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Consideration of the ptoximity effect, electron-phonon coupling, and size-quantization
results in peculiar behavior of the critical temperature T, of a contact containing super-
conducting and semimetal (or semiconductor) thin films. The method of thermodynamic
Green’s functions is applied. The dependence of T, on the thickness of the barrier is dis-
cussed. Size quantization leads to additional oscillations of T, and to the possibility of
observing peculiar charge-density waves. The experimental data are discussed.

I. INTRODUCTION

It is well known that systems containing a con-
tact of superconducting and normal films possess
very interesting physical properties. In this paper
we consider the situation when the normal film is
a semimetal (SM) or semiconductor (SC). SM and
SC films are characterized by a number of pecu-
liarities which allow one to observe experimentally
some interesting phenomena.

Systems containing thin superconducting and
nonmetallic films have been studied by several ex-
perimental groups.!~* The dependence of the criti-
cal temperature T, on the thickness of the nonmet-
allic film was observed. Usually, this dependence
is nonmonotonic. The properties of supercon-
ductor-semimetal (S-SM) and superconductor-
semiconductor (S-SC) systems depend on a number
of different factors. That is why the values of dif-
ferent parameters and, especially, T, can vary no-
ticeably. We consider here the influence of several
factors.

(1) The proximity effect. The Cooper pairs can
move into the nonmetallic film in the presence of a
good electric contact, and this results in the ap-
pearance of an induced superconducting state of
the SM or SC film. Back flow of electrons also
exists.

(2) Size quantization (SQ) of the transverse
motion. The phenomenon is characterized by os-
cillations of the density of states. The best condi-
tions for this effect are realized in thin semimetal
and semiconductor films (see below).
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(3) The change of the phonon spectrum caused
by nonmetallic covering. This change also affects
the critical temperature. Note that the peculiarities
of the dispersion relation lead to the appearance of
charge-density waves.

We take into account all these factors. We focus
on the problem of calculation of T,. The effect of
the proximity and the size quantization on other
properties of the system will be examined in the
framework of the phonon model elsewhere.

The plan of the present paper is as follows. Sec-
tion IT addresses the problem of obtaining the main
equation. We use the method of thermodynamic
Green’s functions and take into account the
electron-phonon interaction directly. We consider
the effect of covering on T, in Sec. III. The prox-
imity effect, size quantization, and specific
charge-density waves are discussed in Secs. IV and
V. In Sec. VI we examine the case when the effec-
tive constants of both films are not equal to zero.
Note that the results of Secs. II, IV, and VI can
also be applied to the situation when both films are
metallic.

II. MAIN EQUATIONS

Consider a system containing superconducting
(a) and normal () thin films. We shall consider
in more detail (see below, Sec. V) the case when a
B film is a semimetal (or a semiconductor).

Denote by T¢ the critical temperature of the isolat-
ed superconducting film and suppose that the
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thicknesses L, and L g satisfy the conditions

L, <<§, Lg<<§, where £ is the coherence length.
Moreover, suppose that the metallic film is “dirty”
in the Anderson sense.’ Size quantization has been
observed experimentally by investigation of thin
films in the region 10 A <Lﬁ <10° A (Refs. 6—9)
(see, e.g., the excellent review in Ref. 10). Hence,
the mentioned conditions are perfectly realistic.

Under these conditions we can use the McMillan
model of the proximity effect.!! The electron-
phonon interaction was included in the McMillan
model in Ref. 12 for the purpose of calculating the
energy gap function.

To calculate the critical temperature of the S-
SM or S-SC system it is very convenient to use the
method of thermodynamic Green’s functions (see,
e.g., Refs. 13 and 14). Let us introduce the self-
energy parts =5 and s describing the pairing in
the “a” and “B” films. The equations for the
self-energy parts are seen in Fig. 1, or, in analytical
form:
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electron-phonon interaction, and F* and F# are
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Here £, is the energy of an ordinary electron re-
ferred to the Fermi level, Z,.g is the renormaliza-
tion function, and T is the tunneling matrix ele-
ment.'"® The Coulomb pseudopotential . * can be
included in the usual way.

Equations (1) —(3) are written for the case when
gs=0. Hence, the existence of a pair condensate
in the B film is due to the proximity effect only.
The case gg=~0 is considered below (see Sec. VI).

The electron-phonon interaction is taken into ac-
count directly. We restrict ourselves to the con-
sideration of the phonon model with weak cou-
pling (see, e.g., Refs. 19 and 20). The considera-
tion of the strong coupling is straightforward and
will be given elsewhere.

The renormalization functions are connected (in
the weak electron-phonon-coupling approximation)
with the proximity effect only, and they are equal
to (see Ref. 11)

Zy0,)=14+T%/ |0, | @)
Zg(w,)=1+T%/ |0, | . (5)
Here

raé :‘n'TszVB R
rfe—gTv,v,,

(6)

where v, and vg are the densities of states (per unit
of volume). The quantity I'** can be written in
the form (see Ref. 11)

I =yp 0/2BLg (6"

where vg is the Fermi velocity, o is the barrier
penetration probability, and B is a function of the
ratio of the mean free path to the film thickness.

Our goal is to calculate T,. T, can be evaluated
from Egs. (1)—(4). If T=T,, we should put
32=0 and 3#=0 in the denominators of (4). We
introduce the function

Clon) 1, =[2x@n) 1,/ A=T/T)"?.

