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Variational calculation of NMR relaxation of diffusing iona by impurity centers
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The relaxation rate of a diffusing spin influenced by an impurity center is treated. We present
both a qualitative scaling argument which can predict the dependence of the rate on various
parameters and a variational principle which can be used to obtain a quantitative result accurate
to within about 12% for a simple trial function. The methods should be useful for the study of
NMR in fast ion conductors in situations, such as anistropic diffusion in a low-dimensional sys-
tem or impurity-influenced diffusion rate, where exact solutions of a continuum diffusion equa-
tion with a sink are not obtainable. For example, we treat (i) the standard three-dimensional
case with a r interaction and compare the simple variational calculation with the known exact
result, and (ii) a quasi-one-dimensional system which has not previously been solved.

I. INTRODUCTION

The motion of rapidly diffusing light ions is central
to such topics of current interest as superionic con-
ductors, metal hydrides, and muons in solids. NMR
[or muon spin rotation (p,SR)l has proven to be a

most effective probe of this motion. ' Although
much information can be gained by motional
linewidth narrowing of the interaction with other nu-
clear spins and spin-lattice relaxation caused by cou-
pling with host nuclei and electric field gradients

(efg), for spin ) 2, relaxation due to impurity

centers can often be an even more effective probe. '~
Basically this is because, if the impurities are station-
ary, only single-particle motion is involved whereas
relative motion of two particles or a particle and a va-

cancy are required to describe nuclear dipole-dipole
or efg interactions. Further, in the slow hopping re-
gion where relaxation is controlled by the time it
takes a spin to diffuse to the center, the observed re-
laxation rate is nearly independent of interaction
strength and thus a rather direct measure of single-
particle diffusion. Relaxation by impurities can also
be used as a "tagging" method to determine which
species is diffusing in complex solid electrolytes.

The most commonly studied type of impurity has
been the paramagnetic ion. If one is fortunate
enough to have a dominantly nearest-neighbor-only
interaction, as is the case in PbF2'. Mn, resulting
from a transferred hyperfine coupling which greatly
exceeds the classical dipole-dipole value, the problem
can be solved analytically' in terms of discrete hop-
ping and the correct lattice geometry accounted for. '
However, the long-range dipolar interaction is not
ammenable to such relatively simple treatment. In
this case one generally resorts to a continuum ap-
proximation although a recent numerical calculation
has been done for a discrete lattice. " 6 The magneti-

zation at point r influenced by an impurity at the
origin is described in the continuum model by

Here M is the component of M (understood to be in
the rotating frame if o. is a component transverse to
the applied field) whose equilibrium value is M,
q ( r ) is the relaxation rate assumed to exist' if the
spin is held fixed at r, and D ( r ) is a diffusion
coefficient which we allow to be anisotropic and
dependent on r in general.

For the case of isotropic, homogeneous diffusion
D ( r ) =D and average dipole interaction

q, ( r ) = rior~, Eq. (1) can be solved in the steady
state in terms of Bessel functions and the relaxation
rate for the spatially averaged magnetization deter-
mined. ' Nonetheless, at 1east two problems pro-
vide motivation for approximate, simple solutions to
the more general case. The first concerns quasi-one-
dimensional (1D) systems where D is highly aniso-
tropic. The Li ion conductor LiA1Si04 (P-eucryptite)
is an excellent example, and recent NMR studies
have been made on iron-doped samples of the ma-
terial. The second is in regard to work on PbF2
doped with alkali ions' which shows that non-
paramagnetic centers can be important. Here one
does not expect a simple r 6 dependence of q ( r )
and the diffusion coefficient may be a function of r.

The purpose of the present work is therefore to
provide an approximate treatment of the continuum
model of Eq. (1) which can be used in important
cases where an exact solution is not possible. %e
first present a scaling argument which gives the form
of the bulk relaxation rate and then derive a varia-
tional principle which is applied to the quasi-1D sys-
tem and also worked out for the 3D case. The htter
is done in order to provide a means of comparing the
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result obtained with a simple trial function to an ex-
act calculation. Attention is confined to slow hopping
(rate limited by time it takes to diffuse to region of
impurity) since it is known' that in the fast hopping
regime the interaction may adequately be approximat-
ed by nearest neighbor [see argument under Eq.
(10)] and thus the discrete hopping techniques em-
ployed.

II. QUALITATIVE SCALING ARGUMENT

T '=NAV/r —NrpD (3)

where the latter expression holds for an isotropic dif-
fusion and 4 V with 6 V = ro.

