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Electronic structure and superconductivity in metal hexaborides
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The electronic structure and the phonon modes of the superconducting cluster com-
pounds LaB6 and YB6 are evaluated. They are used to calculate the Eliashberg function
of both compounds within the rigid-muffin-tin approximation for electron-phonon cou-

pling. The individual contributions from the different phonon branches are discussed. It
turns out that nonlocal corrections to the electron-phonon coupling are essential for those
modes where the B6 octahedras. move as a whole. Omission of these corrections leads to
a large overestimate of A. and T, .

I. INTRODUCTION

Metal hexaborides of chemical compositioni4%6
crystallize in the cubic structure. M may be an al-
kaline, earth alkaline-, lanthanide-, or actinide-
group atom. In addition, the compound YB6 ex-
ists. Hexaborides belong to the class of the cluster
compounds because the boron atoms are grouped
into octahedra. Both the metal atoms and the
boron octahedra form simple cubic sublattices. In
the cubic unit cell, a metal atom is sitting at the
center and the centers of the boron octahedra are
at its corners (Fig. 1 shows this structure). Many
properties of the hexabordies seem to be due to the
boron sublattice. The metal atoms, however, are
necessary to stabilize the structure. This is similar
to the situation in the molybdenum chalcogenide-
Chevrel phases where the molybdenum atoms are
the counterpart of the boron atoms in the com-
pounds considered here.

Hexaborides possess a number of characteristics
associated with good superconductors: they have
nine branches of low-frequency phonon modes and
a relatively high density of scattering centers in the
form of boron atoms. With these properites one

might expect a high T, as is found for the PdH
system. In that compound, the hydrogen atoms
are strong s-p scatterers and the coupling of the
electrons to the hydrogen vibrations is mainly re-
sponsible for its high transition temperature. '

In a local theory where we just add up the
scattering intensities of the sites belonging to a unit
cell, the volume density of atoms is of great impor-
tance. Its value for the hexaborides of about 1

atom per 9.9 A is not much below that of PdH

where it amounts to 1 atom per 8.25 A . Of
course these considerations are only valid if the
boron atoms have good single-site scattering pro-
perties. H in PdH has been found to be a strong
s-p scatterer near the Fermi energy, ' and for the
boron atoms in the hexaborides, on the other hand,
we expect good p-d scattering. If this is the case,
the dominant contribution to the McMillan param-
eter A, should come from the boron sublattice due
to the high density of the boron atoms. However,
experiment seems to tell a different story. To our
knowledge there are only two superconducting me-

tal hexaborides: LaB6 and YB6, with moderate
transition temperatures (0.45 K for LaB6 and 7.1

K for YB6). A further surprise is the large differ-
ence in the T, 's of these two compounds since
their lattice constants are almost the same (4.154 A
for LaB6 and 4.113 A for YB6), and therefore their
boron sublattices are nearly identical. The lattice
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FIG. 1. Structure of hexaborides. The numbers indi-
cate the atoms chosen as partners for a Keating-type
angular-force constant in our phonon model.
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constants of the nonsuperconducting hexaborides
differ from that of La86 by at most 4%. In the
subsequent sections, we shall clarify this situation.

Analogies to the Chevrel phases exist in view of
the superconducting properties. The molybdenum
atoms there have been shown to be strong d-f
scatterers. Their d-wave parts of the wave func-
tions are well located within the octahedra. * The
nature of their low-frequency phonon modes is
very similar to that of the hexaborides where they
consist of torsional and translational motions of
the octahedra involving no deformations at the I"
point. So, a study of the electron coupling to these
modes in the hexaborides should give us some in-

sight into the mechanisms working also in the
Chevrel phases.

This paper is organized as follows. Section II
describes the detailed electronic structure calcula-
tions with special stress on the results significant
for superconductivity. In Sec. III we analyze the
characteristics of the different phonon modes and
develop a simple phonon model fitted and corn-
pared to experiment. The results of Secs. II and
III are used to calculate the Eliashberg function,
the mass enhancement, and the transition tempera-
ture of LaB6 and YB6, in Sec. IV. We conclude
with a discussion which answers the questions of
the Introduction in light of our computational re-

sults.

for clusters with 11 shells of atoms. The total den-
sities of states (DOS) for LaB6 and YB6 resulting
from these calculations are given in Fig. 2.