According to Egs. (1)—(4) we obtain
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The term Cpp(w,) is described by Eq. (3) and can
be written m the form
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We transformed to integration over frequencies
and introduced the function (see, e.g., Refs. 19 and
20)
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FIG. 1. The temperature self-energy parts.

g(w)—izi—s’q . (10)
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where § is the Frohlich parameter, g is the phonon
momentum, s is the velocity of sound, pr is the
Fermi momentum, ¥;(q)~ 1, and j is the order
number of the phonon branch.

The function g(w) can be written in the well-
known form?! g(w)=a*w)F (), where a*(w) de-
scribes the electron-phonon interaction. This func-
tion can be found from tunnel measurements.”
Based on Egs. (7) and (8), one can express C* in
terms of Cpy:

(14 Top/0,)(1+ T g/ 02,)
14+ (Copt+Tpe) /0y

Cll( wn ) = gh

(11)

a)Z

1= [ doggl)2eT
fcogwwz pEpI

—Typ f dog,

159

Using this expression and Eq. (9) we arrive at the
following equation:
1=27T 3, [ dwga(w)°2—w—2— !
@, >0 0"+, O
1+ Fﬁa/w,,
1+(F ,g+1"3a)/co,, | T,
(12)

We took advantage of the weak-coupling ap-
proximation. If one calculates T, in this approxi-
mation, one can neglect the term o, in the denom-
inator of the integrand in Egs. (3) and (9). As was
shown by the author in Ref. 19, this approxima-
tion is valid to within small corrections in the
coefficient before the exponent in the expression
describing T,. This approximation allows us to
neglect the dependence of C® on w, and we arrive
at Eq. (12).

Equation (12) allows us to calculate the critical
temperature. It can be rewritten in the form

1

o’
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The sums on the right-hand side of Eq. (13) can be evaluated and we obtain
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where I'=T, +F . We neglect the small term
{—7mol /[2(w +F2)]} in the brackets in Eq. (16);
y~1.78.

We see that the value of T, depends on the
function g,(w) and on the term I, describing the
proximity effect. According to Egs. (6) and (16)

(14)

(15)

+ n , (16)
0*+T? 0?4+ T? oT,

r

the term I, depends on the density of states 2.
We shall consider (see below, Sec. VI) the case
when S film is a semimetal or semiconductor. The
interesting features of S-SM and S-SC systems are
connected with the peculiarities of the density of
states in these films. It is worth noting that the
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function g,(w) differs from the function g(w)
describing the phonon spectrum and the electron-
phonon interaction in an isolated metallic film.
We consider thin metallic films and they are very
sensitive to the covering due to the change of
golw).

The function g, () can be written in the form

gal®)=g%w)+g(w), a”n

c

where
re= [ galo)do . (20)

Equations (14) —(16) [or Eq. (19)] are the basic
equations of the theory. The first and second
terms on the right-hand side of Eq.(19) describe
the influence of different factors on 7.

III. THE CHANGE OF THE PHONON
SPECTRUM

As is well known, covering results in a distortion
of the initial phonon spectrum, in the appearance
of new modes, and so on. It is particularly impor-
tant in the investigation of thin superconducting
films. The influence of covering can be considered
by analogy with the author’s paper?’ on the change
in T, in superconductors which contain complex
molecules.

The function g,(w) can be written in the form
Eq. (17). Suppose g}’ > 0; that is, the covering
leads to an additional attraction between electrons.
The critical temperature T of the isolated a film
satisfies Eq. (18). Denote by AT, =T, — T the
change of the critical temperature caused by the
term g’ (). The quantity T, , which is equal to
the value of the critical temperature in the absence
of the proximity effect, satisfies the equation [see
Egs. (14) and (15)]

1= [ dog,l)n 2oy
o

- @1

According to Eq. (18) and (21) we obtain

T, . (n 20y Tap,
lnFi:Ka fdcoga (w)lnﬂTg——r—K‘, fdwga(co)

where g’ (@) is due to the influence of the cover-
ing. We denote by T;'=T,.(Lg=0) the critical
temperature of an isolated « film. T7 is satisfied
by the equation

20y

a
4
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Using (18), we can reduce Eq. (14) to the form
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where ()"’ denotes the mean value in the sense
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and A, is defined by Eq. (20). According to Eq.
(22) we obtain

T, =TH20) Vy/m T e . (23)
Usually A << A,. We find then

AT. A (1

¢ _ __1]n2_<_w_>._7/ . (24)

If the function g} (w) corresponds to the appear-
ance of an additional peak at w~w;, then
(0)V~w, and we obtain

ATC A’l 2(017/
~—1In

~ . (25)

The change of T, can be noticeable because of
the presence of large logarithmic factors. If, for
example, A;/A=0.1 and TS /w,~0.1, then
AT,/T&~25%. Evenif A{/A=~10"% and
T?/w,~1072 the increase of T, can reach several
percent. Equations (24) and (25) relate AT, to
measurable quantities. The quantities A,, A can
be obtained from tunnel measurements. If the cov-
ering is characterized by the existence of soft
modes, this leads to an increase of A; and T,. Size
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quantization results in the appearance of an addi-
tional softening mechanism (see below, Sec. V).