The size of ~ V is determined by equating

r =1/q(rp)

where q(ro) ' is the time it takes to relax at the
boundary. [We are now assuming an isotropic
7i( r ) =ri(r). ] The sense of Eq. (4) is that if
q(ro) r ( 1 the particle does not spend sufficient time
in the region to be relaxed. If, for example,

We show here how the familiar slow-hopping
result T ' ~N(C/D)'~4D may be derived by a simple
scaling argument. Here T is the relaxation time, a di-

polar ri (r) = Cr is assumed, D( r ) =D is isotropic
and homogeneous and N is the number of impurities
per unit volume. The value of such an argument is
that it can, as done here, readily be applied to other
situations.

In the slow hopping case T = To, where To is the
average time required for a diffusing ion to first en-
counter an impurity, it is being assumed that relaxa-
tion effectively takes place instantly once the impurity
is encountered. We imagine that the sample of total
volume Vis divided into V/5 V regions each of
~hose volumes 4 V represents the volume over which
an impurity is active. This is, if the ion is not in a
region 4 Vwhich contains an impurity, it experiences
no relaxation, but it is relaxed once it diffuses within
an impurity-containing region. For a nearest-
neighbor interaction obviously 5 V = ao, where ao is
the nearest-neighbor interaction distance. The rela-
tion between 5 V and rl(r) and D will be discussed
shortly. For the moment we take AVas given and
define ~ as the time a diffusing particle spends in 4 V.

For isotropic diffusion and 6 V, the effective hopping
time is r —(5 V)'~'/D. Since there are t/r, different
4 V 's visited in time t, and the probability that a given
4 V contains an impurity is N 4 V, we have

N, ,=Nb Vr/r,

where N; „ is the average number of impurities en-
countered in time t. The slow-hopping relaxation
time is that time for which N;, =1, so the rate is

7i(r) = Cr "and r = ro /D for isotropic diffusion, Eq.
(4) gives ro ——(C/D)' " 2 and from (3)

T ' —ND(C/D)' '" ", (5)

so that the (C/D)'~ dependence is recovered for
n =6.

The usefulness of the argument is better illustrated
for quasi 1D where the solution is not already
known. Here the particle diffusion is highly anisotro-
pic with B[]» Dq ~here D[] and Dq are components
of B parallel and perpendicular to the 1D channel,
respectively. (We assume that spin diffusion, which
may be nearly 3D even in the channel structures is
negligible at the relatively high temperatures of in-
terest. ) The region 6 Vis still spherical as long as
q( r ) depends only on r. Some care must be execut-
ed in the calculation of 7 (ro) to use in Eq. (4). The
time initially to hop out of the region is of the order
of rp /D(( for D(( » Dq since it is sufficient to move
just along the channel. However, if the motion is re-
stricted to 1D, the particle makes repeated returns to
the region, so that the time the particle actually
spends within ro, which is the proper definition of v,
tends to infinity. More preceisely, for a 1D random
walk of duration t, a particle spends an amount of
time of the order of (rot/D(() '~2 within a distance ro
of the origin. Hence, it is not correct to take
r = ro /D((. As shown in Appendix A, the proper
choice is

r = r'/(D (D )' ' (6)

for the time spent within a distance ro of the origin.
Use of Eqs. (6) and (4) thereby gives

( C/QD P ) Ij(n 2j—

1

N.1lIlP
Tj

1/2

NA V= t(rgr(() '~~N/((, V
& II

so, analogous to Eq. (3), we have

T '=NhV (/r rj)(('~2 —Nro(D&D(()'~' (9)

We determine the number of impurities encoun-
tered in time t as follows. The regions b V form
chains as shown in Fig. 1. A particle stays on a given
chain for an average time rq = ro /Dq and hops
between regions on a chain at a rate r((' = D((/ro.

For t/rz » 1, the number of different chains en-
countered in time t is N,„„„,= t/r~ During t.he time
rq spent on a given chain, rJr(( "hops" (jumps
between regions) are made and a distance ro( rj/r(()' '
is covered, in which (rJr(()' different regions of
length ro are visited, i.e., a 1D random walk. The
number of impurities encountered is then the
number of chains encountered X number of regions
per chain, X number of impurities per region, and
thus
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FIG. 1. Quasi-1D lattice divided into chains of spheres of
radius ro. In time t » 7.

