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The locality of the information obtained by the technique of proximity-electron tunnel-

ing (PETS) is analyzed, with particular attention to the effects on the measured effective-

phonon spectrum a F(co) of disorder or impurities near the surface of the superconductor

electrode. As in conventional tunnel junctions it is determined that the (energy-depen-

dent) electron mean free path determines the maximum depth of the superconductor of
which the measured phonon spectrum is characteristic. An averaging length L (E) is de-

fined and found to be typically larger in proximity junctions than in conventional junc-

tions. This can make PETS results inherently less susceptible than conventional results to

surface disorder of the superconductor.

I. INTRODUCTION

The work of McMillan and Rowell' established
superconducting tunneling as a useful probe of the
properties of the electron-phonon interaction (EPI)
in superconductors. The recent development of
proximity-effect-tunneling spectroscopy (PETS)~
has allowed a similar investigation of EPI effects
in materials which cannot be treated by the
McMillan-Rowell technique.

These techniques allow determination of the
effective-phonon spectrum a F(to) and Coulomb
pseudopotential p~; these, via the Eliashberg equa-
tions, lead to the pair potential b (E) and renormal-
ization function Z fE), fully describing the super-

conductivity of a homogeneous tunneling electrode.
In either, case, it is important to determine to what
extent the properties obtained from tunneling are
representative of the bulk metal.

The objectives of the present paper, therefore,
are twofold. First, we extend the original analysis

of locality given by McMillan and Rowell' for
conventional junctions to the case of thin E-
proximity junctions of the form used in PET spec-

troscopy. Second, we address in more detail the
effect of surface or interfacial disorder on the
measured a F(to). Such defects, which are present
to some extent in all tunnel junctions, are inherent-

ly more important in materials of short supercon-

ducting coherence length, such as 3 15 compound
superconductors or transition-metal alloys. A

somewhat surprising prediction of our analysis is

that the PET method applied to such materials
should give results less affected by surface disorder
than the conventional method.

In this paper we shall present some quantitative
and qualitative arguments on the locality of super-
conducting tunneling as a probe of metal proper-
ties. The quantitative portions of the paper estab-
lish the properties which can, in principle, be re-

flected in the local self-energy functions. We then
determine the range over which these local proper-
ties are averaged by a tunneling measurement.
Thus, the intrinsic spatial sensitivity (range) of the
tunneling probe is defined. The qualitative portion
of this work discusses classes of spatiaI variations
of the self-energy functions. The influence of these
on the metal properties observed via tunneling is
then assessed, based on the knowledge of the range
of the tunneling probe vis-a-uis the spatial range
and magnitude of the influence of each class of
spatial variation.

II. LOCAL SELF-ENERGY FUNCTIONS

From standard diagrammatic perturbation theory,
one finds the local, matrix-retarded self-energy due to
the electron-phonon interaction (EPI) in the Migdal
approximation (at T =0 K)
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dE'
X(;kii,E)= d, d g U( —„qadi)D( „;qii,E E—')

2K

X6(x&,xz', kii —
qadi,

E') r3U(xz —x; —qll), (2.1)

where kii and
qadi

are wave vectors lying in a plane which is parallel to the interfaces. Also involved in this
expression are the two-dimensional Fourier transforms of the EPI potential, U(x —xi,'qadi), the dressed-
phonon Green's functio»(x|, xq,'qadi, E E'),—and the dressed-matrix Green's function
G(x|,xz,.kii —qii, E'). The diagonal Pauli matrix is denoted by r3.

First, we approximate the EPI potential by a local potential

U( —,;qii)=V(;qii)5( —,) . (2.2)

(2.3)

(2.4)

where

This should be a good approximation because the EPI potential is screenmi by conduction electrons. After
this approximation, we introduce the spectral representations for the Green s functions and obtain, in the
usual way, expressions for the diagonal and the off-diagonal components of the matrix EPI self-energy:

P~"(x;k;E)= f dE' f dvH(x;kii, 'E')iq[(E'+E+v) '+(E' E+v) —'],
Z&"{x;k;E)E=E —f dE' f dvH(x;kii', E')ii[(E'+E iv) ' (E' E—+v—) '],

H(x;kii, E ),, = y ( V(x;qadi) i'[ —i~(x,x;qadi, v)][— 6(x,x;kii —
qadi,

. ';, ]
~II

(2.5)

In specular tunneling, only those electrons with wave vectors nearly perpendicular to the interfaces are im-
portant, so for those electrons we set k~i =0 in the above expressions.