The increase of T, as a function of Lg relative
to T is observed often experimentally in the re-
gion of small Lg~a (Refs. 1—4) (a is atomic dis-
tance) by the investigation of the systems T1-Ge,'
Mo-C, Te-C, V-C,? Al-SiO,’ Pb-Ge, and Pb-Si.*
This increase is due to the considered mechanism’s
role in the region of small Lg. Note that this in-
crease of T, cannot be coupled with the term I, in
|

r
27T,

Cap 1 1
== fdwg(m)[ b5+

Here T, is the solution of Eq. (21) and corresponds
to the value of T, in the absence of the proximity
effect. It is worth noting that, generally speaking,
T.#TZ (see Sec. III). The equality T, =T is
valid if it is possible to neglect the change of the
phonon spectrum.

Consider the case I' >> T,.. Using Eq. (26) and
the asymptotic expression of the digamma function
[¢¥(z)~Inz], we obtain

1 r 1 2Ty
— —¢ | = |~In—~.
Vit Y 2 1P @n
Hence, we arrive at the following equation:
T, r
ot — ey ey (28)
T, r 7T,

where the mean value is to be understood in the
sense

1 (u(w)) u(w)
n—mm=

- ?%., [ dogat@m* 29)
and
w(@)=T188 | 5=—L (30)
’ w*+T?
After simple calculations we finally obtain
Tt |7k ' , (31)
2Qu)y
where
P=Tap/Tpa; T=Lap+Tpa=TLpall+p),
(32)

and T, and (u) are defined by Eqs. (21) and (29).
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Eq. (14) because the proximity effect tends to di-
minish the value of T, (see below).
IV. PROXIMITY EFFECT
A. Critical temperature

Let us consider again the basic Eqgs. (14)—(16).
Equation (14) can be rewritten in the form

»? |

+
0*+T?  *4T?

20y
aT, |’

In (26)

1
2

I—w

Equation (31) is valid for an arbitrary ratio of ()
and .

According to Eq. (6) we obtain
p=Wg/ve)(Lg/L,) . (32)

Note that if films “a” and “B” are ordinary
metallic films, then (in the effective-mass approxi-

mation)

Va=mapR/m*, VB—:meFB/ﬂ'Z , (33)
and hence

p=(mgpE/mapf)(Lg/Ly) . (34)

Here m,, mg are the effective masses and pf, pE
are the Fermi momenta. If film “B” is a semime-
tal or degenerate semiconductor and is not size
quantizing, Egs. (31)—(34) are also valid. In this
connection p}é ~n173, where n is the electron con-
centration. Then p and T, can vary as functions
of n. The special case of size quantization will be

considered below (Sec. V).
It is very convenient to present the dependence

Eq. (30) in the form

8
u=Tl -‘fl (35)
or in the following dimensionless form:
y =11+t (36)

where y =u /T'; t =w/T". The function y (z) is

shown in Fig. 2. We see that if ¢ is small

(w0 <<T), y~t and u~w. In the opposite case of

large t (w >>T'), the quantity y—1 and u~T".
Consider Eq. (31) and examine the limiting

cases. Equation (29) can be written in the form
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Suppose that I" << (@), or, more exactly, K, << 1.
Then K{~1 and, according to Eq. (37), {u )~T.
Then we arrive at the following equation:

P

T,
=, (38)

2Ty
where p is defined by Eq. (32). If the change of

the phonon spectrum is small, then T, =T/ and
we obtain

T.=T,

p
7Tg

2Ty

T,=T¢ (38

This expression was obtained by McMillan.!! If
T is large (' >> (), or, more precisely, K; << 1),
then K,~1 and (u )~(w). Naturally, these esti-
mates are consistent with the estimates of the func-
tion y () (see above). Then we arrive at the expres-
sion (if T, =T¢) which corresponds to Cooper’s
case! 24

P
nTd

2{w)y

In the general case one should use Egs. (28)—(31)
which are valid for an arbitrary relation between T
and ().

If ' <T,, (@) >>T,, Eq. (31) is not applicable.
According to Eq. (26), we obtain in this case

T,=T%

(39)

In(T,/T,)=—F(p,L'/T,), (40)
where
T T T T T

.25 N
L -
> 0751 .
0.5 1
0.025/ - 7
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FIG. 2. Universal function y(¢); y=u/T', t =w/T.
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r
27T,

F(p,T/T,)=(Tqp/T) |t -

1
2+

pP= Faﬁ/rﬁa .

The function F does not depend on the phonon
spectrum directly. Equation (40) was considered in
Ref. 11 (in the case when T, =T7). Note that if

p << 1, we obtain

T,=T.exp[—F(p,T/T.)] . 1)

According to Eq. (31), T, strongly depends on
the quantity (u ). The value of {(u) [see Eqgs. (29)
and (30)] is related to I and to the function g (w),
or, roughly speaking, the value of {(u ) depends on
the relation between I and {(w). T and (@) can
be varied noticeably and this results in a corre-
sponding change of T..

