VlgaI3(&12)= g~f3(rlz)Vlu(rlz) +pf [g~~(rl, rz, r3)Vlu(r13)+y I33(rl, rz, r3)V, I(kfr»)/v]d r3,
(4.6)

where

g~I3 Igdd de~ ed~ gee~ O gee I

In the two cases where a=d so that there is no
exchange correlation between particle 1 and any
other particle, the corresponding three-body func-
tion vanishes:

Ydd3 j de3 o ~ (4.7}

In the dd equation, gdd3 is the sum of those terms
in g& which have no exchange correlations at
points 1 and 2:

g~3( r 1, rz, r3) =guru( r 1, rz, r3)+gdd, (r 1, rz, r3)

=I d~.(rl, rz, r3) .

Thus,

(4.8)

V lgdd(rlz} gdd( 12)V1 ( 12 }

+p gddd rl ~2 ~3 +gdd r1 ~2 ~3

X Vlu(r13)d3r3 . (4.9)

Except for the presence of gdde on the right-hand
side, this equation is quite similar to the boson
BGY equation, Eq. (1.16). Moreover, gdd(r, z) goes
asymptotically to I and is positive, so that the

solution to this equation is quite similar to the bo-
son g (r}. However, numerical experience shows
that the fermion and the boson g (r) are much
more similar than gzd(r) and the boson g (r). Ex-
change correlations, which appear both in gdd, and

in internal bonds in gddd have a significant effect
on gdd as will be seen in the numerical solutions

below.
The equation for I (rl, ) has a similar structure.

More compact expressions for it and the other par-
tial distributions are obtained, however, if the
equations are written for the functions gd. , I „,
and I „.The three-body factor in VIgd. is the sum
of all terms in g~ in which point I is a d point,
and point two is e, c, or d. (Point 2 can be a d
point since Vlgd. contains Vlgdd. ) This sum of
three-body terms is the auxiliary three-body func-
tion I d. .( r 1, rz, r3) defined similarly to the other
auxiliary three-body functions in Fig. 6. Thus,

Vlgd ( 12 } gd ( 12)V1 (rlz)

+ p jr„..(rl, rz, r3)V1Q(F13)d'r3

(4.10)

where

Fd"(rl r2 r3) gd (rl r2 r3)+gdd (rl r2 r3)+gded(rl 2 r3)

21(kFr13)g—g„(r 1, rz, r3)+ [1—I (kzr13)/v]gddd( r 1, rz, r3) . (4.11)

Clearly the coefficient of V lu(r» ) in Vlg.~(rlz) is
the same auxiliary function but with points 1 and
2 interchanged; i.e., I.d.(rl, rz, r3). There is also a
Vll(kfr13) term coming from those terms in g.d. in
which an exchange line goes directly from point I
to point 3 and which are fully reduced in the inter-
nal point 3. Thus, the coefficient of V ll(kfr»)lv

in the .d equation is

ld3( 1 '1 r 2 r 3 ,) 2Zcdc ( r 1, r 2', r 3 ) (4.12)

where Z,d, is defined in Eq. (2.16) and in Fig. 7
(note the permutation in coordinates) giving the ed
FBGY equation
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Vlg d(r]2) g d(r]2)V]u(r]2)

+p f[I.d.(r], r2, r3)V]u(r]3) 2Zd, (r], r2,'r3)V]l(kFr]3)]d r3 . (4.13)

Of course, in the uniform liquid V]gd. (r]2)=V]g.d(r]2), so that (4.10) and (4.13) are equivalent. Thus, either
of these equations or a linear combination can be used. The particular choice may be important when ap-
proximations are introduced and the equivalence is no longer automatic. We will comment on this further
below.

By the same type of reasoning, the cc FBGY equation is

lr { 12) (r]2)Vlu{r]2)+gdd{ 12)V] (kf 12)

+pf [I„.(r], r2, r3)V]u(r]3) Zd (1] 12 r3)V]l(kfr]3)/v]d'r3,

where Zd«(r], r2,'r3)=Z~d, (r2, r], r3) is discussed above and I „.is defined in Eq. (2.15) and Fig. 6.
A similar analysis produces the equation for V]I „though it is not necessary since, by Eq. (2.3),

(4.14)

V]r„(r]2)=V]g(r]2) —V]I dd(r 12)—V][I d, (r 12)+r,d(r 12)], (4.15)

giving

V, I „(r]2)=I „{r]2)V]u(r]2)—2r«(r]2)V]l(kfr]2)/v

+P g3 I] 12 13 +Idd I] 12 13 —I d.. r&, r2, r3 —I .d. r~, r2, r3 V~u r&3

—2[Z, ,(r], r2, r3) —Zd, (r]r2r3)]V']l(kfr, 3)/vId r3 . {4.16)

It should be emphasized that the diagrammatic analysis produces this result and not the equivalent result
obtained by replacing I,d by I d, (or vice versa) in Eq. (4.15). This suggests that any approximation scheme
which sacrifices this equivalence should use as the equation for Vgd. just one-half the sum of Eqs. (4.10) and
(4.13).