The features of the DOS are quite similar for
both compounds. The only differences are the
semicore p states of the lanthanum atom leading to
the peak near —0.3 Ry which is not split because
our calculations are nonrelativistic. The peak at
—0.05 Ry in LaB6 (0.01 Ry in YB6) corresponds
to states of 3 Ig symmetry with intraoctahedron
binding character. Ascending the energy scale
further, we find TI„states between 0.15(0.2) and
0.40(0.45) Ry, A'Is, TI'„, and Es states in the range
between 0.26(0.3) and 0.'58(0.68) Ry, and Tqz states
between 0.48(0.5) and 0.84(0.9) Ry. Tq„states are
found for energies above -0.95 Ry. Tzg and Tz„
states are energetically separated, which leads to
the range of low DOS with the minimum at
0.85(0.9) Ry.

For both compounds, the Fermi energy falls into
the steeply ascending part of the DOS curve above
the minimum. Summarizing, we can say that the
sequence of the octahedron states found in our cal-
culations is in accordance with the tight-binding
results of Ref. 7 where only the boron sublattice is
considered, while the influence of the metal atom

f I I I I I

II. THE ELECTRONIC STRUCTURE
o
C4

The electronic structure has been calculated with
the fast-symmetrized-cluster approach described in
Ref. 5. For exchange and correlation, we use the
Hedin-Lundqvist formula. Self-consistency has
been obtained after about 20 iterations in a system
consisting of five shells of atoms with a boron oc-
tahedron in the center. The clusters used in these
computations contained complete octahedra only.
In a muffin-tin construction of the potential the
values 0.5 and 0.2 have been chosen for the
muffin-tin spheres of the metal and boron atoms,
respectively, filling 73% of the space. Both the
spheres of neighboring boron and metal atoms
touch. From our look at a pointwise construction
of the potential, we expect the asphericities within
and the spatial variations outside the muffin-tin re-
gions not to influence the results for the electronic
structure essentially. The self-consistent potentials
have been used to obtain the one-particle Green's
functions employed in the succeeding calculations
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FIG. 2. Total electronic density of states for LaB6
and YB6.
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is neglected. The states with significant contribu-
tions to the DOS from metal-atom regions lie
above -0.85 Ry. They are mainly of d character
but near the Fermi energy there is considerable ad-
mixture of f states to the DOS. For LaB6 the f
contribution leads to a peak in the DOS at 1.14
Ry. These f states, however, are not well localized
near the metal atoms. Instead, their radial func-
tions are large in the outer regions of the metal
muffin-tin spheres. It is important to remark that

g contributions from the metal regions turned out
to be quite negligible.

Our present results represent an improvement of
preliminary calculations published in Ref. 8. In
this earlier work, the metal muffin-tin radii have
been fixed at the much smaller value of 0.35. Ow-

ing to the smaller metal muffin-tin radii the varia-
tions of the potentials outside the muffin-tin
spheres have been larger in those former calcula-
tions than in the present ones.

The comparison of our results to the augmented-
plane-wave (APW) band-structure work for LaB6
of Ref. 9, where similar values for the muffin-tin
radii been used, shows general agreement. The
non-self-consistent band-structure calculations of
Ref. 10, which go beyond the muffin-tin approxi-
mation, differ in important respects from both the
APW results and our findings. The narrow His
peak, for example, is missing there and the total
DOS value at eF (3.35 states per Ry spin unit cell)
is below the value compatible with experiment. In
the case of YB6 no self-consistent band-structure
calculations are known to us.