Before presenting our general approximation for (2.5), we shall consider a very simple model in order to
motivate the approximation. We shall use the bulk Green s functions calculated in the spherical model. For
the phonon Green's function, a straightforward calculation yields

1 (v/~D )
ImD(x, x;q—iiv) = Re 8(1—(v/coD)),

[(v/~o)' (eii/en)'—1'" (2.6)

where 8(x) is the unit-step function and c, is the sound velocity. For the matrix Green s function, a similar
calculation gives

m E+A~3+ hvar—ImG(x, x; —

qadi,

'E) = g Re Re
2fi~E+

(2.7)

where r& is the real off-diagonal Pauli matrix and

1/2

IC+ = kg[1 —(qadi/kp) ]+ Z(E)Q (2.8)

(E2 g2)1/2 (2.9)

with b, as the pair potential and Z(E) as the renormalization function. If we compare the dependences on

qadi, we observe that each Green s function exhibits a potential square-root singularity. This is, of course, a
reflection of the generally expected behavior for these quasi-one-dimensional spectral densities.

Noting that K+ is well approximated by

k+[1—(qadi/kz) ]'i =k~ cos8,

we may write

E+h~)—Ima(»x' —Cia'E) =p(»x' —0[i'E)Re 0 (2.10)
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where

1
p(x,x; —

q~~,
E}—=

2AUF COSH
(2.11)

which is the normal-state local spectral density. Thus, in this case (2.5) may be written (for k~~ =0)
—ImG (x,x;—q ~~', E'),

zH(x;0;E');; = f d(cos8)
p(x,x;—q

~

~', E')

X X I V(x;q[[) I p(x,x; —q([,E'}[—ImD(x, x;q~~, v)] .
~

tl

(2.12)

b(E,x)=P(E,x)/Z(E, x), (2.13)

where, adopting the approximation (2.12), and in-

For convenience, we shall henceforth refer to the
factor in large parentheses as the "local normalized
density of states" when i =j, the "pair-density
function" when i'. Equation (2.12) is obviously
correct for the simple case which we have con-
sidered. In the general case, where the matrix
Green's function may contain dependences on qI~
other than that of p(x,x;—q~~', E), the accuracy of
this approximation may be questionable. This ap-
proximation has been made, implicitly, in all previ-
ous proximity-effect theories. We believe that,
since it is clearly correct in the bulk case, it is ac-
curate in any situation for which the matrix-
spectral density is very nearly equal to its bulk
value, as in, for example, a thin N-metal
proximity-effect sandwich. In any event, we em-

phasize that (2.5) is the rigorously correct expres-
sion, against which the validity of (2.12} may be
checked by explicit calculation.

The pair potential is a local function given by

I

eluding the screened Coulomb interaction:

P(E,x)= f dE'f(E', x)K+(E,E',x) (2.14)

and
X ImG(x, x,E') i2

1

N(E', x)= f d (cos8)( —2A'Uzcos8)

XImG(x, x,E')„,

(2.16)

(2.17)

where 8 is the angle between an electron wave vec-
tor and the normal to the interface planes. At
T =0 K the kernel functions in (2.14) and (2.15)
are

Z(E,x)E =E —f dE'N(E', x)K (E,E',x) .
(2.15)

The "pair-density function" f(E,x), and the local
normalized density of states N(E, x}were intro-
duced above. They are defined in terms of the re-
tarded Nambu-matrix Green's function by

1f(E',x)= f d (cos8)( —2RUF cos8)