B. Dependence T.(d)

The peculiar behavior of (u ) (see Fig. 2) allows
us to propose the following experiment. The
parameter I' =T 5+ I'g, contains [see Eq. (6)] the
tunneling matrix element and its value depends on
the thickness of the barrier, e.g., on the thickness
of the oxide, d. One should choose a superconduc
tor with a small value of {®), that is, with a low
phonon mode. A realistic situation is that of
I'>> () in the region of small d. The critical
temperature is described by Eq. (31) with
(u)~(w). Let the thickness “d” increase gradu-
ally and consider the dependence T,(d). Gradual
increase of d means the gradual decrease of the
coupling. An increase in “d” results in a decrease
in . The critical temperature does not change no-
ticeably until the inequality I' >> (w) holds. Then
we come to the region d > d,, the quantity (u )~
(see Fig. 2), and the subsequent increase of d and
the corresponding decrease of I" result, according
to Eq. (31), in the dependence T,(d) 454, Ac-

cording to Eq. (31), T, increases with an increase
of d in the region d >d.. The increase of T,(d)
described by Eq. (31) continues until I >> T..
When I' < T,, Eq. (31) is not applicable, but then
we can use Egs. (40) and (41). It is easy to see that
if I’ << T, the critical temperature tends to T, (f
it is possible to neglect the term g} which is due
to the oxide, then T, =T¢). Hence, an increase in
d gradually leads to the value T,=T,, and this
equality is natural for large values of d.

Hence, the change of T, is described by the fol-
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lowing. If d <d,, the critical temperature remains
almost constant. An increase in d in the region

d >d, is accompanied by a noticeable increase of
T, up to T,. We have seen that I'(d,)~(w). If
g(®) and the quantities v* and v# are known, it is
possible to calculate {(w) and I'(d.). Then the
dependence T.(Lg) (if d =d,) can be verified ex-
perimentally.

C. Maximum T,

We see from Egs. (26) and (31) that the proximi-
ty effect results in a decrease of T,. The depen-
dence T.(Lg), which is caused by the proximity ef-
fect, can be nonmonotonic (see below), but the in-
equality T, < T, always holds. Hence, the contri-
butions of the terms I; (if g’ >0) and I, to a
change of T, [see Eq. (14)] have opposite signs. If
Lg is small (Lg~a, a is atomic distance), the con-
tribution of I, is small, because (I'yg/T)~Lg/L,.
The term I; also contains the small parameter
A1/A% [see Eq. (24)], but a realistic situation is
when the contribution of I; dominates. Then the
covering results in an increase of T, relative to T
(in the region of Lg~a). If Lg>>a, the term I,
becomes more important. Indeed, the range of the
effect of the phonons of the B film on the electrons
of the a film is limited by the atomic distance. On
the other hand, the term I, increases as Lg in-
creases. Hence the quantity 9T, /3Lg »

ﬂ))ﬂ

depends mainly on I,, and T, decreases with the

increase of L g. Therefore we come to the conclu-
sion that T, should have a maximum T, ~7T, in
the region Lg~a.

A maximum of T, in the region of small Lg
was observed experimentally in Refs. 1—4 (see Fig.
3). Mikheeva et al.? have developed a very precise
method of determination of the thickness of films.
They observe Tcmax in the Mo-C, Te-C, and V-C

systems when L,~5 A. The system Al-SiO was
considered by Sixl.} The dependence of T, on the
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thickness of the SiO goating is characterized by
T, . ,when Lgo=~3 A. The same result was ob-

tained by Orlov ef al. by the investigation of Pb-
Ge and Pb-Si systems.* The first observation of
T,  was made by Naugle'' for the system TI-Ge

in the region of small L. ~10 A. Note that the
investigations®>~* are characterized by a more pre-
cise determination of the thickness of the films. It
is worth noting that the existence of this maximum
T, cannot be explained by the proximity effect be-
cause the proximity effect in the absence of a
change of the phonon spectrum results in the ine-
quality T, < T, which contradicts the experimen-
tal data.!~*

The appearance of T, . can be explained by the

combination of the change of the phonon spectrum
(term I,) and the proximity effect (term I,). Note
that the absence of T, in the Sn-Ge (Ref. 1) and

Pb-C (Ref. 4) systems is connected with the small
value of the function g};“.

According to our explanation, an increase of L,
does not affect noticeably the position of the max-
imum, but it does affect the value of T .- This

conclusion is consistent with the experimental
data.>~* If B film is not size-quantizing, the criti-
cal temperature is described by Eq. (31) or Eq. (38)
(if T <<{w); T>>T,). In this case p is described
by Eq. (34) and depends significantly on Lg. The
quantity I" depends on Lg also [see Egs. (6) and
(32)], but the dependence p(Lg) is more essential.
The dependence of p on Lg leads to a monotonic
decrease of T, with an increasing Lg. If Bis a
size-quantizing film, the situation changes drasti-
cally (see Sec. V).

V. SIZE QUANTIZATION
A. Density of states

According to Egs. (31) and (32), T, depends on
the function I' 5, which [see Eq. (6)] is related

@ T (b) ’ (c) roT
6 5 3] 3.2 — 2 9l , -
X s5H 4 =2 3l 4 o0 .
(3] «w
T el 14 30 -0l -
3 — 2.9 -0.2 —
2 1 | L ] ! ] 28 -0.3 | h Ry |
0 10 20 30 0 40 60 0 20 40 60
Lg(R) Lg (R) LB(K)

FIG. 3. Functional dependence T (Lg) for (a) 1—Al-SiO (Ref. 3), L,=21 A;2—Mo-C (Ref. 2), L,=60 A; 3—Te-
diamond (Ref. 2), L,=50 A, (b) Al-Si (Ref. 3), L,=70 A, () 1 —Pb-Ge (Ref. 4), 2—Pb-Si (Ref. 4), 8T, =T, —TZ.