Comparing our results to experiment, we can
state the following: they are compatible with the
x-ray-photoemission-spectroscopy (XPS) measure-
inents for LaB6 (Refs. 11 and 12) and YB6.' The
evaluation of transition probabilities for brems-

strahlung processes with the use of our cluster data
leads to good agreement with the experimental re-
sults. ' Extraction of the DOS at the Fermi ener-

gy from specific-heat experiments is difficult be-
cause the numbers given in literature scatter by al-
most a factor of 2. In addition, due to the pres-
ence of low-frequency phonon modes, the separa-
tion between phononic and electronic contributions
leads to further uncertainties. To our knowledge
there are three experiments for LaB6.' ' If we
take the value extracted in Ref. 15 from experi-
ments and correct for the mass-enhancement factor
with our calculated k value of 0.33, wc end up
with 10.28 states per Ry spin unit cell for the bare
DOS compared to a value of 10.97 obtained with
our cluster approach (the other authors get lower
values). A similar analysis of the experimental
data for YBs (Ref. 17) corrected with our A, =
0.48 leads to 5.5 states per Ry spin unit cell, while
our calculated number is 8.87.

We used our calculated phonon spectra to esti-
mate the error made by assuming a T law when
separating off the phonon contributions and came
to the conclusion that this may lead to an underes-
timation of the DOS value of more than 50%%uo in
both substances.

The values of the electronic quantities needed
for an evaluation of the Eliashberg function in the
Gaspari-Gyorffy approximation are given in Table
I. The numbers for YB6 and La86 are comparable.
The scattering power" of YB6 is slightly higher
than that of LaB6. For both metal and boron
atoms, p-d scattering dominates. Of course, the
small values of sin52 for the metal atoms are
caused by the fact that the phase shifts are evaluat-
ed at the boundaries of large muffin-tin spheres,
and one could argue whether it is reasonable to use
the rigid-muffin-tin approximation for the

TABLE I. Phase shifts 6&, partial-density-of-states ratios n &/n ~' ', and scattering powers g for I.aB6 and YB6', these
quantities are needed in order to calculate the Eliashberg function in the local approximation.

5p no/no' n~/nI ' n2/n'2 ' n3/n3 ' g(eV/A)

LaB6
eF ——1.003 Ry
n(eF) = 10.86

(states per Ry spin unit cell)

La

B —2.70 0.89 0.02

0.92 —1.39 0.078 —0.024 0.11

0.17

0.35

0.40

0.36

1.38

1.06 0.255

0.594

YB6
eF = 1.061 Ry

n(eF) = 8.87
(states per Ry spin unit cell)

Y —2.02

B —2.77

1.89 3.15

0.85 0.02

—0.17 0.17

0.23

0.28

0.41

0.42

1.29

1.19 0.328

0.709
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electron-phonon coupling matrix elements at these
sites. However, the main contributions to the
Eliashberg functions a F(co) come from the boron
sites, and this uncertainty is not so important in
connection with the problems we are mainly treat-
ing in this paper. As we shall discuss in Sec. IV, it
is essential to go beyond the local Gaspari-
Gyorffy' approximation. Therefore, in addition,
we need matrix elements of the imaginary part of
the scattering path operator at the Fermi-energy
nondiagonal in both the sites and the angular
momentum variables. Our use of scattering theory
provides us with all of these quantities in a direct
manner.

In order to work with the least possible number
of data, the matrix elements which we use are
those between the shell-symmetrized states defined
in Ref. 5. Single-site angular-momentum eigen-

states for atoms belonging to the same sort and
having equal distances from the point center of the
cluster are linearly combined to form basis states
of the irreducible representations of the crystal-
point group. The quantum numbers

~

Mvsa. )
identifying these states have the following mean-

ings: M is the label of the irreducible representa-
tion, v is the label of the basis state, s is the label
of the atoms contributing to

~

Mvs(~}, and )~ is the
label of a state with the aforementioned quantum
numbers.

The single-site states combined to a symmetrized
state

~

Mvss. ) all belong to the same angular
momentum. Because the scattering matrix ele-

ments are diagonal in quantum numbers v,v' and
independent of v, we write them in the following
manner:

IIIIT„„(Ef )~EF
Tss, s'K'(~F) =

( sIn~P(M s' K')sIn~!'(M s' K') )

For an atom at the symmetry-group-point center,
the elements of T diagonal in the s,~ indices are

just the ratios of the local DOS intoduced in Ref.
18. The matrix elements of T with respect to the
symmetrized states derived from single-site p and d
states at the boron atoms of one octahedron are
displayed in Table II for YB6. We see that the
matrix elements of states belonging to the T2„rep-
resentation (M=6) predominate. This is in accor-
dance with the features of the DOS near the Fermi
energy. Their contribution to the space-dependent
DOS at ez, given by the relation

n(r;eF) = ——Img(r, r;EF),
7T

is shown in Fig. 3. Here Img is the imaginary part
of the one-particle Green's function. It is large in
the range of the boron octahedra. However, a
binding DOS between neighboring octahedra also
exists.

