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A uniform perturbation calculation is carried out for two interacting Josephson weak

links in the resistively shunted junction model, particular attention being paid to the re-

gion of near voltage locking. Good agreement is achieved with numerical simulation.

Phenomena observed experimentally are also predicted. A comparison with other theoret-

ical calculations is made.

I. INTRODUCTION
In recent work of Nerenberg et al. ' (hereafter re-

ferred to as I) a perturbation-theory calculation of
the dc voltage characteristics of two coupled
Josephson weak links in the resistively shunted
junction (RSJ}model was carried out. Particular
attention was focused on the phenomenon of syn-
chronization or dc voltage locking of the junctions.
Numerical simulation of the exact equations
showed remarkable agreement with the analytical
perturbation calculation except in the border region
of locking, or what experimentalists refer to as the
"voltage pulling" region. This perturbation calcu-
lation was used to show that voltage locking could
take place for N interacting junctions in a linear ar-
ray. The locking region predicted by perturbation
theory was well substantiated by the numerical
simulation.

In this work we turn to the border region of
locking which yielded anomalies between perturba-
tion theory and simulation in the original work I.
In brief, the perturbation theory predicted the sud-

den discontinuous onset of locking in parameter
space, while the numerical simulation indicated a

rapid but continuous onset. The latter calculation
indicated that this border region was characterized
by a relatively constant short-time average phase
difference between junctions followed periodically

by rapid slips of 2m. This led to the explanation in

I of the observed coherence of microwave radia-

tion from pairs of junction in this shoulder region.
The fact that unusual behavior occurs in this

shoulder region is also known in biology where it
is referred to as "fringe entrainment" and in cou-

pled chemical oscillators. We therefore turn to
the mathematical analysis of this problem in the
context of a coupled pair of Josephson weak links

in the RSJ model.
The original perturbation calculation I was

marked by a "renormalization process" which was

necessary in displaying voltage locking and in giv-

ing generally very accurate dc voltage characteris-
tics. It was essential in dealing with the linear-

array problem. However, this perturbation theory
was not uniform in parameter space in the transi-
tion region to voltage locking. This resulted in the
variance there between the perturbation calculation
and the numerical simulation of the exact equa-

tions. Our approach, using the method of averag-

ing, here eliminates this problem at the expense of
some increase in complexity.

The equations of the coupled links expressed in

the normalized units of I are

d pj.
=51IJ 5,I,i s.ingj ——tt(I; I„si P;n), —(1}

where i,j=1,2, i'.
Since we seek to describe a succession of super-

conducting weak links in a filament we have
neglected in our model capacitance effects. Equa-
tions (1) describe a pair of weak links either cou-

pled by a resistive (nonreactive) shunt in series aid-

ing or opposing configurations, ' or coupled by the
diffusion of quasiparticles generated during the

phase slip process. The parameter 0.'measures the
strength of the coupling between the pair, and in

the former case can be taken to be (1 + R, /R2)
where R, is the shunt resistance and R2 is the
resistance of the second junction, while 5&

——1, and

5,=(1+R,/R, )/{1+R,/R, ),
R

&
being the resistance of the first junction. Note

that dimensionless time is t rather than t*.
The form of the method of averaging that we
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use is described by Nayfeh (p. 168). Although the
variables of interest in the locking case would be

(P~ —P2), (P~ + P2} the equations (1) in these vari-
ables do not have the appropriate form for this
method. To correct for this we change the vari-
ables P&,$2 to g&,$2 based on the nonuniform ex-

pansions of I which are valid within and away
from the locking zone but not in the near-locking
region. The resulting equation for D,g where

D=g & g2, g—=g~+gq have the form suitable for
the method of averaging [Eqs. (6) and (7) below].
For the next step the near-identity transformation
(D,g) to (Dg) is performed [Eqs. (8) and (9)] which
has the effect of expressing D, g as a sum of a
slowly varying term and a term involving fast os-
cillations with no average value over the period of
the oscillations. The voltages dg, ldt, d$2ldt have
the same decomposition as a sum of fast and slow
processes [Eq. (14)]. Thus, this technique provides
an excellent uniform description of the physical
phenomena throughout the locking zone. Another
important advantage of the transformation to the
new variables g&,(2 is the natural way in which the
form of the asymptotic expansion in a arises [Eq.
(4)]. There are three variations of this asymptotic
expansion, The more general form is very accurate
in comparison with the numerical simulation,
while the other two, one of which is used in Ref. 9,
are less so.