164 VLADIMIR Z. KRESIN 25

directly to the density of the states of the nonme-
tallic film. Consider now a realistic situation when
the semimetal (or semiconductor) film is size-
quantizing. As is well-known (see, e.g., review
size quantiziation (SQ) is very sensitive to the
structure of the film and to the quality of its sur-
face. The best conditions for SQ are realized in a
semimetal film where a number of factors (such as
low electron density and a small value of the trans-
verse effective mass) cause the de Broglie
wavelength to greatly exceed the atomic distance; it
is this which makes the surface, in fact, specular.

SQ is observed experimentally by the investiga-
tion of films of Bi,% Sb,® and InSb.® The observa-
tion of this effect in thin metallic films is also pos-
sible (see, e.g., Refs. 25 and 26), but is considerably
more complicated. Consider a thin semimetal (or
semiconductor) film. SQ results in a situation
where the energy e(i,n) is determined by the lon-
gitudinal two-dimensional quasimomentum & and
by the transverse quantum number n. Instead of a
Fermi surface we have a group of two-dimensional
subbands. The density of states can be written in
the form (see, e.g., Ref. 10)

10)
)

vg= ZVIB ,
1
where
~l . . .
¢5=21——1’r"?r , Al=(ml,mi) 2. @)
B

The summation is taken over the filled sub-
bands; r is the number of two-dimensional valleys.
The dispersion relation has (in the effective-mass
approximation) the following form:

~ #
G(K‘,nl)=?2'm—l‘(Kx —Kx0)2

2m, = y0)2+€l '
If only one subband is filled, the density of states
is equal to

1 m

Vﬁz L—ﬁ‘ ﬁr . (43)

Indeed, if only one subband is filled, the number
of states in the region «, k+dk is equal to
4mkdk S /(2mH)* (S is the area of the film;
e=k?/2m). The density of states (per unit
volume) is equal to v=mL ~'/7#? (L is the thick-
ness of the film) and decreases with an increase of
L. If the film is characterized by several filled

subbands and by several valleys, we come to Eq.
(42).

The number of filled subbands v depends on the
electron concentration “n”. If n <L ~3, only the
lowest subband is filled (more exact conditions are
given below). For example, in Bi films only one
subband remains filled up to L ~5x 10> A. The
film, which remains a three-dimensional system in
coordinate space (L >>a) becomes a two-
dimensional system in momentum space, and this
results in peculiar behavior.

An increase of L leads to a decrease of the dis-
tance between transverse levels. When L becomes
equal to some value L., the next subband begins to
be filled, and this is accompanied by a jump of the
density of states. Hence, the density of states is an
oscillating function of L.!%2728

Oscillations of the density of states vg result, ac-
cording to Egs. (6), (31), (32), and (42), in a non-
monotonic dependence T.(Lg). The values Lg,
correspond to jumps of the density of states. They
depend on the dispersion relation. To estimate
their values we use a simple model, where the
longitudinal motion is described by the relation

e=k?/2/ , AéV=3a#/2m L} (44)

(the potential box or the quantization
k,=m#in/Lg). The second subband begins to be
filled if L g satisfies the condition

AeV=¢p ,

where € is the Fermi level.

It is necessary to take into account the fact that
kp=(2/7ieg)!’? also depends on L g- The electron
concentration 7 is equal to n =k% /27 #L p- There-
fore

k% =2mh*nL 8-
Based on Egs. (44), we obtain the following value
for L fglc):

Lg'=a(@/mn)'7?, a=1.7. 45)
If the condition nL 3 <a®(# /m,) [see Eq. (45)] is

satisfied, only the lowest subband is filled. Let us

examine the value L}}c}, which corresponds to the

next rapid change of T,. Generally speaking,
values of the masses for different subbands can be
different. Solving the equation

AE® =kk, /25, ,
(Kgy/2/)+ AEV =k}, /27 46)
K31+ K5y =2m#*nL
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results in the following value for AL =L — L}
1/4

(b[14c(my/mi)] 21},

my
AL =a

(47)

where a, b, ¢ ~1 (in the model of the box a ~1.7,
b~1.4, ¢ ~0.6). For example, AL~30 A for Sb
films.®! The quantity AL in the Bi films can be
changed in the region 10 A <AL <4X10? A,
depending on the structure of the film.5 We see
that ALs~L, and the oscillations are aperiodic.

B. Nonmonotonic behavior of T,

The critical temperature is described by Egs.
(26), (31), and (40). If the “B” film is a semimetal
(or semiconductor) film with SQ, the densities of
states v, and vg are described by Eq. (33) and Eq.
(42), respectively.

SQ causes p and, consequently, T, to change
step-wise. If Lg becomes equal to L Bc [see Eq.
(45)], vg increases very rapidly and this leads to a
rapid decrease of T,. The detailed picture of the
dependence T.(Lg) varies with the conditions of
the experiment. Consider the case when the ratio
Lg/L,=const. If Lg <L“) the quantity vg de-
creases with the increase of Lg [see Eq. (42)], and
one can observe an increase in T, (of course, it al-
ways holds that T, <T.). When Lg becomes
equal to LY Bc, vg makes a stepwise increase and T,
decreases, according to Eq. (31) f T'>>T,).
Hence an appearance of a maximum of T, is possi-
ble. This second maximum differs from the max-
imum of T, in the region L p~a (see Sec. III).

The subsequent increase of Lg in the region

Lg > LY, again leads to a decrease of vg and an in-

crease of T,, and this continues until Lg=L g @)

and so on (see Fig. 4). Hence SQ leads to the pos-

sibility of oscillations of T,. If L,=const (this

case corresponds to the typical experimental situa-

tion; see Refs. 1—4), then [see Egs. (32') and (42)]
p~m 48)

mopFL,

[cf. Eq. (34)], where v, is the number of filled sub-

bands.