III. THE PHONON MODES

The cluster structure of the hexaborides leads to
very different vibrational characteristics for the 21
phonon branches. We obtained their classification

by constructing the symmetry-adapted polarization
vectors at the I point. The Oi, -group projection
operators have been applied to the Cartesian com-
ponents of the displacement vectors for this pur-
pose. This procedure is analogous to that em-

ployed in the symmetrized version of the electronic
structure calculations. The result of this analysis
is displayed in Fig. 4. The polarization vectors are
given together with the symbols for the irreducible
representation to which the corresponding modes
belong. Considering the boron atoms, the I -point
vibrations may be separated into two classes: the
first is associated with deformations of the octahe-
dra, while in the second the octahedra move unde-
formed. It is the latter one which is expected to
contain the low-frequency vibrations: the
threefold-degenerate torsional mode (T(s) and two
threefold-degenerate translational ( T(„) modes.

The T&„modes of the boron sublattice may be
combined with the T~„modes of the metal sublat-

tice to lead to three acoustic branches on the one
hand, and to three optical branches on the other.
Provided the coupling to the electrons is sufficient-

ly strong, these modes should be particularly im-

portant for superconductivity due to their low fre-
quencies. The deformation modes should occur at
substantially higher frequencies on account of the
strong binding between the atoms of one oc-
tahedron. The breathing mode (A (s) and Eg mode
connected with particularly large changes of
intraoctahedron-bonding lengths and angles should
lie at the top of the frequency scale. That is all we

can say from looking at the structure. For a de-
tailed positioning of the peaks in the phonon DOS
and the calculation of the dispersion of the dif-
ferent branches, we have to resort to a phonon
model using parameters fitted to experiment. The
experimental information is rather incomplete
however. For LaB6, it is better than for YB6.
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FIG. 5. Time-of-flight spectra of neutron scattering
experiments in the energy range of the lowest phonon
DOS peaks.

Raman-scattering experiments' ' give the fre-
quencies of the His, Es, and T2s modes at the I
point for LaB6. In the case of YB6 only the fre-

quency of the Tis mode is known from this type of
experiment.

One of us (FG) performed inelastic-neutron-
seattering experiments on polycrystal&ine La86 and

YB6 in the energy-loss mode using an incoming en-

ergy E0 of 64.3 meV at the research reactor FR2
of the Kernforschungszentrum Karlsruhe. The re-

sults for the lowest-frequency mode as registered in

the time-of-flight channels are shown in Fig. 5.
The background has been substracted. The posi-
tion of the peak corresponds to 13 meV in the case
of La86 and 10 rneV in the ease of YB6. Due to
intensity problems connected with the high-
neutron-absorption cross section of the ' B atoms,
no other modes could be measured in this first at-
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FIG. 4. Polarization vectors and symmetry
the phonons at the I point.
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FIG. 3. Spatial density of states distribution at the
Fermi energy around the boron atoms for YB6. The
units are: states per [spin Ry (a.u. )3]. The symbols

~

indi-

cate the position of the boron atoms. The increment be-

tween two adjacent lines is 0.03.

tempt. Further experiments were then carried out
with Eo ——5 meV:(FR2 —Karlsruhe) and with
Eo = 4.88 meV (HFR —Grenoble) for LaB6 and
CeB6 using "B-enriched boron compounds. A
comparison between the scattering intensities of the
lowest modes in LaB6 and Ce86, which appear for
the same energy transfer since La and Ce have
practically equal atomic masses, leads us to the
conclusion that the lowest frequency peak is due to
the acoustic translational T&„and not to the tor-
sional Tig mode, because the difference in the
scattering intensities can only be understood if one
takes into account that the scattering cross section
of Ce is much smaller than that of La (a detailed
description of these results will be given in Ref.
23). From these experiments we conclude that
electronic effects push the frequencies of the trans-
lational modes in YB6 below those of LaB6 in spite
of the fact that the Y atom has a smaller mass
than La.