K+(EE',x)= f dna (co,x)F(co,x)[(E'+E+co) '+(E' E+co) '] IJ~—(x)8(Es —E')8(+1), —(2.18)

where 8(x) is the unit step function and Es is a
cutoff energy. This is the local electron-phonon
interaction (EPI) kernel. Its spatial variation
depends on the spatial variations of (i) The EPI
parameter a (co,x) (involving local EPI matrix ele-

ments) and the Coulomb pseudopotential parameter
p*(x). One observes, on physical grounds, that
these functions may vary over a distance as small
as a screening length, i.e., on an atomic scale. (ii)
The local phonon density of states F(co,x). The
importance of spatial variation in this function will

be discussed later.
The pair density, f(E,x) is a function which is

sharply peaked at the local value of the energy gap

I

and varies with x on the scale of a coherence
length. The local density of states, N(E', x), is
also sharply peaked at the local gap, and varies on
the same scale as f(E',x). We conclude that the
pair potential may vary with x over a distance as

large as a coherence length or as small as a lattice
constant.

III. TUNNELING DENSITY OF STATES

The tunneling density of states is the local densi-

ty of states at the interface separating the tunnel-
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ing barrier from the metal being "tunneled into, "
i.e., the "tunneling interface. " For specular tunnel-

ing at T =0 K, it is equal to

where A~(E) is the pair potential at energy E in
the metal adjacent to the tunneling barrier and

—2AUF
D (O,E)= ImG (O, O,E)~ ~, (3.1)

I(E}=—i(bK) f dx exp(i~x)
0

X[M(x)+A~(E)], (3.5)
where E =eV, V being the bias voltage, and vF is
the Fermi velocity in the metal located adjacent to
the tunneling interface (at x =0).

The Green's function required to calculate the
tunneling density of states is the solution to

fi 8Z(x)E+ +kF' r, y(x)r—, G(x,x', E)
2171

=5(x —x'), (3.2)

P(x) =Px+Z&5b, (x), (3.3)

where X is a label characterizing the metal layer
adjacent to the tunneling barrier and ZN has an
implicit energy dependence. We shall further res-
trict our treatment to energies E satisfying
E»h,„(E),where b, ,„(E) is the maximum
value of the spatially varying pair potential at en-

ergy E. In this regime a perturbation expansion in

powers of 6/E is appropriate. The zeroth-order
Green's function is available from previous work,
so the calculation is straightforward. Neglecting
terms which oscillate over a spatial range of kF
or less, one finds [to order (6/E) ]

D(O, E)=Re[1+ , I(E) /E ], — (3.4)

where the ~; are the Pauli matrices. Assumption
of spatial invariance in the y and z directions has
reduced the original three-dimensional problem to
a one-dimensional problem. In accord with the as-
sumption of specular tunneling, we have assumed
that the (implicit) wave-vector dependence of the
Green's function is that appropriate to propagation
with k vector normal to the interface planes.

For simplicity, we neglect the spatial variation
of the renormalization function [Z(x)=Z~] and
let

ReZ„(E)
2E
UFN

—2

+ iph(E)'
1/2

The first quantity is the square of the energy-
dependent coherence length in E. The second is
the square of the mean free path due to phonon
scattering in N.

We propose the following model form for 5b, (x):

where AK =2Z~(E)E/(AU~~). A very similar cal-
culation is presented in Ref. 1.

Up to this point, our arguments have been quite
general. Note that b,E in Eq. (3.5) has a real and a
positive imaginary part due to Z~(E). The in-

tegral I(E) contains information on the RebE
Fourier component of the spatially varying pair
potential. From (3.5) one also observes that the
maximum depth from which Andreev-reflected
quasiparticles can emerge and produce interference
at the tunneling interface (x =0) is of the order of
(1mbÃ) ', which is equal to the mean free path in
the E metal. The typical range over which a spa-
tially varying pair potential is averaged by a tun-
neling measurement is (as we will show below)
L (E)=~ '. In what follows, we shall present a
model for the spatial variation of the pair poten-
tial. This will allow us to make quantitative argu-
ments concerning the effects of a spatially varying
pair potential. Our conclusions, however, will be
model dependent only to the extent that we shall
consider only monotonic spatial variations. For
the XS geometry, the length