We would like to emphasize that SQ leads to a
peculiar dependence of p(Lg) on Lg [cf. Eq. (34)].
According to Eq. (48), p(L (3) is a step-wise func-
tion and, if Lg <Lg,) or L,}c) <Lg <L§326), etc. [see
Eqs. (45) and (47)], the quantity p does not depend

7 T R B B
O 10 20 30 40 50 60 70

FIG. 4. The dependence T(Lg) (Lo/Lg=const,
=T. /TS T=T/T& 7.=T. /T?) for parameters
p(L,g 20 A)=0.05, I'(Lp=20 A)=40, A'/A=0.02,
(0)/TE=10%.

on Lg at all. Then the dependence T (Lg) is
caused only by the dependence I'(Lg) [see Egs. (6')
and (38); it is assumed that "' << (w)]. According
to Egs. (6'), (32), and (38), the increase of Lg re-
sults in an increase in T,. This increase continues
until L B—L“) Then we get vy=2, and T, makes
a stepwise decrease and so on. Hence the depen-
dence T.(Lg) becomes nonmonotonic.

Moreover, if I'>> (@), one should use Eq. (39).
Then an increase of Lg does not affect T, until the
decrease of I'g, [see Eq. (6')] gradually results in a
situation where I' < (@ ). Then the dependence
T.(Lp) is described by Egs. (31), (38), and (40), and
T.(Lg) becomes an increasing function. Therefore,
SQ leads to a nonmonotonic dependence T.(Lg).
Note that the distance between the maximum T, in
the region L B~a (see Sec. III) and the maximum

T, if Lg= L , is not equal to the period of oscil-
lation because they have different origins. As is
known (see, e.g., Ref. 10), the thin film can be
size-quantizing if its thickness Lg> 10 A, and,
hence, the described increase of T, can be observed
if Lg>10 A. Therefore, T, has a minimum in the
region Lg~ 10 A

The nonmonotonic dependence T,.(Lg) [see Sec.
III, Eqgs. (6'), (38), and (48)] has been observed ex-
perimentally (see Fig. 1) by the investigation of
Mo, Te, and V films covered by C (Ref. 2) and the
systems Al-SiO (Ref. 3) and Pb-Si.* (For a general
description of the experimental situation see Ref.
29. The oscillations in the region Lg> 10 A are
observed only in those cases when the 3 films are
semiconductor or semimetal.) Note that SQ is not
a universal phenomenon and it is very sensitive to
the structure of the films (see, e.g., Ref. 10). It is
not surprising that the increase of T,(Lg) has not
been discovered by the investigation of some sys-
tems [e.g., Pb-Ge, Pb-C (Ref. 4), T1-Ge, and Sn-
Ge (Ref. 1)]. In the absence of SQ, T, decreases
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with increased L g, in accordance with Eqs. (34)
and (38). Of course, it is necessary to have infor-
mation about phonon and electron spectra of the
films in order to make detailed comparison with
experimental data.!~* We present the theoretical
dependence T,(Lg) (see Fig. 5) for some values of
the parameters. The quantity I'?* is described!! by
Eq. (6') (see also Ref. 22). The S-N sandwiches
with Cu and Ag normal layers have been studied
in Ref. 12. According to measurements in Ref. 12,
the best description of the experimental data is ob-
tained if the values ['4¢ are the following:

Iff=8mV (Lg=100 A), D§¢=4 mV (Lp=200 A),

and M¥=2 mv [Lg=400 A; cf. Eq. (6")], where
%2 =r"%* for metallic film. We discussed the
method of obtaining the value I'?* (see Sec. IV B),
which can be applied if B film is SM or SC film
also. It is possible to estimate the values rgg
(rggzr Ba for size-quantizing film) using Eq. (6")
and data'%

Fg8~PFlU/mlLﬁ~1rﬁa/mlL§
~Tha/Lg)m* /m)) .

Here mY and m are the effective transverse
masses of the metallic and SM (or SC) films. We
consider the case where only the lowest subband is
filled and pr,~mhi/Lg; in the metal film p~%/a.

The smallness a /L g can be compensated by the ra-
tio m} /m,. For example, in Bi film m, =0.01m,.
If, for instance, Lg=75 A, the value I'# in Bi
film is I'**~15 mV. We present the theoretical
dependence T,(Lg) (see Fig. 5) for some values of
the parameters.

Lp
FIG. 5. Transition temperature T, versus Lg
(Lg=const) for (a) p=0.05, f(LB=3O A)=10,
(M/A)=0.09, (w) /TE=15; (b) p=0.05, T'(L,
=20 A)=20, A,/A=0.01, (@) /T*=150; (c) p=0.1,
T(Lp=20 A)=10, A,/A=0.04, (@) /TZ=102

C. Charge-density waves

SQ results in appearance of peculiar charge-
density waves. This problem has been considered
by Kokotov and the author in Ref. 30. This kind
of instability can affect the properties of S-SM and
S-SC systems.

Consider the case when only the lowest subband
is filled. The film is characterized by the Fermi
line (see above, Sec. V A). If several subbands are
filled, there is a set of Fermi lines. A perfectly
realistic situation is one in which the Fermi line
has linear sections. For example, the radius curva-
ture of sections of the Fermi line in Bi films (see
Ref. 6) is larger than the dimension of the Fermi
line itself and even the dimension of the Brillouin
zone. These sections can be regarded as straight
lines with high degree of accuracy.