In view of the limited experimental information
only a simple phonon model is justified (central
forces between nearest-neighbor and next-nearest-
neighbor boron atoms together with a metal
nearest-neighbor boron-atom central force). In the
case of La86, a fit of these involved three parame-
ters to the highest Raman frequencies and the
acoustic translational-mode peak was unable to
place the torsional mode at the right position. The
introduction of further central forces also failed to
achieve this and to simultaneously maintain the
weak dispersion of the torsional mode. Iristead, it
proved necessary to introduce a Keating force
into the model derived from a potential which
depends on the position of three atoms. By far,
the best fit to experiment has been achieved by
choosing the boron atoms with the labels 1,2,3 in
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Fig. 1 as partners for these interactions. Figure 6
shows the resulting phonon DOS for LaB6 together
with the generalized DOS obtained from the data
of the aforementioned experiment. We find satis-
fying agreement between experiment and theory.
The four characteristic vibrations involving the un-
derformed octahedron, i.e, (i) the translation mode
B6-La at 13 meV, (ii) the rotation mode Bs-B6 at
about 38 meV, and (iii) the optical modes B6-La at
24 meV and around 55 meV are all nicely found in
the measured spectrum.

Octahedron deformation modes which for the
experimental curve are smeared out due to lack of
resolution, have been found between 60 and 120
rneV. At higher frequencies the experiment runs
out Of intensity. The calculated frequencies in this
range are about 8%%uo too low. Figure 7 shows the
phonon dispersion along some symmetry directions
in the Brillouin zone. The results encouraged us to
apply this model also to YB6. For this compound,
no experimental information on Raman scattering
was available. So, we extrapolated the data for

other trivalent transition metals as a function of
lattice constant to the case of YB6. Together with
the frequency of the acoustic translational mode
the experimental information was then sufficient to
fit the parameters of our phonon model. The pho-
non DOS curve of YB6 is shown in Fig. 9(a). The
frequency of the torsional mode for YB6 is now
predicted to lie at 30 meV. The nondeformation
modes of YB6 are all below those of La86, a find-
ing which is important if we compare the super-
conducting properties of both substances to each
other.

IV. THE ELIASHBERG FUNCTION

The results of the preceding chapters enable us
to calculate the Eliashberg functions a F(co) treat-
ing electron-phonon coupling in the rigid-muffin-
tin approximation (called RMTA hereafter). It
may be written in the following way:

a F(ro) =+[a F(co ) ]Il
—— g Id q d p d p 5(co r0 x) /[co—(M~M~') '~ pp']

2m. n ( e~ ) l ~' x

XRe[ exP[iq(R& —Rl')](el-
& P)(e~- x P ') [

dVl(p) dVl (p'),
&L&mg(PJ&P J l&I" ]

dp ap' (3)

Here, g is the retarded Green's function, VJ is the
muffin-tin potential of site j, and the coordinate p
(P ) is counted from site j (j') at position Rj (RJ').
coqp is the frequency and e-& the amplitude of a

phonon with wave vector q belonging to the
branch A.. The sum over j is restricted to the
atoms of one unit cell, whereas the sum over j' is
unrestricted.

Omitting all terms with j+j' we obtain a F(co)
in the local rigid-muffin-tin approximation'
(LRMTA). As we shall see below, neglecting those

off diagonal terms is a rather poor approximation
in the case of the cluster compounds we are con-
sidering in this paper. Instead, it proved essential
to work with the full Eq. (3). We found it con-
venient to express the Green's function occurring
in Eq. (3) by the matrix elements of the scattering
path operator between the shell-symmetrized states
as described in Sec. II. The electronic contribu-
tions of Eq. (3) may then be separated into a part
which depends on the crystal structure on the one
hand and the matrix elements on the other. We
obtain

2 = 1 XX X XJdq, ',; ~s. s.'. (q ~)~s.s''(eF)T-, s' (~F)
2n n(eF), , M M, x (M,M, )' c0

K, K
K),K)

&& [»n(&l (M ) ~l(M ))~l, l +I+»n(&l ~l )~i, , 1+1]

(4)
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s,s' are the shell indices. The meaning of the la-
bels occurring in Eq. (4) has been explained in Sec.
II. The quantity 8 contains the structural elec-
tronic quantities described in Ref. 5 together with
the phonon-polarization vectors. According to
Secs. II and III for q ~o, 8 is determined by sym-
metry alone.