We end this section by reexamining the equivalence of the Clark-Westhaus and Pandharipande-Bethe ex-

pressions for the kinetic energy, Eqs. (3.2) and (3.4), respectively. Beginning with the Clark-Westhaus result,

we eliminate the g3V]u term by using the FBGY equation for Vg [Eq. (4.4)], giving a fourth equation for
the kinetic energy

2
T= Tt;+ fd r]d r2[ —g(r]2)V u(r]2)+2I «(r]2)V]u(r]2) V]l(kfr]2)/v]

3
+. d r, d r2d r3Z, .,(r]r2., r3)V]u(&]2).V]l(kfl]3)/v.

4m
(4.17)

(The fact that g3 does not appear explicitly in this
expression will prove useful in later discussions. )

Finally, Tpz is just a linear combination of Tcw
and T'

Tpg =2T—Tcw ' (4.18)

An important corollary to this result is that the
equality of these three energies, Tp~ ——Tcw ——T is
preserved for any of the "natural" approximations
in the FBGY method, by which we mean approxi-
mations obtained by approximating the three-body
functions in the FBGY equations. The only re-
quirement is that the same approximation for the
three-body functions be used to compute the ener-

r

gies. Moreover, it is only the single FBGY equa-
tion for g which is required; i.e., the other indepen-
dent two-body partial distribution functions may
employ some other set of approximations
(FHNC/n, for example).

The equivalence of the Jackson-Feenberg kinetic
energy to these others does not follow in as a sim-
ple a fashion from the FBGY equations, nor is it
as easy to preserve within approximations (our ear-
lier comments to the contrary notwithstanding' ")
since as an additional quantity the non-nodal func-
tion X„(r) is required. Since this function appears
nowhere else in the analysis, we would be able to
preserve the equivalence of the JF kinetic energy
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by a suitable definition of X„but such a choice
does not emerge in a natural way. The situation is
clarified by a more detailed analysis of the cc equa-
tion in the next section.

FBGY equations and the kinetic-energy expres-
sions by reducing out all nodal contributions at
internal c points. In momentum space this equa-
tion is

I „(k)=l(k), k (kF . (5.2)

V. THE cc EQUATION

P f I „(r12)l(kFr20)d r2=i(k~r10),3

played an essential role in our derivation of the

(5.1)

The convolution property of I „(r12) [Eq. (2.13)]
which we rewrite as

This convolution property is an exact property and
thus is implicit in the cc FBGY equation. To
make it explicit, we need to exhibit the nodal pro-
perties of I „.(r1, r2, r3) and Zd„(r1r2, r3) at point
2 which is accomplished by substituting Eq. (2.18)
for I „.and Eq. (2.17) (with r1—&r2, r3~r1,
r2~ r3) for Zd„ in the cc FBGY equation [Eq.
(4.14)] giving

V, I „(r12)= I „(r12)V1u(r12)+gdd(r12)V11(kfr12)

+p f d r3[ [—I (r»)I „(r23)/v+Z, ,(r1, r3, r2)]V1u(r13)

—[I dd(r»)I'„(r32)+ Yd„(r1', r2, r3)]V11(kfr13)/v]

2

fd r3d r4[Z, ,(r„r3, r2)V1u'(r13) —v 'Yd„(r1, r4r3)V1l(kfr13)]l „(r42), (5.3)

where the gd. (r13)I „(r12)Vu(r,3) has vanished due to the integration over r3. This equation can be rear-

ranged into the form

V 1[1„(r12)—l(kfr12)] = VlP(r12) — fV1P(r13)l „(r32)d'r3, (5.4a)

where

Vl ( 12)= I (r12)V1 (r12)+I dd( 12)Vll(kfr12)

+p fd r4[Z, ,(1,4;2)V1u(r14) —Yd„(1;2,4)V1l(kfr14)/v] .
(5.4b)

Fourier transforming Eq. (5.4a) shows that any
solution I'„(r,2) of Eq. (5.3) satisfies the convolu-

tion property [Eq. (5.1)] provided that P(k)Q —v.
Moreover, it is seen that any approximate cc
FBGY equation which is obtained from Eq. (5.3)

by approximating the three-body functions Z„.
and Yd„maintains ti(tis conuolution property.

Inspection of Eq. (5.3) reveals, however, the un-

comfortable property that I"„(r12)obtained from
an arbitrary (e.g., superposition approximation)
choice of the three-body functions Z„. and Y~„
does not in general vanish for small r~2. This is
caused by the fact that we have explicitly included
the convolution integrals with I „[last terms in

Eqs. (2.17) and (2.18)] in the definition of the
three-body function, and miss thereby the factor of
gdd(r12) which enforces the correct short-range

gdd("12)G ("12) . (5.5)

In our numerical investigations of liquid He using
the superposition approximation for I „.and Z~„
it turned out, however, that this choice was un-
favorable in that the solutions we found converged
only at densities below the equilibrium density, a
result inferior to FHNC/0 and other approxima-

correlations. In order to obtain solutions of the cc
equation which can be used for energy calculations
with strongly repulsive interactions, we can pursue
one of two alternatives:

(a) We can disregard the convolution property of
I „(r12) [Eq. (5.1)] and use approximations for I „.
and Zd„which have an explicit factor gdd(r, 2).
This guarantees that I „(r12) may be written in the
form
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tions (see discussion in Sec. VII).
(b) We can use special forms for Z„. and Yd„ to

guarantee both of the properties (5.1) and (5.5).
Before carrying out this second alternative, we can
illustrate the essence of the problem and the solu-
tion in a simpler case. The convolution property
of I « is already present in the cc nodal equation

[Eq. (2.12)] which we rewrite here.