II. ANALYSIS

The first step is to change the dependent vari-
ables P&,$2 to new variables g&,g2 by the following
transformation. We use the identities defined by
Eqs. (12), (14), and (15) of I where fo,go are re-

placed by P~,P2 and A~(t)+2(t) replace t* in fo,go,
respectively. Thus, for arbitrary constants P;,

5I„. 0;
P; =2 tan + tan

CO) CO).

uniquely determined in the above, will depend on
a.

From (1) and (2) the equations for gj are

d(J co~+5JI,J. singJ

dt
'

QJ
=&j+afigj') . gj =

f; = +(5;IJ.—coj)a
5;

0;5, '

to;+5;I„sing;

(3)

where i Qj, ij =1,2. The dc voltages V; are of pri-

mary interest where V; is related to the average
value of dP;/dt; namely,

1 ' dpi
V;= Vp lim — dt

taboo t 0 dt

dt ' dt

The conclusion follows upon exapnding g;
' in a

Fourier series in g;. It suffices, therefore, to deal
with the g; in determining the dc voltages.

Since co; =0; + (5;I«) it is natural to define

co;,0; as an asymptotic expansion in terms of o; in
the form

Ici coshkI,
n

A,; = Q k; (a )a"+0(a"+ '),
k=0

0;=5;I„sinhA, ;, A,; (a)=0(1),

(4)

—= Vp ——Vp lim
dt t~ oo

where the constant Vp is given in I. To show that

V;= Vo(dg; Idt)

we have, from (2),

dA;

5;I„+co;sing;
sing; =

co; +5;I„sing;. (2)

g;. =0;A;+8;, 8; =tan l Cl +2/;,

co; =0;+(5;I„)
The parameters co;,Q;, which at this point are not

where cosh', ;,sinhA, ; are the hyperbolic cosine and
sine functions, respectively. We will show later
that the coefficients A,;(a) are determined by re-

quiring that the average value of certain expres-
sions are zero to a certain order. In particular, A,

is defined by I; =I„cosh',; which ensures that
f; =0 (1) as a~O in (2). co;,0; are now defined to
first order in a.

The equations suitable for asymptotic expansions
are obtained from (3) upon expanding f; in a
Fourier series in g;. Then (3} can be expressed as
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J i i

ct
=Q —ay i cos(g —g )

—a g e 'JJ' cos[(2r +2)g;+s(g; gj )—]+LJ sin[(2r +1)g;+s (g; —gj )], (5)

where the summation is over r =0, 1. . .;
s= —1,0,1. The coefficients in (5) are given by

hi, ;
V JS Cl ~

X(—1)'(2coshkj) *',

E', = ( —y', +e '0')5,

QJ. ——Qj+ao.J cosh',j,
0, l J
1 I'=j

+(I I, cosh'.j—)5ja '](sinhAJ )

I

and the summation is over

s= —1,0, 1, r=0, 1, . . . ,

i,j =1,2, i' .

These equations are in a form suitable for the
method of averaging where g is the "fast" variable
and D is the "slow" variable.

For the method of averaging we substitute the
following expression into (6) and (7) and equate
terms in a. It is very useful at this stage to regard

P and A,i, l= 1,2 as parameters and not as functions
of a. This does not alter the sorting process into
fast and slow terms. The consequences of doing
this will be seen below. Following the usual pro-
cedures:

D =D+aF, (D,(,A&)+aF2(D, g, .kt)+O(a ),
i )r+1

—(2r ~ l )ki i
jrs Tjs ~

/=(+HAH](D, (,it) +a'H(D, /, A/) +O(~'),

The dc voltage locking occurs in (5) whenever the
time average of

d(gj Ng;)Idt, N =—1,2, . . .

is zero. In the sequel only the case %=1 is con-
sidered, that is, equal-voltage locking; the other
cases can be handled in a similar fashion.

Since we want to examine the behavior of the
system in the neighborhood of voltage locking we
define new variables

gj =(g eJD)/2, e—)2 ——1, e2i ———1 .