&, (vt/F[[) spheres are visited on
each chain and t/7~ different chains are visited,

Use of (7) then gives

T ' —NC'«" 'l(D D )-"n
J. II

(10)

III. VARIATIONAI. METHOD

It is convenient to consider the Laplace transform
of Eq. (1)

V (D '7P) —qP —sf+ EM(0) =0

where

a relation which is confirmed by the variational calcu-
lation presented in Sec. III.

The above considerations make sense only if the
distance ro —(5V)'~3 is larger than the distance of
closest approach, which is just the near-neighbor dis-
tance ao for simple hopping. If the calculated ro in

Eq. (4) or (7) is less than ao, the particle does not
stay in the neighborhood of an impurity long enough
to be relaxed, and the interaction is effective only at
nearest-neighbor distance. Then, as mentioned in
the Introduction, one can regard the interaction as
nearest neighbor. Also, the argument is valid only if
ro is much less than the distance between impurities,
i.e., NA V (& 1. Otherwise the range is sufficiently
long that it is not necessary for the particle to diffuse
to the center.

across the surface of the sample. The usual tech-
nique for low-impurity concentration is to assume
that each impurity acts independently and to solve
Eq. (11) for g = g( r ), that is a single impurity at the
origin, with the boundary condition of no diffusion
across an outer surface So. The volume enclosed by
So is Vo= N ', the average volume per impurity
[note the difference between Vo and 5 V (Sec. II), the
volume over which an impurity is effective]. No dif-
fusion is also assumed to take place across an inner
surface S,, which for an isotropic g(r) and normal
particle diffusion is just a sphere of radius ao, the dis-
tance (nearest-neighbor) of closest approach.

The standard variational approach" is to allow P to
change to P+8$ in the interior bounded by S; and So
but to satisfy the proper boundary conditions, which
in this case means n D V8$ =0 on S~ and So where
n is a unit vector normal to the surface. By multiply-
ing Eq. (11) by 8$, integrating over the volume,
making use of the divergence theorem and the identi-
ties $8$ = —,8($'), V'8$ D '7 p = —, 8( '7 p ~ D V p)
for a small change 8$ one obtains

and thus is stationary with respect to small perturba-
tions from the correct solution. One can further
show that

I = d rpohM(0) —= 10 (14)

if pa is the exact solution and that I ( Io for any oth-
er function P which satisfies the boundary conditions.
Thus the variational calculation proceeds by choosing
a trial function which satisfies the boundary condi-
tions and whose parameters are chosen to maximize
I. %e perform the calculation below first for an iso-
tropic D( r ) =D and q(r) = Cr where the approxi-
mate solution may be compared with the known
result and then for the highly anistropic quasi-1D
system where an exact solution is not known.

where the integral I is

I = J „d r[2pdM(0) —(s +g) Q
—Vp D VQ]

(13)

p= J dte "[M ( r, t) —Mo]

EM(0) =M ( r, t =0) —Mo

and all quantities in Eq. (11) except the laplace vari-
able s may be functions of position r . The complete
equation has

g= Xg( r —r~)
J

where the sum is over all impurity sites and the
boundary condition is that there be no diffusion

Isotropic diffusion

For isotropic diffusion and relaxation g(r) it is evi-
dent that the outer surface So must be a sphere of ra-
dius R and that 4mR /3 =1/N. The inner surface S;
is a sphere of radius ao and P( r ) is of course a
function of r only. For slow hopping the impurity is
effective over a distance ro & ao as discussed in Sec.
II, so we may imagine that P =0 (i.e., the spins are
completely relaxed) for r & ro. The trial function is
therefore chosen to be zero for r ~ ro where ro is
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now a parameter to be determined by the maximiza-
tion of I. As long as the result gives rp ~ ap the
boundary condition on S&, ( Bp/Br ), = 0, is obviously

satisfied. Other treatments of the problem' have also
employed an approximate solution which is zero
within a critical distance from the impurity. To a first
approximation, the relaxation term q(r) can be ig-

nored for r & r p so that Eq. (11) reduces to the radial
wave equation whose solution has Bp/Br ~1/r2 for
small r. That is, the current crossing a sphere of ra-
dius r is independent of r.