I'„(r]2)= 1(k fr]2) —vX„(r12)

+&fX„(r»)r„(r32)d'r3 . (5.6)

(5.7)

For example, this equation produces the result (5.1)

[or equivalently, (5.2)l. However, just as Eq. (5.3)
for 7&l „,this nodal equation conceals the fact
that I „is proportional to gdd [Eq. (5.5)]. The im-

mediate conclusion is that X„must contain the
terms I dd(r]z) times the first and third term of
(5.6), with the rest of X„proportional to gdd

X«(r]2)= gdd(r]2)X, ,(r]z)

—v 'I dd(r]2)
T

X I(kfr]2)+P fX (l]3)I«(r32)d v3

Substituting this into (5.6) and collecting terms

produces the equation for 1"„:
r

I „(r]2)=gdd(r]2) —vX,,(r]2)+l(kfr]2)

+p X 1]3 I f 32 d ~3 ~

(5.8)

Clearly, the diagrammatic properties of Xo are
those of the elementary cc diagrams. Indeed, com-
paring Eq. (5.8) to the FHNC equation for I «, we
find that Eq. (5.8) is exactly the cc FHNC equa-
tion, with

X,,(r]2)=E„(r]2) . (5-9)

Thus, in the context of the nodal equation, requir-

ing both the convolution property and the correct
short-range structure of I „to be maintained leads
us to the cc FHNC equation. We now show that
the same result holds when we begin with the cc
FBGY equation. In the process we gain new in-

sights into the Jackson-Feenberg kinetic energy.

We begin by analyzing Y~„and Z„. in a
manner similar to our treatment of X„ in Eq.
(5.7), thereby defining two new functions Yd„and
Z,, (see Fig. 10):

Yd„(r];rz, r»= gdd(r») Yd'„(r], rz, r3)

+I dd(&12) f dd(&13)I «(.32) f Yd„—(r],'r4, r3)I «(r42)d r4 (5.10)

and

Z, ,(r], r3 rz) —gdd(r]2)Z, .,(r], r3;rz)

—I dd(r]2) I „(r]3)I„(r32)/v+ fZ, ,(r], r3,'r4)I «(r42)d r4
V

(5.11)

Substituting these results into Eq. (5.3) produces an equation for V]t'„which has a solution I „(r]2) which
is manifestly proportional to gdd(r]2) and satisfies the convolution relation:

V,r„(r„)= I „(&]2)V, u(r „)+gdd(r „)V, l(k~r „)

+gdd(riz)p fd'r3I [— I( l r) 3I( 3r)2/v+'Z(" l,r,rz)r]3lV( ul r)3

[I dd(r]3)I «(r32)—+ Yd«(r], rz, r3)]V]l(kgb]3)/vI

2
—gdd(r]2) fd'r3d r4[Z, .,(r„r3,r4)V]u(r]3) —Yd„. (r„.r4, r3)V]1(k~r]3)/v]l «(r42) .

(5.12)

Moreover, these two properties are satisfied for any
approximations for the source terms Z, , and Yd„
[which define the approximations for Z, , and Yd«

through Eqs. (5.10) and (5.11), respectively]. One
final piece of analysis demonstrates that Eq. (5.12)
is in fact the gradient of the cc FHNC equation
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FIG. 11. Schematic definition of the elementary
three-point function g, .,

FIG. 10. Fan diagram equations for Fq„and Z, .,

[Eqs. (5.8) and (5.9)]. To motivate this we note

that, while Yd„ is topologically elementary, Z, ,
still possesses parallel connections between points 1

and 2. These are illustrated in Fig. 11, which
serves to define the elementary three-point function

p.,(rl, r3, r2). Substituting the equation of Fig. 11
into (5.12) and then using the definition of G„
[Eq. (5.5)] in the first term of Eq. (5.12) and final-

ly using the dd FBGY equatioh [Eq. (4.9)] to elim-
inate the resultant G„gdd V&u and G„I dd. V]u
terms, we obtain

V(I (r12) = G (r(2)V lgdd(r(2)+gdd(r(2)V(I(kfr(2)

+gdd(r(2)p fd r3[ [—I „(r13)I (132)/v+g, .,(rl 3 2)]V1 ( 13)

[~dd(r13)i cc(r32) + Fdcc( r 1,'r2, r3)]V(1(kFr13 )/v]

2—gdd(r(2) fd r3d'r4[Z, ,(rl, r3;r4)Vlu(r») —& d(r , (r, 4r)V3l((k rF, )3/ ]vl „(r42i .