The electron-phonon interaction leads to instabil-
ity of the lattice in the presence of the linear sec-
tions of the Fermi line.*® The calculation of the
polarization operator

(g)=2i [ dpG(p+q/2)G(p—q/2)

[¢ =(G),0), p=(K,e)]
leads to the expression®
I ~goln(8er/iw) (49)

which contains a logarithmic singularity (it is as-
sumed that the linear section corresponds to the re-
gion |k, | <go). The presence of a logarithmic
singularity in IT leads to the appearance of an ima-
ginary pole in the phonon Green’s function
D=Dy'—gllge [g¢=(1+VTI)~"] (see, e.g., Ref.
31), and to lattice instability. The temperature T,
which corresponds to the appearance of static-
deformation waves and the structural transition is

T,~epe /%, (50)

The SM and SC films are characterized by a
small value of € (e.g., for Bi films ez~10"2 eV)
relative to € of metals. That is why the value T,
is small (T, <1°). The minimum of the resistance,
which was observed in an experimental investiga-
tion of thin Bi films in the low-temperature re-
gion,*? is described by Eq. (50).

The temperature T' =T, is characterized by the
appearance of a static-deformation wave. If
T > T,, the gradual decrease of T leads to a soften-
ing of the phonon mode. Because of smallness of
T, in the SM and SC size-quantizing films, one
can consider the situation when T, of the S-SM or
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S-SC system is larger than T,,. Then the region

T ~T, is characterized by the existence of a low-
phonon mode, and this results in an increase of the
constant describing the electron-phonon interaction
in the “B” film. The value of this constant can
exceed the value of the Coulomb pseudopotential
and the effective constant Ag becomes different
from zero.

VI. THE CASE Ag#0

Previously we considered the case gg=0. Sup-
pose that film “f3” is characterized by a nonzero
value of gg. This means that the value of the ef-
fective constant Ag describing the electron-phonon
interaction in film “3” exceeds the value of the
Coulomb pseudopotential *. Then one should
write the following equations T=T, [cf. Egs. (7)
and (8)]:

CHwn)=C%(0,)+TpCPwy) /(| 0, | ZP),
(51)

CBlwn) = CPylwn)+ TgaC%wn) /|0y | Z9) ,
(52)

where the additional term is equal to

2
Clwy)=rT 3, [dogsle)

@, >0
Chw,)
xm . (53)
Equation (52) can be written in the form
CPw,)=Tg,C*/(|wn | Z)+R , (54)
where
w2 C%w,)

@+ (@, —wy )

RaTgmT Y, f dowgglw)

Oy

(55)

Therefore, we see that Eq. (54) for the function

0*+ 0l 03 ZN 0, ZPw,)

I T, | |
n— =—
T AT

where [cf. Egs. (26) and (27)]

2Ty r?

o’ In
7T,

@*+1?

20y

f(w9r,T )= -+ 1
¢ 0?4+ T? anc

(63)

CP contains, besides the usual term [see Eq. (8)],

the additional term R. Substituting Eqgs. (54) and
(55) into Eq. (51) and performing calculations by
analogy with the derivation of Eq. (13), we arrive
at the following equation:

2 K(w,)
1=27rTw"2>0fda)gm(w)mzcj—w31 a),,Za(:o,l) ,
(56)
where
Tl
Klaow)= S(tlon) * wnZ”(aai )B;(wn)
2
XZWTmzofdwgg(w);z-i—w;
X3 L
onZH 0,V ZB(wp)S (0y)
(57)
Here
S(wp)=1—Togl g /02 ZHw,)Z(w,) .  (58)
According to Egs. (4) and (5), we obtain
SN wn)=Z%0,)Z¥w,)/(1+T /0,) .  (59)

According to Egs. (13), (15), (57), and (59), Eq.
(56) can be reduced to the form

20y Tap
1= 1 ——
fda)g‘,,(co)nfrTc T L,

[Cgpl’
+_‘}?2—B‘LLLILB )

(60)

where

L=2aTT 3 [dogl)—2s—1
0, >0 0*+wk o,(0,+T)

i={a,B}

Using Eq. (19) and summing in Eq. (61) over o,
we obtain

(61)

gl
2 [ doga(@)f(@,1,T)+ 222 [ dogal@)f(@,1T.) [ doggo)f @D T, 62
(42

T
and T, is defined by Eq. (21); it is assumed that
I'>> T,. Equation (62) can be written in the form
T r 2y u

c _ aﬁln 7/< )a +¢

T, r nT,

(64)
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where
Faﬂrﬁa 27/(14 )a 2}’( u )B
= 1 1 .
¢ r? Agln 7T, n T,

The quantity u is defined by Egs. (30) and (35),
and {u ); denotes the mean value in the sense

(u),-
T,

(65)

1 ]
In :7; fdwg,-(a))ln?c.
If I <<{w)g and T << {w)p, then (u);=T (see
above). Then

T 2
pohg—E b

% 2Ly

66
T (66)

The critical temperature can be evaluated from Eq.
(64). Note that the terms on the right-hand side of
Eq. (64) have opposite signs. Therefore the ine-
quality Ag5~0 results in an increase of T, relative
to the situation when Ag=0.