Comparing the values for the elements of 8 ob-
tained by an exact calculation with those of the lo-

r r
0 20 40 60 80 $0 &20 40

u) (meV)

FIG. 6. Comparison between the measured (b) and

calculated (a) phonon DOS of La86.

cal approximation (la) in Table IV we see large
differences. Some of these elements are even zero
in the la. If the corresponding T happens to be
large, the local approach fails. We calculated
a F(co) for the different modes separately. The re-
sults for LaB6 are shown in Fig. 8 and for YB6 in
Fig. 9 for both the full calculation and within la.
The function a (co) in Figs. 8 and 9 is defined as
the ratio of a F(co) and F(co) may be interpreted
as the q- and branch-averaged electron-phonon
coupling at ~. For both compounds the curves are
looking quite similar. The most striking feature is
that the nonlocal effects lead to a strong depression
of the electron coupling to the nondeformational
low-frequency modes over their whole energy
range. The overall coupling to the deformation
modes is similar to the local result with the excep-
tion of the T~g mode. The coupling to this mode
is largely enhanced as compared to the local result.
Due to the high frequency of this mode, however,
it is only of minor importance for superconductivi-
ty. The contributions to the McMillan parameters
A, are listed in Table III. The numbers for the to-
tal A, 's again stress the necessity for a calculation
to go beyond the la.

It is instructive to trace back the origin of the
large nonlocal corrections. Qur calculations have
shown that the main nonlocal contributions come
from the atoms of the same octahedron. As al-

ready stated in Sec. II, the matrix elements of T
belonging to the T2„(M=6) representation and
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FIG. 7. Phonon dispersion for LaB6 along selected symmetry directions as obtained by our model.
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FIG. 8. Frequency-dependent coupling function o. (co)
for La86,' solid line, nonlocal calculation; dashed line, lo-
cal approximation.

leading to the charge distribution shown in Fig. 3
dominate. In Table IV we list the elements of B
for these quantum numbers at q =0. Combining
them with the corresponding T-matrix elements of
Table II and performing the sums of Eq. (3), we
observe an almost perfect cancellation between the
individual terms. The la misses this point because
it puts some elements of 8 equal to zero. For the

T2g phonon mode the values of the 8 coefficients
lead to constructive interference and therefore
muse the large enhancement of a over its value in
la.

We calculated the transition temperatures of
both compounds by solving the Eliashberg equa-
tion with our calculated a F(co) numerically. We
found T, = 0.78 K for LaB6 and T, = 3.85 K
for YB6. In la we got 9.81 K for LaB6 and 23 K
for YB6, results which underline the necessity of
nonlocal corrections.

V. SUMMARY AND DISCUSSION

We are now in a position to discuss the ques-
tions raised in Sec. I in the spirit of our calcula-

)N-
(D

E
N

O
C
O

Q

0 20 40 60 80 100 120 140 160

w (meV}

FIG. 9. (a) Phonon density of states for YB6 as ob-
tained by our model. (b) Frequency-dependent coupling
function e (co) for YB6,' solid line, nonlocal calculation;
dashed line, local approximation.

tions. The boron atoms turned out to be rather
strong p-d scatterers and could therefore lead to
good superconducting properties in view of their
high density and of the 1ow frequencies of some of
their phonon modes. The detailed calculations of
the last section, however, show that large nonlocal
contributions are very effective in depressing the
single-site scattering values and suppressing the
transition temperatures. This is different from the
behavior of noncluster compounds where the sign
of nonlocal corrections turns out to be strongly
mode- and q-vector dependent. For transition me-

TABLE III. Contributions of the individual phonon modes to the McMillan parameter A, .