(5.13)

Finally, comparing this equation to the gradient of the cc FHNC equation [Eqs. (5.8) and (5.9)] we see that

g, .,(rl, r3 r2) and Yz„(r,; r2, r3) are the sources of the FBGY equation for the elementary diagrams:

Vl+ (r12) f [0 (rl r3 r2)Vlu(r13) ~dec(rl r2 r3)V(I(kFr(3)/v]d'r3 (5.14)

while Z, , and Yd„are the sources of the FBGY equation for the non-nodal sum X„:

V]+ (r12) (r12)V1 ( 12)/v dd( 12 Vlh kf 12)

f [Z, ,(r„r3;r2)Vlu(r») —Fd„(r(,'r2, r3)V(l(kfr(3)/v]d r3 . (5.15)

[Notice that X„= P/v as defined —in Eq. (5.4a).]
Concerning the kinetic energy, we may use this

equation for V&X„ to eliminate the two V&u. V&l

terms in Eq. (4.17) for the kinetic energy, thereby
producing the Jackson-Feenberg form in [Eq.
(3.6)]. Consequently, we conclude that the JF ki-
netic energy is equal to the C% kinetic energy as
long as Eq. (5.15) is satisfied for the approximate
Z, , and Yd„. And we reiterate that the CW, PB,
and T energies are equivalent as long as the ap-
proximations for Z, .„g3, and F„ in these energies
are also used to calculate g(r, 2) through the FBGY
equation (4.4).

VI. SUPERPOSITION APPROXIMATION

The FBGY equations for the two-body functions
are coupled to three-body functions, which are cou-
pled to four-body functions, etc. Tractable equa-
tions can be obtained only by somehow approxi-
mately closing this BGY hierarchy. A convenient
method for accomplishing this at the two-body
equation level parallels the method applied to
boson-Jastrow functions. There it was pointed out
by Abe and Stell that since the wave function is
defined entirely in terms of a two-body function
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f(r lz }=e " it can be shown that the higher-
order distribution functions g„, n & 2 can be writ-
ten as functionals of g(rlz).~ The structure of this
functional for g3 in the boson system is

parallel connected ddd factors, the bonds which
have at least one internal point being the renormal-
ized bonds just mentioned and the bonds between
external points being of the form G&„where

A(r &, I'2 f3)
g3( 1 2 3) g( 12}g(r13}g(r31)e I „„=gddGp, . (6.4)

where A is a linked diagrammatic expansion in

terms of renormalized bonds I (r,j ) =g(r,j ) l.—
In the case of a fermion-Jastrow function, a

similar result holds for the partial distribution
functions I Ilr(rl, rz, r3) defined in Sec. II. We de-

fine functions G~lsr by

I ~Ilr(r„rz, r3)=gddd(rl, rz, r3)G~13r(rl, rz, r3) .

(6.2)

Then the Abe structure for gddd is

gddd( I 2 r3) gdd( 12)gdd(r23)gdd(r31}

The analysis which leads to the explicit equation
for the G p& is similar to the partial nodal analysis
of the three-body functions given in Sec. II coupled
with the results in Sec. V [Eqs. (5.10) and (5.11)],
where the objective was to extract an explicit fac-
tor gdd(rlz) from certain three-body functions.
The result is that G ~& consists of three-body non-
nodal terms and nodal terms which satisfy three-
body nodal equations of the type derived in Sec. II.
We defer the complete analysis since the approxi-
mations we will use here involve only the leading
terms in these expressions. The approximations
needed for the FBGY equations [Eqs. (4.8)—(4.16)]
are

Xe ddd 1 2 3 (6.3)

where Addd(rl, rz, r3) is a linked diagrammatic ex-

pansion in terms of the renormalized bonds I
The functions G~pr with (any}Q(ddd) are the
sums of all linked (aPy) diagrams which have no

d(rl r2 r3)=gddd(rl r2 r3)G (r12)

I dd. (rl, rz, r3) =—gddd(rl, rz, r3)

X [G«(r, )+G,d(r )+1],
(6.6)

~"d(rl r2 r3)=gddd(rl r2 r3)[ G (r12)+Gd (r32)G«(r31)+Gd, (r32}Gd,(rzl )+Gd. (rlz)Gd, (r31)

+Gd, (rzl ) +Gd, (r,z )+Gd, (r31)+G«(r3z )+1], (6.7)

.(rl 2 3)=gddd( 1 2 3}[G«(rlz)G .(11 2 r3) —G«(r13}G ( «32r}A'] (6.8)

g3 ( r 1, rz, r3) ~gddd( r 1, rz, r3) —1 +—G«(rlz )G„(rz3 )G„(r» )+2Gd. (rlz )Gd. (rz3 )Gd. (r31 )

3

+r I G«("» )G«("kj }+G«("V }[G«(rlk }+G«("Jk)+ ]] (6.9)

where Gd. =G«+1, (i j,k) =perm(1, 2, 3) and the
superposition approximation for gddd is

gddd(r 1 r2 r3) =gdd("12 )gdd("23 }gdd("31) .

(6.10)

This set of equations (5)—(10) defines the fermion
generalization of the superposition approximation.

A similar analysis produces the superposition
approximation for the three-body coefficients of
V'll(k~r13) in the FBGY equations. The coeffi-
cient in the .d equation [Eq. (4.13)],Z,d, (rl, rz, r3)
is equivalent to the coefficient in the cc equation
(4.14) after a permutation of arguments:
Z,d, (rz, rl,'r3). This function is defined in Eq.