Then the method of averaging is applied to Eq. (3)
for gg). In the new variables (3) becomes

dt
=Q —a{y +2iy~ ~

}cosD—a g Z~„, ,

da
dt

=a(y2i —yii)(P+cosD) —a g ej;ZJ'„, , (7)

where

dt
=aQ&(D, kt)+a Q2(D, Ai)+O(a ),

dt
=Q+aPi(D, Ai)+a P2(D, Ai)+O(o. ) .

Q;,P; are used to ensure that F;~; are periodic
functions in g with no average value over the
period. Upon substituting (8) and (9) into (6) and
(7) and expanding and then equating terms in a we
have

Qi =(yes —yii)(P+cosD},

P, = —(y„+y'„}cosa,]

Hi ————g YJ„, ,
1

Zj„=e 'Jp', cos[{r+1)g+(r+ I+s)eJD)

+L,' sin[(r+ —,)g+(r+ —,+s)eJD],

Q =Qi+ Q2, P= (Qi —Q2)a '(yii —yii)

1p Q yl
Jl Jl'S

where
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—jlLj

I"r, = sin[(r +1)gJrS
( +1)

+(r +1+s)@AD]

cos[(r + —, )gr+1/2

+(r + , +s—)cJD],

(o 1 coshii+cr2coshA2) =O(a) )

(o 1 cosh' 1
—o 2 coshA2 ) =0 (a ),

or equivalently cr~ =O(a). This is achieved by
truncating the expansion for A& and solving

oij ——0, AJ =AJ+akji(a) .

This condition is equivalent to the "renormaliza-
tion" process which leads to the equation (19), (20)
in I. Using AJ in (11) the equations for g,D,
neglecting terms of order 0 (a ), are

and the sumination is the same as that in (6) and
(7). In a similar way the expressions for Fz+2,
and P2,Q2 can be determined. In (8) only D,g con-
tribute to the average value of D,g. From (9) the
equations for D,g are

dg = (II1+&2) «y—21+y i 1) cosD1

dt

dg 1

dt
( +1++2) a(y21+ yl 1 ) cosD

dD
dt

=a(y2i —yii)(B+cosD) .

It is the parameter

B=(IIi—II2)a '(y2i —yii)
'

(12)

+a(o., cosh', 1+cr2 cosh', 2)

+a P2+O(a ),
dD 2

dt
=a(y21 —yi 1 )(B+cosD ) +a(o 1 cosh' 1

(10)

that determines if the dc voltages are locked

(~B~ &+1) or unlocked (~B~ & 1). This procedure
can be carried out to higher orders. A,J- is defined
to the next order by imposing the conditions on
Eq. (10)

(ao, cosh', .+acr2c, oshl2+a P2) =0,
( acT1 coshk, 1

—ao 2 cosh' 2+ a Q2 ) =0,
tr2 co—shi2)+a ,Q2+ 0 (a'),

where

B=(IIi—I~2)a '(y2i —yii)
'

The asymptotic expansion for XJ. is determined
in the sequel. As indicated previously AJ and
hence QJ. are determined to first order by requiring

oj =O(l). That is,

I I, cosh', —0, A, —A,

For the next order AJ,QJ. are defined by requiring

where AJ = gk OAJ(a)a". Then Eqs. (12) deter-

mine the dc voltages where the terms of order
O(a ) are neglected. The algebraic details are
somewhat involved for this case. The requirement
that A.J. in Eq. (4) depends on a is important for
accurate results in comparison with the numerical
simulation. If AJ is independent of a (i.e., AJ is a
power series in a) then it is necessary to exapnd crj.

in (10) as a power series in a. The consequence of
this approach is illustrated in Fig. 1.

The solution of (12) for the slow processes D
when

~

B
~

& 1 in the unlocked region is readily
shown to be

D —ir/2=2tan '[ B '+(1—B )' tan[(01 —Q2)(1 B)' t +p] ),— (13)

where 1( is determined by the initial conditions for
D. In the locked region ~B

~

&1 the solution for
D approaches the solution of 8+ cosD=O for
large t The connec.tion between $1,$2, and g, D
follows from

dt dt

dD
dt dt

(14a)

I

Upon expanding g; in a Fourier series and then
using the Eqs. (8) and (9) after some algebra we
have
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((1+(('2 dg O( z)
dt dt

where a P=O(1) in a and a P is periodic in g

(14b)

with no average value over the period. This term
WP represents the fast oscillations superimposed
on a slowly varying term. The dc voltages V; are
given by

For
~

8
~

&& 1 we have, as expected, the approxi-
mations

V] ——VoQ]+O(a ), Vz ——VoQz+O(a )

of I. Before discussing these results we would like
to comment on an alternative approach.