%e therefore pick as a simple trial function

R
, (r —rp)R2 r

0, r~fp
t

—rp, r ~rp

(15)

(rp) ap) which satisfies the boundary conditions
Bp/Br =0 at ap and R and which has

Arp
2

t

proportional to 1/r' for r « R.
The parameters 3 and r p are determined by using

(15) in (13) and maximizing the resulting integral I.
For R )) rpwe have

I = mhM(0)—AR — msA2R3—
3

8mA2Crp3 "

( ) ( ) ( )
4n A'Drp—, (16)

where we have taken q(r) = cr "with n & 3. Max-
imizing I with respect to 3 gives

dM(0)
s+I

where P = A is the volume average and

6Crp3 "

(n -l)(n -2)(n -3),
The simple form of Eq. (17) shows that the average
magnetization decays as a single exponential with rate
I". Maximizing I with respect to rp gives

B. Quasi 113

The problem is assumed to have axial symmetry,
so we write Eq. (11) in cylindrical coordinates as

1

Dp +— p
—(q+s)/+EM(0) =0O'Q A. 8

p Bp Bp

(21)

where X = DJD p « 1 and p' =xz+y'. We choose
the geometry of the outer surface Sp by demanding
that the current J just inside Sp should be radial in-
ward. The rational for this is that if J is not so
directed, the particle will prefer to move to another
impurity, which leads to an obvious contradiction to
the definition of Sp as the surface within which the
impurity at the origin is influential. The current is
given by

-8$ + &- 8$
Bz Bp

(22)

where z and p are unit vectors. A radial current
means T xr" =0, where r" =(zz+ pp)/r The con. di-
tion for this from (22) is

For n =6, we have rp ——0.56(C/D)' 4 and
I' =9.4ND(C/D)' . The exact result'7 'z is
I' =8 4ND. (C/D)'~, so we are able to come within
about 12% with the simple trial function. If the prob-
lem is replaced by one in which g(r) = 0 for r & r p

and q(r) cc for r & rp, i.e., complete relaxation
within rp and no relaxation beyond r p, it is found
that rp=0. 68(C/D)'~'. Note that our method
overestimates I'. This is as expected since Eq. (17)
shows that I is proportional to I/I, and I is a max-
imum for the correct solution.

For future reference (Sec. III B) it is useful to note
that as long as rp ((R, the trial function

& =A [I —(rp/r)](r & rp) gives the same results as
obtained with Eq. (15), and this is simply the solu-
tion to Laplace's equation which is zero at rp.

2(C/D)
(n —l)(n -2)

' 1/(It —2)

(19) Bp Bp

which is satisfied if
whereby (18) may be rewritten as

I =4mNDrp 1+ 1

N 3

where we have used 4mR3/3 = N ' with N the
number of impurities per cm'.

(20)

Q=f(z +p /h)

Thus we choose Sp as an ellipsoid of revolution
(prolate spheroid) described by

z'+ p'/it=R'

(23)

(24)
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as sketched in Fig. 2. The semimajor axis R is
chosen to make the volume equal the volume per im-

purity,

ZR'=N-' .
3

(25)

p' = a'(1 + (') (1 —u')

z =agu

(27a)

(27b)

where ~u ~
~1, 0 ~ ( & ~. (Axial symmetry is as-

sumed so that the azimuthal coordinate is not need-

The highly prolate shape of So makes good sense
physically. Since motion in the z(ll) direction is

much easier than in the p(z) direction, an ion can be
attracted to an impurity much further away in the II

than in the s direction. Indeed the relation from
(24) z,„/p,„=A.

' = D~~/Dq says that the times to
diffuse a parallel distance z,„and a perpendicular
distance p,„should be comparable, where z,„=R
and p,„=A.

' 'R are the parallel and perpendicular
dimensions, respectively, over which the impurity is
influential.

It is convenient to make a change of variables
p'= p/X'~2 whereby Eq. (21) becomes

D '7 P —[g(z +h p' ) +s]/+AM(0) =0, (26)

and the outer and inner surfaces are r' = R and
z'+&p'=ao, respectively, where r' =z +p' and
the Laplacian '7'P is with respect to z and p'. The
problem thus is transformed to one with isotropic dif-
fusion and a spherical outer boundary but with oblate
spheroidal inner boundary and surfaces of constant
q, as indicated in Fig. 3. The fact that the same
transformation both changes V DV to the normal
Laplacian and makes So spherical confirms the
geometry chosen for So.