I
(2.16) and Fig. 7, from which it can be seen that
the appropriate superposition approximation is

Z d, (r 1, rz,'r3) -=gdd(rlz)I dd(rz3}l „(r31) .

(6.11)
The corresponding function in the Vg equation
(4.4) is Z, ,(rl, rz', r3) which is defined in Eq. (3.18)

and Fig. 7 and is approximated by

Z, ,(rl, rz'r3) — I(rd)I12dd(r23)l (r31)

+gdd( 12) d(r23) (r31)

12}~ ( 23}~dd( 31) '

(6.12)



25 KINETIC ENERGY AND THE BORN-GREEN-YVON METHOD FOR. . . 1649

The superposition approximation for the coeffi-
cient of V11(kfr») in the ee equation (4.16) is ob-
tained by replacing the I d.(r1z} by I d, (r12) in this
equation for Z, , The set of FBGY approximate
equations obtained using these superposition ap-

proximations is simplified by first replacing the
V&gdd equation by V&lngdd and then by using the
dd equation to write the other equations for the ra-
tios 6 ~. It is then straightforward algebra to find

V, lngdd(r12) =V,u(r„)+pf d'r3[gdd(r23}gdd(r31)+gdd(r23)l d(r31)+gd (r23)gdd(r31)]V1u(r13),

V1Gd, (r 12)=V1Gd. (r 12)

=pfd r3[I „(r32)gdd(r, 3)+I'd, (r32)1 d, (r13)+I d, (r32)gdd(r13)]V1u(r13),

V1G,d(r12) =V1G.d(r12)

P ~ r3 gdd ~23 ~ee F31 +Fde ~23 ~ed I 31 +gdd ~23 I ed ~3]

2p d r3I dd(r23)r„(r»)V, l{k,.13),
V

V1[Gce {r12} l(kfr12 }] d 3[ {r23 )I {r31}Vlu {r13}+I «{r23 )I dd("31 }Vll{kfr13 }]E.

{6.13)

(6.14)

(6.15)

(6.16}

(6.17)

V1[G„(r12)—Gd, (r1z)G,d(r12)+G„(r1z) /v]

= p fd'r3[I,d(r23)I «(r31 )+I «(r,3)l d, (r» )+I,d(r32)l «(r» )]V,u {r»)
2p d r3I,d(rz3)l „(r31)V1l(kf113) .

The four expressions for the kinetic energy Eqs.
(3.5)—(3.7) and (4.17) require some approximation
for three-body distribution functions. The Clark-
Westhaus form requires only g3( r1, rz, r3) which
can be approximated by Eqs. (6.9)—(6.10). The
Pandharipande-Bethe expression requires both g3
and Z, , which can be approximated by Eq. (6.12).
The Jackson-Feenberg expression requires

d {rl » r3}=~dd("12)~dd(r13)l (r23 )

producing a simple expression for TJF.

(6.18)

I

Yd„(r1,'rz, r3) which is defined in Eq. (2.17) and
Fig. 7. The superposition approximation for this
function is

Apz;„=r, + fd r1d rz[ —g(r12)V u(r12) —2I dd(r12)V1l(kfr12). V1l(kfr12)/v+2&„(r12)V l(kfr1z)]
2 2

+ d r1d rzd r31 dd(r1z)I'dd(r13)I „(r23)V1l(kfr1z).V1I(kfr, 3)/v . (6.19)

Finally, the superposition approximation for Z, , [Eq. (6.12)] can be used in Eq. (4.17) for T, giving

f2 2

=—Z;+
8 fd r1d rz[ —g(r12)V u(r12)+21„(r12)V1u(r12) V1l{k r )/v]

2 3

+ d r1d rzd r3[ I d (r12)I dd(rz3)I „(r31)+gdd(r1z)l,d(rz3)I „(r31)
&p

—v 'I „(r12)l „(r23)I'dd(r31)]V1u(r12) V1l(kfr»)/v . (6.20)

VII. RESULTS

The FBGY equations with the superposition ap-
proximation Eqs. (6.13)—(6.17), produced unsatis-

I

factory results when applied to liquid He. %'bile
reasonable solutions were obtained for densities

p ~0.014 A, we were able to show that there is
no solution to the equations for larger densities.
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l(k) +h (k)X„(k)
G„(k)=

1+v 'h(k)

where the tilda indicates dimensionless Fourier
transform, and h (r) is defined by

Vh(r) =I „(r)Vu(r)+I dd(r)Vl(kfr) .

On the other hand, the formal solution of the

FHNC/0 equation for g„[Eq. (5.8) with

X„=E„=O]gives a similar equation0

l(k) —vX„(k)
G„(k)=

1 —X„(k)

(7.1)

(7.2)

Although the only difference between (7.2) and
(7.1) is the replacement of h by —vX„, that is a
crucial difference since it turns out numerically
that the denominator in (7.1) at k =kr approaches

zero as the density increases to p=0.014 A
while the denominator in (7.2) remains nonzero to
much higher density. Moreover, using the fact
that

Since the experimental equilibrium density is
0.0164 A, this method is not useful for liquid
He.

The responsibility for the failure in this approxi-
mation is with the cc equation in the superposition
approximation, Eq. (6.16). This equation can be
solved algebraically in momentum space:

incorporated into the g (r) FBGY equation [Eq.
(4.4)], where Z,~, appears as a term in Z, , and
I „.appears as a term in g3.