L(E)=
i

b,E ~UFN

2~Z&(E) ~E

2M+(E)[exp[ —2(x —d)/g~]+1 ]
' 0&x &d

M.(x)= '

Ag(E) —b~(E) —255, (E) [exp[2(x —d)/g, ]+I] ' d &x
(3 6)

The spatial dependence resulting from this model is shown in Fig. 1. The similarity between the spatially
varying parts of M, (x) and statistical Fermi distributions allows one to investigate various limits easily.

First, consider the case wherein gs &/2»L(E), g~/2, gz/2&&d. This is the "slow-variation limit. "
Note that if gs is a coherence length, then
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L (E) ~s

2Zg (E)E

since the validity of our work is restricted to this energy regime. In the slow-variation limit we find

I(E)= 5hz(E){[1—exp(iddCd)][1+i (~gz)
']+d/(zan

+[4,(E)—&~(E)]exp(i~d) —5b„(E)exp(i~d)[1 i (—~g, ) ']+&&(E) .

Neglecting the small corrections, we find

D(0 E)=Re(1+—,{bz(E)+M &(E)+[b,,(E)—56,(E)—hz(E) —5hz(E)]exp(ihKd) I /E ) .

(3.7)

(3.8)

Note that only the values of the pair potentials at the NS interface are involved here. In this limit, tunnel-

ing samples provide the local values of the pair potentials at the NS interface. Thus, the properties inferred
from tunneling measurements are local interface properties to the extent that d &L (E) «gs z/2 is true.

Another simple limit is that in which gs ~/2 &&L (E). In this case, both pair potentials vary rapidly over
the length scale L (E). We find

I(E)=exp(ihKd)[h, (E) h~(E) —56,(E)—ibKJ, C(00 ) 55~(E—)i EKg~C(2d/gz)]+bz(E),

where

C (x)= —x /[exp(x ) +1]—ln {[1+exp( —x) ]/2 J .

(3.9)

(3.10)

Since the maximum value of C(x) is equal to ln2, neglect of small first-order corrections leads to [assuming

5~a,s(E) «~,s«)]
D(O,E)=Re(1+—,{hz(E}+[6,,(E)—bz(E)]exp(i~dI /E ) . (3.11)

D (O,E)=Re(1+ , {h~(E)+ [3,,—(E) b~(E) 5b,„—(E)iAK(—„C(2d/g„)]exp(i ~d) I'/E') . (3.12)

In this case, the information obtained on the N metal involves a composite of the asymptotic pair potential
b ~(E), and a contribution from the local value of the pair potential at the NS interface.

A remaining limit is that in which gsz/2»L (E) and d » gz/2. In this case we may use the result of
the slow-variation limit for the integral I(E) over the range where x & d; but for x between 0 and d we
recognize that over most of the integration range exp[2(d —x)/g~] && 1, and find (neglecting first-order
corrections)

Here we observe that variations in the pair potentials which are rapid compared to the length scale L (E) do
not affect the measured density of states. In this case, the true bulk (asymptotic) pair potentials are sampled

by tunneling.
It may happen that 5b~(E) & b ~(E) due to enhancement of the N-metal superconductivity near the NS

interface by the proximity effect and/or more favorable local electron-phonon interaction parameters
(a F,p*) near the interface. In this case, one should maintain the lowest-order correction in g~/L (E) [the
next highest order is smaller by a factor of g~/L (E)] so that

I(E)=[A,(E)—55,(E)—b~(E) —55~(E)]exp(i~d)+b~(E),

so that

(3.13)

D(O,E)=Re(1+—, {bz(E)+ [A.,(E) 5b„(E) hz(E—} 5b~(E—)]exp(i~— d)] /E ) . (3.14)

Note that this result indicates that the 1V-metal

pair potential measured by tunneling is a true com-
posite of the local XS interface value and the
asymptotic value. The information obtained on the

local value is a result of Andreev scattering, hence
is modulated by the factor exp(ib, Kd).