%'e now construct a trial function which satisfies
Bg/Bn =0 at So and, by analogy with the treatment
of the isotropic problem, has P =0 between S; and
some intermediate surface S'. Further analogy sug-
gests that P satisfy Laplace's equation in the region
between S' and So. This is facilitated by the use of
oblate spheroidal coordinates" g and u related to p
and zby

a

FIG. 3. Surfaces of Fig. 2 in transformed coordinates.
Dashed curve is surface (= (0 within which trial function
has /=0.

(&40
y=, A (tan 'g —tan '$0)

~Co
—,
'

m —tan '(0
(2g)

The value (0= k'~z is seen, by comparing Eqs. (26)
and (27) for X « 1, to make the surface (= $0 be
one of constant relaxation rate. This is the logical
choice, but for the moment we choose to keep $0, as
well as the characteristic length a, a parameter to be
used in maximizing the variational integral I. The
trial function (28) makes sense only if g =R /a » 1

at the outer boundary so that P goes to the constant
value A. We also must have (see Fig. 3) X'~'a & ao
and a(0 & ao. This imposes a relation between the
anisotropy ratio D JD~~ and the impurity concentra-
tion to be discussed later. We also must have (see
Fig. 3) X'~ a & ao and a (0 & ao.

The maximization of I is carried out in Appendix
B. The relaxation rate for $0 « 1, R /a » 1 is
found to be

ed.) Surfaces of constant g are recognized as oblate
spheroids which, for g « 1, resemble disks of radius
a and thickness 2a g. The trial function which satis-
fies P =0 on the surface g = go and is a solution to
Laplace's equation is"

I' =7.2/V'C'i4(D D )

and the characteristic distance is

(29)

FIG. 2. Inner and outer surfaces on which 9P/6n =0 for
quasi-1D diffusion. X =Dz/D, ~.

a =0.67(C/Dg)' '(Ds/Dj)' ', (30)

for q(r) = Cr '. The integral 1 is independent of (0
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as long as ((:p « I, so that no optimum value of gp is

found in this approximation.
For ((:p « 1 the perpendicular dimension (in the

untransformed coordinates) of the surface on which
/=0 is pp ——h,

' a =0.67(C/QDgD(() . This and
the form (29) are consistent with the scaling argu-
ment presented in Sec. II.

The condition R /a )) I which is necessary for a
linear concentration dependence may be expressed as

(DJD(() ))p''(v)prp)''

where p = Nap is of the order of the number of im-

purities per lattice stie, rip = C/app is the relaxation
rate at the nearest-neighbor distance a p and

rp = ap /D(( is the ID hopping time. For a highly ID
system, where DJD(( —10 ', the above condition is

rather stringent and departures from a linear concen-
tration dependence may be expected for conentra-
tions as small as 0.5 at. %

Comparison with experiments on the quasi-1D sys-
tem LiAISI04 (P-eucryptite) is discussed elsewhere. '4

IV. CONCLUSIONS

We have presented a physical scaling argument and
variational principle for calculating relaxation of
diffusing spins by impurity centers. These can be
useful in situations where the diffusion may be aniso-
tropic and/or position dependent and the interaction
strength is not the simple r~ dipolar form, so analyt-

ic solution of the diffusion equation with a sink is not
possible. Low-dimensional systems and the case'
where the impurity alters the diffusion rate are exam-
ples where the methods may be applied. Often one is
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APPENDIX A

We derive here Eq. (6), the expression for the
average time v, a diffusing particle spends within a
distance rp of the origin. It is given by

d7P(r ~ rp, r)
4p

(Al)

where P(r & rp, r) is th'e probability the particle is
within r p at time ~ and is expressed as

P(r ~rp, r) =
4p

d rp(r, r) (A2)

with p ( r, r ) the probability of being at position r at
time ~. For long times we have the standard result
for anisotropic diffusion.

mainly interested in the form of the result, such as
dependence of the relaxation rate on the weak inter-
channel diffusion D~ for a quasi-1D system, and it is
here where the present techniques are particularly
helpful.