Instead of deducing this elementary diagram ap-
proximation for I „.and Zd„we use here a hybrid
approximation whereby the FHNC/0 approxima-
tion is used for I „but the superposition approxi-
mation is used for all three-body functions which

appear in the FBGY equations for g and its com-
ponents I dd, I d„and I „and also in the evalua-

tion of kinetic energy. While this preserves the
equivalence of the CW, PB, and T kinetic energy,
they will no longer be equivalent to the JF kinetic
energy. The difference between these two energies
can be used as one measure of the effect of this ad-
ditional approximation.

The final step in our approximation scheme is

motivated by the fact that the FBGY equations for
I'd. and I .d [Eqs. (6.14) and (6.15), respectively] do

not have the same solution within the superposi-

tion approximation. Since these functions appear

in g (r) as the sum I d. +I .d, we replace the pair of
equations (6.14) and (6.15) by the sum of the two,

which is then interpreted as the equation for 2I d. .
We will designate this hybrid approximation by
FBGY/SA//FHNC-cc /0.

To apply this theory to liquid He, the Jastrow
pseudopotential defining the wave function is taken
to have the McMillan-Schiff-Verlet form'3'

t(k)=v, k &kf, (7.3) u(r)=—
5

bo.
(7.5)

the FHNC/0 expression satisfies the exact result

G„(k)=v[1+X„(k)], k & kf, (7.4)

which is simply a restatement of the convolution

property of I „(r), i.e., is required by the Pauli

principle.
Thus, we conclude that in order to apply the

FBGY method to a quantum fluid at high density,
it is essential to devise an approximation scheme
which preserves the convolution property of I „at
least to a very good approximation. Moreover, it
was shown in Sec. V that choosing an approxima-
tion scheme which exactly preserves the I „convo-
lution property is tantamount to using the FHNC
equation for I „with some approximation for the
elementary diagram function E„. Interpreting
such an approximation as an approximation for the
three-body functions I „.and Zd„which appear in
the FBGY equation [Eq. (4.14)] it was also shown

in Sec. V that the JF expression for the kinetic en-

ergy will be equivalent to the other three

(Tow, Tpa, and T) if the same approximation is

where b is a variational parameter which we take
to be the value obtained in the Monte Carlo varia-

tional calculation reported recently by Levesque. '

The parameter o is the scale of the standard
Lennard-Jones two-body potential, which is the in-

teraction chosen in this calculation:

V(r)=4m[(o/r)' (a/r) ],— .

@=10.22 E, cr =2.5S6 A .
(7.6)

The kinetic energy, potential energy, and energy

per particle are given in Table I. Because of the
hybridization of the approximation discussed

above, there are two different kinetic energies: TJF
and the common value of T, Tcw, and TpB. The
greatest numerical accuracy is obtained in TJF,
since the three-body terms contribute terms of or-

der 10 ~ K. Since the three-body term in T [Eq.
(4.17)] involves only one factor of Vu, it is relative-

ly small compared to the g3 term in Tcw and TpB,
but it cannot be ignored.
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TABLE I. Comparison of the energy per particle and its components in the present calculation
(FBGY/SA//FHNC-cc/0) and the Monte Carlo results of Ref. 18.

p(A. ') b

FBGY/SA//FHNC-cc/0
V/N (K) T/N (K) TJF/N (K)

Monte Carlo
E/N (K) EJF/N (K) V/N (K) T/N (K) E/N (K)

0.0076
0.0108
0.0120
0.0131
0.0141
0.0153
0.0164
0.0197

1.10
1.10
1.12
1.12
1.12
1.12
1.12
1.12

—5.11
—7.78
—9.06

—10.06
—10.98
—12.07
—13.08
—16.05

4.42
6.63
7.76
8.66
9.52

10.58
11.60
14.86

4.43
6.64
7.78
8.69
9.55

10.62
11.64
14.92

—0.68
—1.15
—1.30
—1.39
—1.46
—1.49
—1.48
—1.19

—0.68
—1.14
—1.27
—1.37
—1.43
—1.45
—1.44
—1.13

—7.93
—9.27

—10.40
—11.27
—12.30
—13.27
—16.18

6.80
8.02
8.98
9.95

11.11
12.37
15.84

—1.14+0.15
—1.26+0.15
—1.42+0.15
—1.33+0.15
—1.20+0.20
—0.90+0.20
—0.34+0.15

-0.5-

-I 0-

-1.5-

-2.0
O.OIO O.OI2

I I s I

O.OI4 O.OI6 O.OI8 0.020
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FIG. 12. Energy per particle for the fermion Jastrow
function using the Schiff-Verlet-McMillan trial function
[Eq. (7.5)] with the variational parameters determined in
Ref. 18. The Monte Carlo results of Ref. 18 are the
boxes with error bars. The solid line is the present cal-
culation. The dashed line is the result of the boson-
BGY plus Feenberg-Wu statistical approximation, Ref.
17. The dot-dash line is the FHNC/FBGY(dd) hybrid
using the JF energy, Ref. 48.