It is also possible that other combinations of the
limits considered above will be relevant. However,
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g, /2 &&L,(E),
D (O,E)=Re[ 1+ , [b„—(E) &&—,(E)]'/E'J,

(3.15)
g, /2 «L, (E),

D(O, E)=Re[1+ , h, (—E)/E ] .

The appropriate length scale in this case is

(3.16)

S

X=O

FIG. 1. Spatial dependence of the pair potential as
described by Eq. (3.6) of the text. The lower sketch il-

lustrates the limit of (3.6) for d =0, 4~ ——M~ ——0.

we feel that consideration of the three cases men-
tioned should be sufficient to extract the basic
behavior expected for the tunneling density of
states in most situations of experimental interest.
A feature of all three limits is the comparison be-

tween the scale of spatial variation in the pair po-
tentials (over the lengths gs and g~) and the
energy-dependent length

~

~
~

'=L (E). Thus,
L (E) is the spatial resolution of the probe in a tun-
neling experiment. If it is desired that bulk pro-
perties be measured, then one requires that L (E)
be very long compared to gs and gz over the ener-

gy range of interest,
Conversely, one may wish to study local proper-

ties at an interface. In this case, one would require
L (E) small compared to gs and gz in the energy
range of interest. If one is interested in an energy
range which is far above the energy gap of the S
metal, then it should always be possible to employ
tunneling as a probe of metal properties near the
NS interface.

It is now easy to obtain the results analogous to
those above for the case of a conventional junction;
one simply takes the limit d~0. For convenience,
we list the results (neglecting first-order correc-
tions):

Ls(E)=[2
~
Zs(E)

~

E/(fiu~s)]

When the pair potential varies slowly on this scale,
the loca/ va, lue of the S-metal pair potential (at
x =0) is reflected by tunneling. Numerous
sample-dependent factors may affect this local
value. We shall discuss these in the next section.

At this point, it is interesting to compare the
utility of proximity-effect tunneling (PET) as a
probe of bulk (asymptotic) S-metal properties, with
that of the conventional tunneling experiment.
The ratio of the spatial resolution in PET to that
in conventional tunneling provides a measure of
the improved ability of PET to probe bulk proper-
ties in the S metal. The ratio is equal to

g(E) L (E)
L,(E)

I
Z.«)

I Fx

I Zn «)
I
uFs

(3.17)

If the S metal is Nb and the E metal is Al, then at
24 mV (approximately the position of the
longitudinal-acoustic phonon peak in the Nb a F
function), Zs(24) =2.8, Z~(24) =1.6, and

uF~/ups ——2/0. 61 (using the free-electron value for
Al and 0.61 X 10 cm/sec for Nb), so that we esti-

mate the ratio to be 5.8. Thus, at this energy, the
PET probe averages information over a range
which is 5.8 times larger than the range of the con-
ventiona1 tunneling probe. For an absolute com-
parison, note that Ls(E) =28 A for Nb at 24 mV
in the conventional experiment, while L (E)=165
A in the PET case.

The situation for the 2 15 compounds is even

more dramatic. In these materials the coherence
length is shorter than that in Nb (-400 A) by a
factor of 1O. For example, in Nb3Sn the value of
uFs is (for material having a T, of 17.9 K)
0.2)&10 cm/sec and A=Zs(0) —1=1.78, thus,
the ratio is at least [since Zs(E) & Zs(0)] equal to
11. On an absolute scale, Ls(E) is thus at most (at
20 mV) of the order of 10 A. This is to be com-
pared to L (20)=200 A for an Al-Nb3Sn PET
geometry. Clearly, if metallurgical difficulties can
be avoided, the PET experiment should give a far
better characterization of the bulk properties of
this material. Similarly, by implication, a PET
study of any of the A15 metals should be intrinsi-
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cally less sensitive to surface damage of the A15
metal than a conventional tunneling study.