As an example, we derived an expression for the re-
laxation rate in a quasi-10 material which, based on
the success of a similar trial function for 3D, should
be accurate to within about 12%.

p( r, r) =(24m) '(Dqr) '(D((r) ' 'exp( p /4Dqr) exp( ——z /4D((r)

with p2=x2+yz. This is normalized so that j d3rp( r, r) =1. Since

goo raoo

j g /e" yg=2
p 4p

the time integration in (Al) is readily performed with the result

+p 1~%'/2 sin8d8T= r dr
2DgD ' " "o [(r'sin'(((/4D&) + (r cos 8/4D(() ]

(A3)

It is easy to see that the result for D~ ((D~~ then be-
comes

oblate spheroidal coordinates (27) the volume ele-
ment is"

r =
4 rrrp/ JDJD(( (A4) d r =2aa (((: + u )d((:du (BI)

APPENDIX B

We maximize the integral I using the trial function
of Eq. (28) for the quasi-ID system. In terms of the

for axial symmetry and the required gradient is
'(

((,
" +u 8$

(B2)
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The separate parts of I are then given by I = I~+ I2+ I3+ I4 with

2A AM(0) J d r(tan 'g —tan 'gp)
1~=2dM(0) J d3rIIr =

—,
'

vr —tan 'gp

12=—s Jt d3r(/~2= —sA2Vp,
Vo

13=—Dp Jr d'rI&gl = —SA'a
Vo

( Vp=
3

R ), if (p « 1, 8/a « 1. The "sink" integral

14= —C J~ d r(f~ (Xp =z )
Vo

is written as

~ /'dg(tan g
—tan '(p)'I4=- F(&),~ Z'a' "&0 (1 +g2)3

~here

=23 VphM(0) (B3)

(B4)

(BS)

(B6)

1
1

3 2 3 tan 'K
+ 1 + 1 —K'

+ 1-'
8 ~ '2(1+~)'8(1+~) '16~

i

tan 'K
K

1

1+K2

(B7)
With E = [g (1 —X) —Xl/X(1 + $ )

Since the integrand of (B6) is largest for g
—1 (as opposed to g « 1) and X =DJD p « 1, we can use the

1r )) 1 approximation for F(g) and thereby reduce (B6) to

(tan 'g —tan 'gp) 3~ )/2.
h. 'a' rp (1 + g') 16

= —3 ~ = —0543 CA. /a
) 5/2g3 gP (1 + g2)5/2

Maximization of I with respect to A and a then gives

aM(O) V,
s+r

with

(BS)

(B9)

and

1' = (SDpa +0.54CA, a ) Vp
'

a = (3 x 0.54/8) (C/Dg) X =0.67(C/Dp) (D~~/Dg)

(B10)

(Bl 1)

(B12)

By inserting the value of a (Bl 1) into (B10) and noting that Vp
' = N X = N(D JD p) from Eq. (25), we obtain

I'=7.2NC' (D P )'"

'Sandia Laboratories is a U. S. Department of Energy facility.
P. M. Richards, in Physics ofSuperionic Conductors, Topics

in Current Physics, Vol. 15, edited by M. B. Salamon
(Springer-Verlag, New York, 1979), Chap. 6; J. Bjorkstam
and M. Villa, Magn. Reson. Rev. 6, 1 (1980); D. Richter,
in Materials Research Society Symposia Proceedings, edited
by E. N. Kaufmann and G. K. Shenoy (North-Holland,
New York, 1981), Vol. 3, p. 233.

R. D. Hogg, S. P. Vernon, and V. Jaccarino, Phys. Rev.
Lett. 39, 481 (1977).

S. P. Vernon, P. Thayamballi, R. D. Hogg, D. Hone, and
V. Jaccarino, Phys. Rev. B 24, 3756 (1981).

4J. A. Brown et al. , in Materials Research Society Symposia

Proceedings, edited by E. N. Kaufmann and G. K. Shenoy
(North-Holland, New York, 1981), Vol. 3, p. 409.

5P. M. Richards, Phys. Rev. B 18, 6358 (1978).
M. E. Schillaci and R. L. Hutson (unpublished).

7H. E. Rorchach, Physica (Utrecht) 30, 38 (1964).
A. Abragam, The Principles of Nuclear Magnetism (Oxford,

New York, 1961), pp. 378—386 ~

D. Brinkmann, M. Mali, J. Roos, and E. Schweikert, Solid
State Ionics 5, 433 (1981).

' H. Chang, M. Engelsberg, and I. J. Lowe, Solid State
Ionics 5, 609 (1981).

"F.B. Hildebrand, Methods ofApplied Mathematics
(Prentice-Hall, New Jersey, 1952), Chap. 2.

' P. G. de Gennes, J. Phys. Chem. Solids 7, 345 (1958).
P. M. Morse and H. Feshbach, Methods of Theoretical Phy-
sics (McGraw-Hill, New York, 1953), pp. 115, 662.
P. M. Richards, Solid State Ionics 5, 429 (1981).