Mode I.aB6 nonlocal La86 local YB6 nonlocal YB6 local

T l „(translational)
TI„(optical)
Tig (rotational)

2g

2g

Tlu

Eg
Alg
Total k

0.065
0.040
0.053
0.053
0.081
0.027
0.009
0.005
0.33

0.145
0.193
0.198
0.054
0.036
0.025
0.010
0.004
0.66

0.094
0.058
0.121
0.059
0.100
0.034
0.010
0.006
0.48

0.236
0.234
0.395
0.069
0.042
0.032
0.011
0.004
1.02
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TABLE IV. Nonzero matrix elements 8, , for q = 0; the nonlocal matrix elements for the translational mode
SKK~& S ldll~vanish.

Translational mode, local

SKK
&

S KK]
111
133
0.0239

133
111
0.0239

133
155
0.0119

135
153
0.0119

153
135
0.0119

155
133
0.0119

Rotational mode, local Rotational mode, nonlocal

SKKi

S KK&

111
133
0.0239

133
111
0.0239

111
133
0.0477

113
131

—0.0477

131
113

—0.0477

133
111

0.0477

tais nonlocal effects lead also to a reduction of
a (co) on the average, while for some metal hy-
drides and the refractory coupounds the nonlocal
corrections have been found to be small. In
the cluster substances considered in the present
work, they are extremely large and one should be
aware of the posibility of a similar situation in oth-
er cluster substances too. From isotope-effect
measurements, Culetto and Pobell drew the con-
clusion that the coupling to the low-frequency
modes is also small in the molybdenum chal-
cogenides.

Their reasoning is that the d state at the
molybdenum octahedra which are mainly respon-
sible for superconductivity, are well localized with
little overlap to the neighboring octahedra. Unde-
formed motion of the octahedra should therefore
not change the energy contribution due to these d
states. As a consequence, the effective coupling to
the nondeformational modes should be small. In
our case, the overlap of the relevant states between
neighboring boron octahedra turned out to be non-
negligible, and as suggested by the behavior of the
quantities B, we consider the large reduction in the
electron-phonon coupling as a symmetry effect.
That is, one must consider the boron octahedra as
a unit and interference effects within this cluster
are important in determining the final electron-
phonon coupling.

Let us now return to the hypothesis that the
boron sublattice is mainly responsible for supercon-
ductivity. This hypothesis seemed to contradict
the observation that the T, 's of YB6 and LaB6 are
different in spite of their almost identical lattice
constants. This objection can be discarded by our
results. We found that the main contributions to
the McMillan parameters do really come from the
boron sublattice. Both compounds, however, turn
out to be weak-coupling superconductors.

Moderate differences in the A, values therefore lead
to large differences in the T, 's. Table I and Figs.
8 and 9(b) show that the electron-phonon coupling
is somewhat larger in YB6 and in addition, as men-
tioned in Sec. III, the non-deformational modes of
YB6 are lower in accordance with the differences
in the electron-phonon coupling. In view of the
smallness of the A, 's, we consider our T, calcula-
tions which clearly exhibit that YB6 is the better
superconductor as reasonable. A slightly higher A,

value would be sufficient to bring the T, of YB6 to
the experimental value.

Analogies to the molybdenum chalcogenides can
be pointed out in view of the comparable nature of
their phonon modes and the cluster entities they
share in common and which are mainly responsible
for superconductivity. Of course, the d fscatter--
ing of the molybdenum atoms in the Chevrel
phases is more favorable for superconductivity
than the p-d scattering of the boron atoms in the
hexaborides. So, as a difference the Chevrel phases
seem to be strong coupling superconductors.

However, similar to the hexaborides, they show
a strong reduction of the electron coupling to the
nondeformational phonon modes by nonlocal
scattering contributions. From our analysis it has
become clear that T, calculations based on approx-
irnate formulas like the McMillan formula and on
only a few data like the total DOS at ez and the
Debye frequency must fail. In such a crude ap-
proach it is especially unclear which frequency
average has to be inserted as a prefactor of the ex-
ponential in the McMillan formula. In fact, con-
siderations of this kind led to exaggerated expecta-
tions concerning the transition temperatures of the
hexaborides. ' Finally, we should like to remark
that it would be highly desirable to obtain experi-
mental information about the Eliashberg function
from tunneling measurements.
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