IV. CLASSIFICATION OF SOURCES OF SPATIAL
VARIATIONS AND 1HEIR INFLUENCES

We have demonstrated that the spatial resolution
of the tunneling probe is L (E). Since the pair po-
tentials which are probed in tunneling may differ
from their bulk values within a distance of L (E)
or more from the tunneling interface and/or the
NS interface, one must inquire into both the source
and the nature of the difference. We shall classify
the sources of spatial variations into two groups:
"ideal" and "nonideal" variations.

For an ideal variation, we assume that the EPI
spectral function and Coulomb pseudopotential are
given by their bulk values up to the interfaces.
Thus, in the ideal case, spatial variations in the
pair potential arise solely from the pair-density
function f (E,x) and the normalized density of
states N(E, x) [or, in the more general case, from
the two independent components of the matrix in
the large parentheses of Eq. (2.12)]. As mentioned

previously, these two functions vary on the scale of
a coherence length. Thus, the variation of the pair
potential due to these functions is slow compared
to L (E) (recall, we assume E» b, ). When assess-

ing the influence of the spatial variations due to
these functions, one must determine the degree to
which they are depressed below their bulk values
within L (E) of the interfaces. For example, in the
bulk S metal

f(E,x) =Re
0,

N(E, x) =Re
0,

where Qs [E A, (E) ]'——~ . At—the NS interface,
in the thin N-metal limit (d «iiiu~z/b, s~, these
functions are smaller than their bulk values, and
the "energy gap,

" meaning the energy at which
these functions are sharply peaked, is below the
bulk value. As the N metal is made more thick,
the depression of the pair potential at the NS inter-
face increases.

The qualitative influence of ideal variations on
the pair potential probed by tunneling is thus a un-
iform decrease in magnitude without any change in
energy dependence, since the kernel functions are
assumed to be the same at the interfaces as they
are in the bulk.

For PET in the thin N-metal limit, it was shown

in Ref. 2 that the change in magnitude at the in-
terface is of order Rb,s 2d——b,s/(AuF&) « 1, where

b& is the bulk-energy gap. Thus, for ideal varia-
tions in the thin N-metal limit, even though the
scale of variation is large compared to the resolu-
tion of the tunneling probe L (E), the size of the
variation is negligibly small, so the bulk S-metal
properties are indeed probed by the experiment to
an excellent approximation.

For the conventional experimental geometry, one
may employ the results of Ref. 2 to determine the
degree of depression of Aq at the tunneling inter-
face by identifying d as the tunnel-barrier width,
setting A~ ——0, and changing AUF~ to iA K/I
where Ed is real and large compared to unity, and
m is the electron mass. The thin N-metal layer is
thus converted to a thin-insulating barrier layer.
The change in magnitude of b~ at the S-metal bar-
rier interface is then 2db, sl(fi E/m)« 2md b,s/iri, which is negligibly small for d
less than 40 A or so. We conclude that in the con-
ventional geometry as well as in the thin N-metal
PET geometry, ideal variations have little influence
on the pair potential measured by tunneling.

Under nonideal variations, we consider three
classes: variations in a (co,x)F(co,x) and p~(x) at
interfaces due to (i) boundary conditions, (ii)

changes in metal structure near interfaces, and (iii)
imperfections near the interfaces. In the first class
of nonideal variations, we confront changes in the
local electron. and phonon densities of states which
occur solely due to the absence of translational in-
variance in one direction. Yaniv' has obtained the
local electron density of states at a metal-metal in-

terface for tight-binding electrons in a simple cubic
lattice. His results show that by the third atomic
layer away from the interface, the local electron
density of states is very close to its bulk value.

It is not difficult to use the analog of the tight-
binding electron calculations of Yaniv to obtain the
local phonon density of states at a metal-metal in-

terface, as long as one considers only nearest-
neighbor coupling. One finds in this case that the
local phonon density of states also reaches its bulk
value within a few layers of the interface.