It can be seen from Table I that the difference
between T and TJF is rather small, ranging from
0.01 K per particle to 0.06 K per particle in the
density range of interest (the former figure is com-
parable to our numerical uncertainty).

A comparison of our results to Levesque's
Monte Carlo calculation with the identical wave
function shown in Fig. 12 and Table I demon-
strates that the FBGY energy is quite accurate at
low and intermediate densities, but falls too low at
the higher densities of interest. It can be seen in
Table I that most of the discrepancy between these
results is due to the kinetic energy for which the
two evaluations differ by up to 1 K at the highest
density. The smaller differences in the potential
energy are of the opposite sign, thus reducing the
magnitude of the discrepancy in the energy.

The results of two other hybrid approximations
have been reported elsewhere. In that work the
FBGY equation was used for gdd but the FHNC
equations were used for I d. , I „,and I „;in one
case the FHNC/0 approximation was used. The
energy per particle for that FHNC/C//FBGY-
dd/SA hybrid approximation using the JF kinetic
energy is seen in Fig. 12 to be very close to the re-

sults obtained in the present work. Since the
FBGY equation for Vg is not satisfied in this hy-

brid, the several methods for evaluating the energy
are not identical. Nevertheless, the discrepancy be-

tween the different evaluations of the energy is re-

duced substantially from the pure FHNC/0 and

/C, e.g., at p=0.014 A ', the difference between

Ecw and Epn is 0.75 K in the FHNC/C// FBGY-
dd/SA approximation, while it is 1.85 K in the
FHNC/0 approximation, 1.50 K in the FHNC/C
approximation, and 0.65 K in the FHNC/4 ap-
proximation.

Yet another approximation scheme can be com-
pared to the present results. The earliest quantita-
tively successful many-body theory of the ground
state of liquid He was the statistical cluster expan-
sion of Feenberg and Wu, where the energy and
distribution functions of the trial fermion wave
function of the form of (1.1) were expressed in
terms of the boson distribution functions of P, . '

Schiff and Verlet used a Monte Carlo evaluation of
these boson distribution functions together with the
Feenberg-Wu expansion to obtain the energy of
liquid He in the wave functions that we have used
in the present work. ' Further work in this regard
was presented elsewhere, providing comparisons to
the direct Monte Carlo evaluation of the energy in
the fermion-Jastrow trial function. ' More in
line with the philosophy of the present calculation,



C. E. CAMPBELL, K. E. KURTEN, AND E. KROTSCHECK

several years ago Miller used the Feenberg-Wu
method but with the boson g (r) obtained by the
boson HNC/0 and boson BGY/SA approxima-
tions. ' The energy obtained in the latter approxi-
mation is shown in Fig. 12 to be quite close to our
present results.

Finally in Fig. 13 we show g (r) and gdd(r) ob-
tained from our FBGY/SA//FHNC-cc/0 calcula-
tion at p=0.0142 A and b=1.13. These param-
eters are chosen to facilitate comparison with the
Monte Carlo results for g (r) obtained by Ceperley
et al. The difference between gd~(r) and g(r) il-
lustrates our earlier comments to the effect that
g~(r) is generally of the same character as g (r)
but somewhat less correlated. Comparison of the
Monte Carlo to the FBGY g (r) shows a disagree-
ment very similar to the same comparison in a bo-
son calculation. The discrepancy near the max-
imum in g (r) is larger than and in the opposite
direction to the discrepancy between FHNC/0 and
Monte Carlo, while the small r comparison favors
FBGY. Moreover, a boson BGY calculation of
g(r) using the same approximations gives nearly
identical results to the FBGY calculation, as is the
case with Monte Carlo simulations.

VIII. DISCUSSION

In this paper we have presented a formal deriva-
tion of the generalization of the Born-Green-Yvon
equations for the static distribution functions of a
fermion-Jastrow description of the ground state of
a fermion quantum fluid and a superposition ap-
proximation to truncate these equations. We have
also derived analytic expressions for the Jackson-
Feenberg and Pandharipande-Bethe forms of the
kinetic energy expectation value and shown the
role of the FBGY equations in establishing the
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FIG. 13. g (r) at p=0.0142 A ' of the present calcu-
lation (solid line) and the Monte Carlo calculation of
Ref. 39. The dashed line is gdd(r) in the present calcula-
tion.

equivalence of these energies and the Clark-
Westhaus form.

An essential element in the present analysis is
the Fermi-Cancellation property as manifested by
the convolution property of the I function [Eq.
(2.1)] and I „[Eq.(2.13)]. These convolution
properties result in major cancellations between the
partial distribution functions which appear in the
FBGY equations and in the energies. Moreover,
we found that when we ignored this property in
our choice of approximation schemes we obtained
unacceptable results. This led to the introduction
of hybrid approximations which retain the I „
convolution property by using an FHNC based ap-
proximation for I „.

The numerical results reported in the last section
are reasonably good for the level of approximation.
In particular, they are better than FHNC/0 and
FHNC/C at low densities (p &0.014 A ), which
suggests that this approximation scheme may be
very useful in lower-density systems such as nu-
clear matter and spin-aligned deuterium.