Recent work has used the following method in
dealing with interacting junctions [cf. Refs. (10)
and (11) for further examples]. We define

pJ pz + pJ—'—+ . , where pz ——O(a). The equa-
tion for pJ~ is

l.20-

0

+5JI 1 sing~ =5JI& i &J—, i&J ——O(a) (16)
dt

1 ~

where i,J ensures that pJ involves only fast pro-
cesses which is the same requirement for F;+; in
Eq. (8). Upon changing to the new variables 8;
[Eq. (7) in Ref. 9) the resulting reduced equation is
the first two terms of (5) where g; =8;—tr/2 and

AJ
——A,J-. Upon adding and subtracting these equa-

tions we have (12) where AJ
—Aio and QJ is replaced

by Qz. Instead of following this last step the
transformation (2) can be applied to (16) and this
leads to Eqs. (11) and (12). The consequences of
these different reduced equations are shown in Fig.
1 and will be discussed below.

III. RESULTS AND COMPARISON
WITH NUMERICAL SIMULATION

0)

a
O

l.00-

I I I I I I I I I 1 I

2. lo 2.20 2.30 2.40

12 (normalized units )

FIG. 1. Various solutions of the dc voltages VI, V2 vs
I2 for the region of locking as in Fig. 2 of I where

Ij ——2, I, &

——1.2, I~2=0 8, 5i=1, 52——5= —,, a=0.2 in

Eq. (1). Voltages are in units of Vo. Numerical
simulation (thin curves). A ~ (thick curves): asymptotic
solution as given by Eqs. (11) and (12). Aq (dashed line):
asymptotic result for locking region where A, ; in Eq. (4)
is a power series in a. A3 (dashed line): asymptotic
result for locking region using the approach of Ref. 9.

The basic disagreement between the numerical
simulation (repeated again here as in I) and pertur-
bation theory in the voltage pulling region is seen
to be eliminated. Perturbation theory now also
predicts a rapid but continuous transition to volt-
age locking. Figure 1 illustrates the voltage
characteristics of a coupled pair in the region of
voltage locking. The case illustrated in Fig. 2 of I
is the one used. %e see good agreement has been
attained between numerical simulation and pertur-
bation theory. Not such good agreement in the
form of a shift of the voltage locked interval is
shown both for our method of averaging employ-
ing a more conventional asymptotic expansion for
the AJ- as mentioned above and the method of I.i-
kharev et al.

Figure 2 illustrates the solution for D as a func-
tion of time in the border region of locking. By
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FIG. 2. Graph of the slow component of the phase
difference D versus time t indicating slippage just out-
side the region of locking. The parameters are those of
Fig. 1. A: I2 ——2.17600. B: I2 ——2.17500. C:
I2 ——2.17000. Locking occurs at I2 ——2.17623 for A

&
in

Fig. 1.

Eq. (15) D is closely related to P~ —P2, but with the
latter averaged over the fast period. P~ —$2
behaves like D in time except for superposed fast
terms with frequencies (V~ + V2)/4m Vp (and its
harmonics) in this region. We see that D has the
peculiar behavior of P~ —P2 (averaged over the fast
period) as first pointed out in I, of being constant
for relatively long times and then rapidly slipping
by 2m. This explains the observed phenomenon of

coherence" just outside the locking zone. We see
extremely long "constant" D intervals close to
locking with a dc relative voltage difference of
——,% (case A). Case 8 with —l%%uo voltage differ-

ence still shows this same effect of long periods of
coherence. Case C with -2%%uo voltage difference
shows a marked diminution of this effect. We
would like to comment here that Fig. 3 of I is
somewhat in error in indicating that the numerical
simulation of P~

—$2 gave rapid oscillations of the
order of thirteen times the "jump" frequency. The
perturbation theory tells us that this cannot be the
case. This error was an artifice of the intervals at
which P&

—Pz was printed. Printing the results at
sufficiently short intervals indicated that the high-
frequency was, as expected by perturbation theory,
of the order of (V) + V2)/4n Vp which gives a
period in these dimensionless units of 2~ approxi-
mately, 200 times smaller than the jump period
2' Vp/(V) —V2).
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