We may conclude from these model calculations
that the first class of nonideal variations leads to a
rapid change in the local EPI spectral function and
Coulomb pseudopotential as one moves away from
an interface. At a distance of only a few atomic
layers, these functions have nearly attained their
bulk values. Because this scale of variation is al-
ways much smaller than L (E), such variations
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have negligible effects on the measured tunneling
density of states, according to the results presented
in Sec. III.

In accounting for the second class of nonideal
variations, we confront the possibility of a
mismatch in lattice potential and structure at the
interface. In this case, however, the "healing
length" for the lattice structure and potential
should be of the order of an atom layer or so, due
to electronic screening. We conclude that the ra-
pid changes produced by these variations will not
be resolved by the tunneling probe. This leaves the
third class of nonideal variations. We shall argue
below that variations of this sort may lead to
changes in the pair potential which are sensitively
probed by a tunneling measurement, either of con-
ventional or of thin .V-metal PET variety.

When there is structural disorder (dislocations,
vacancies, many grain boundaries) near interfaces,
the "healing length" need not be the ideal value of
two or three atomic layers, but may extend more
than L (E) from an interface. The same remark
also applies to impurities. If one metal is a metal-
lic compound, one has the additional possibility
that the metallic region adjacent to the interface is
rich in one component of the compound. To be
definite, we shall say that the impurities or disord-
er extend through a region of width h. Beyond
this distance, we shall assume that the metal is in
its pure, ordered bulk state. From remarks already
made, it is clear that if h «L (E), then the spatial
variation in this layer will not be probed by tunnel-

ing, i.e., the energy dependence reflected by tunnel-

ing will still be characteristic of the bulk metal.
We may therefore consider only the case for which
h &L(E).

A layer of imperfections influences the pair po-
tential by changing a I' and p* and producing
scattering. Both a and @*may fluctuate on the
scale of a lattice constant, but such rapid changes
are averaged over the length L (E) in a tunneling
measurement. These parameters may, however, ex-
hibit a progressive average decrease as the interface
is approached, causing the pair potential to decay
accordingly.

Such decreases in the magnitude of the pair po-
tential probed by tunneling may lead to
anomalously small ratios of measured gap values
to k&Tc if the extent of the imperfect layer is
greater than a coherence distance (the range of the
tunneling probe at the energy gap). Indeed, this
condition may be difficult to avoid in certain ~15
compound superconductors, because of their rela-

tively short coherence lengths. In principle, the
probe range L (E) might be increased by construct-
ing a proximity-effect sandwich from the 315 ma-
terial, thereby yielding a more bulklike result.

But the energy dependence of a (co,x) and
F(co,x} is affected by the presence of imperfections
as well. The origin of changes in the energy varia-
tion of a (co,x) involves details of the EPI-matrix
elements which are not, at present, well under-
stood. Because of this we shall neglect the possi-
bility of significant alterations in the energy varia-
tion of this function, and concentrate on changes
in the local-phonon density of states, F(co,x),
within the layer of imperfections.

It will certainly be true that if there exists sharp
Van Hove singularity-associated structure in the lo-
cal phonon density of states for a pure material;
then the effect of imperfections will be to broaden
this structure by the introduction of a phonon life-
time. The extent of the effects of such broadening
depends on the value of the phonon lifetime,
7 ig(E), at the relevant energy. When A/r~s(E) is
comparable to or larger than the characteristic
width of the Van Hove peak structure, then such
broadening will decrease the peak height as well as
shift the peak to a lower energy [because F(co,x} is
normalized and the phonon spectrum has a cutoff].
In addition, the phonon lifetime is certainly a de-
creasing function of energy, so that the effects of
imperfections will be most severe at the higher en-
ergies (corresponding to higher q values, say

. q & h '), especially those near the cutoff of the
spectrum.

We conclude that nonideal variations of class
III, i.e., imperfections, can significantly affect tun-
neling measurements of the energy-dependent pair
potential when the spatial extent of the damaged
region exceeds L (E}. The nature of the effect is to
decrease the magnitude of the pair potential meas-
ured and possibly alter the shape of the local pho-
non density of states, especially at energies near the
phonon-spectrum cutoff.
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