The relationship of the FBGY/SA and FHNC/n
energies and the corresponding Monte-Carlo ener-

gies is the same as for boson systems, namely, for
a given wave function, an FHNC/n energy em-

ploying the JF form of the kinetic energy lies
above the "exact" Monte Carlo evaluation while
the FBGY/SA lies below. This is not surprising
since the major component of the fermion energy
(ignoring the common free particle Fermi energy
contribution TF) is the boson part, and thus the
largest part of the discrepancy is due to the errors
in the boson part. Thus, the Miller calculation'
combining a boson BGY/SA approximation with a
statistical cluster expansion agrees with the present
results because the boson part of his approximation
and ours is nearly equivalent.

An interesting feature of the FBGY method is
that several different expressions of the kinetic
energy —T&~, TpB, and T—retain their equi-
valence for natural approximations, and the other
commonly used expression, TJF, is equivalent to
the others if the convolution property of I „is
maintained by the approximations. This has the
advantage that one is not left with the question of
which expression to use for the kinetic energy.
However, this is also a disadvantage in that it re-
moves the discrepancy between the kinetic energies
as an internal measure of the accuracy of' the ap-
proximation, a significant drawback if there are
no Monte Carlo results available for an external
measure. It should be noted, however, that the
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discrepancy between various forms of the kinetic
energies is not a true measurement of the impor-

tance of the elementary diagrams. Our analysis

shows that all forms of the kinetic energy can be

transformed into one another using only planar di-

agrams. The discrepancy of the kinetic energies
tells us only that some planar diagrams are omitted
in the three-body distribution function. Thus, in
Ref. 38, much of the improved self-consistency in
going from FHNC/0 to FHNC/4 comes from im-

proved approximations for the three-body func-
tions.

Said another way, it is possible in principle to
find approximations for the three-body distribution
functions which produce the FHNC/n approxima-
tion from the FBGY equations. Indeed, we
showed exactly how to do this for the cc equation
in Sec. V. If those same approximations are used
in the kinetic-energy expressions, they will produce
identical energies. Moreover, since the three-body
terms contribute a negligible amount to the JF ki-
netic energy in liquid He it follows that the com-
mon value of the kinetic energy when using con-
sistent three-body approximations is just JF. Thus,
to assess the effect of going from say FHNC/0 to
FHNC/4 or FHNC/C, one should compare the JF
energies.

In regard to the differing values of the kinetic
energy, it is worth noting that the form T intro-
duced in Eq. (4.17) may be a useful second choice
of the energy in tandem with TJF. Since T is the
average of Tzw and Tpa, and in all calculations
with which we are familiar Tz~ is the largest and
Tpa the smallest kinetic energy, then T will be in
closer agreement with T&F than the other two.
Moreover, since TJF and T are identical for boson
systems, the discrepancy between T and T» is a
measure of the errors in the fermion contributions
to the kinetic energy.

Finally, we can use the recent Monte Carlo cal-
culations of Levesque to make an empirical de-
cision about the best integral equation method for
calculating the energy of liquid He. Comparing
the results of Refs. 17, 38, 48, and the present cal-
culations to the Monte Carlo results of Ref. 18, we
find that the FHNC/4 approximation combined
with the PB form for the kinetic energy falls
within the Monte Carlo error bars for all densities
calculated. Of the other calculations (all of which
are of comparable difficulty to carry out numeri-
cally and considerably easier than the FHNC/4 ap-
proximation) the following fall within the Monte
Carlo error bars for densities p & 0.014 A. , but

fall below the Monte Carlo results at higher densi-
ties: the present results (FBGY/SA//FHNC-
cc/0); FHNC/a//FBGY-dd/SA, where a is 0 or C
and the JF expression is used for the kinetic ener-

gy; and the boson BGY/SA plus Feenberg-Wu
cluster expansion. ' In the density range 0.014
A &p &0.017 A, the following approximations
are closest to the Monte Carlo results, lying above
but near the error bars: FHNC/a//FBGY-dd/SA
where a is 0 or C and the CW expression for the
kinetic energy; and the boson-HNC/0 approxima-
tion with the Feenberg-Wu cluster expansion. '

Evidently these approximations benefit from a par-
tial cancellation of the errors of the boson part of
the kinetic by the errors of the fermion part.

There are several directions in which the present
work can be extended. Improvements upon the
superposition approximation may be obtained by a
generalization of the Abe-Stell expansion. Work
on liquid He (Ref. 36) suggests that the inclusion
of higher-order terms in this expansion will pro-
duce significantly improved agreement with the ex-
act result at higher densities.

To apply the present method to nuclear matter,
it would be useful to include state dependence in
the correlation function. As an alternative, one
may also use the FBGY scheme to generate the
compound diagrammatical quantities needed for
the computation of off-diagonal matrix elements
and single-particle energies. These are the raw
material for improving the variational estimates to
the ground-state energy within the method of
correlated basis functions. ' They serve also for
the computation of the quasiparticle interac-
tion' '* ' and BCS pairing matrix elements.

Finally, the one-body BGY equation has been
successful in treating inhomogenous classical fluids
and boson quantum fluids, most notably in the dif-
ficult problem of the structure of the free surface
of a fluid. We expect that the fermion one-body
BGY equation will have similar usefulness in the
theory of the surface of a fermion quantum fluid.
Reference 52 contains a brief account of the work
presented herein.
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