If, for example, Ag is small [TB<<T, P
Ag~In"'({w)p/TP)] and T,5<<T, the increase of
T, due to the second term on the right-hand side
of Eq. (64) is equal to

AT, , Tup
T, °r

2
In 2I'y
7T,

(67)

The smallness of the factor Agl',5/T is compensat-
ed to some extent by the large logarithmic factor
(In2T'y/mT)*. 1If, for example, (w)p~10 mV,
TS ~10"%, Fag/T ~0.1, and T'/T, ~ 10, we obtain
(AT,/T,)~5%. Hence, we see that the inequality
Ag0 leads to an increase of 7.

VII. DISCUSSION

The S-SM and S-SC systems are characterized
by a number of parameters. A variety of parame-
ters allows one to change the properties and, espe-
cially, T, in the desired direction. The critical
temperature of S-SM and S-SC systems in the
presence of size quantization is described by Egs.
(19), (31), (41), and (48). In the absence of SQ one
should use Eq. (34) instead of Eq. (48). The rela-
tion T, > T is caused by the change of the pho-
non spectrum (see Sec. III). On the other hand,
the proximity effect tends to decrease the critical
temperature. SQ leads to oscillations of the densi-
ty of states and, hence, to oscillations of 7,. The
combination of these factors results in complex
nonmonotonic dependence T.(Lg). Estimates (see
above) show that the quantitative change of T, can

be very noticeable. Equations (19), (29)—(32'), and
(48) allow one to carry out detailed calculations.
These equations express the value of T, in terms of
measured quantities. Namely, the value of T,
depends on the function g(w) and the properties of
the dispersion relations of films in the presence of
SQ.

As is well known there are several ways to deter-
mine the function g(w). The most powerful
method is the method of tunnel spectroscopy. A
very interesting investigation was carried out by
Chaikin, Arnold, and Hansma.!? The authors of
Ref. 12 have studied the system superconductor-
normal metal. They took advantage of the prox-
imity effect to get information about the quantity
A, describing the electron-phonon interaction (EPI)
and the phonon spectrum of the normal metal. A
similar investigation of semimetal and semiconduc-
tor films would be very interesting. One can get
the same interesting information about the EPI
and the phonon spectrum in these types of solids.
Moreover, the change of the thickness of the oxide
(see, e.g., Ref. 33) allows one to get information
about the function g’ (see Sec. III).

Investigation of the dispersion relation in size-
quantizing thin films is a very interesting problem.
This problem was discussed by Kokotov and the
author in Ref. 30. As was mentioned above, in the
presence of SQ, electrons are characterized not by
a Fermi surface but by a Fermi line. The Fermi
line can differ from the usual section through a
three-dimensional Fermi surface because of the
specifics of the film state brought about by
sputtering conditions and, moreover, because,
strictly speaking, the transverse quasimomentum is
not defined for these thin films. One can suggest
(see Ref. 30) several methods (e.g., investigation of
sound absorption in a magnetic field, absorption of
an electromagnetic field, and so on) which allow
one to reconstruct the Fermi line by using experi-
mental data. The development in this direction is
important, because it allows one to study the pro-
perties of the film state. In our case, it will be
possible to calculate the density of states vg and
the corresponding contribution to the change in 7.

The best conditions for observations of SQ are
realized in the SM and SC films. In principle, it is
possible, although more complicated, to observe SQ
in thin metallic films.>>*® The effect of SQ on T,
was considered by Blatt?’ and by Tavger and the
author.?®

It is supposed in this paper that the metallic
film is not size-quantizing. SQ of the metallic
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film with a number of filled subbands can also af-
fect T, of S-SC and S-SM systems. This addition-
al mechanism was considered in Ref. 29. It was
assumed that it is possible to separate variables;
this corresponds to specular reflection. The change
of T, is caused by the boundary conditions.”’ This
mechanism is not connected with oscillations of
the density of states of SM or SC films and with
EPI, and is very sensitive to the quality of the me-
tallic film.

We have discussed (see above) the effect of dif-
ferent factors on the dependence T, (L g). The non-
monotonic dependence T,(Lg) was observed exper-
imentally. A whole set of experimental data can
be explained in terms of the present theory (see
Secs. IVC, and VI). Hence, we see that the inves-
tigation of S-SM and S-SC systems in the presence
of SQ leads to the possibility of peculiar changes
of T,. The development in this direction and sub-
sequent experiments promise to by very interesting.

SUMMARY

In this paper we develop an approach which al-
lows an evaluation of T, for different systems (S-
SM, S-SC, S-S, superconductor-normal metal).
The electron-phonon interaction is taken into ac-
count directly. The results of the paper can be
summarized as follows.

(1) We have considered S-SM and S-SC systems
containing thin superconducting and semimetal (or
semiconductor) films. Using the method of ther-
modynamic Green’s functions, we considered the
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influence of the proximity effect, size quantization,
and the change of the phonon spectrum on T,.

(2) The dependence of T, on the thickness of
nonmetallic films is nonmonotonic. One can ob-
serve T, in the region Lg~a.

(3) Equation (31) describing T, in the framework
of the phonon model in the presence of the prox-
imity effect has been obtained. The peculiar
dependence T, (d,,) was discussed.

(4) Size quantization leads to oscillations of
T.(Lp).

(5) Features of the dispersion relation in a size-
quantizing film and the appearance of charge
density-waves were discussed.

(6) The increase of T, caused by the inequality
Ap#0 was considered.
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