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The authors have found that the NMR frequencies of Cu atoms which are near neighbors to
Cr atoms in dilute CuCr have an anomalous temperature dependence, in contrast with CuMn
and CuFe which display the usual form governed by a Curie-Weiss law. The authors show that
all the data can be explained by an ionic model of the magnetic impurity which assumes a defin-
ite 3d" configuration with a definite L-S ground state and includes intraconfigurational energy-
level splittings due to a crystalline electric field and spin-orbit coupling. Comparison of the
model predictions, including the effects of the impurity-electron—conduction-electron mixing in-
teraction in a perturbation treatment, with data on magnetic susceptibilities and on magnetic
atom hyperfine fields, leads to the conclusions that (a) Cr and Mn have the structure which cor-
responds to the free ion divalent configuration while Fe corresponds to a monovalent configura-
tion, (b) the crystal field at the site of the magnetic atoms is opposite of that usually assumed,

and (c) the Weiss temperature of CuCr is 2.9 £1.0 K.

I. INTRODUCTION

Iron group atoms in insulators are now well under-
stood. The same is not true when the host is a met-
al. The experimental methods which have been so
important for insulating hosts do not reveal enough
information (ESR) or do not work [electron-nuclear
double resonance (ENDOR)] in metallic hosts. We
have studied the NMR of Cu atoms which are near
neighbors to Cr atoms in dilute alloys of Cr in Cu.
We find that the NMR frequencies of these atoms
have an anomalous temperature dependence com-
pared with those found for Cr atoms which are near
neighbors to Mn or Fe atoms in similar dilute alloys,
but can explain the data by an analysis which leads to
a detailed picture of the electronic structure of these
and other iron group atoms in Cu.

The understanding of dilute alloys of magnetic im-
purities in nonmagnetic metal host is far from com-
plete. The term ‘‘magnetic’’ itself needs further clar-
ification when applied to a magnetic impurity which is
placed in a nonmagnetic metal. The mixing interac-
tion between the impurity electrons and conduction
electrons tends to reduce the magnetic nature of the
impurity atom. If the mixing interaction is strong
enough, the magnetic susceptibility of the atom in a
metal is nearly independent of temperature, and
much smaller than is typical for that species in an in-
sulator. We then say the atom is ‘‘nonmagnetic’’ in
the metal. If the mixing interaction is weak enough,
the susceptibility obeys a Curie-Weiss law, and at
temperatures comparable to or larger than the Weiss
temperature Tx the magnetic susceptibility is compar-
able to values found for the atomic species when im-
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bedded in insulators. We then say the atom remains
‘““magnetic’’ in the metal. Cr, Mn, and Fe in Cu are
examples of the latter behavior.

The absence of detailed experimental knowledge of
the magnetic atoms in nonmagnetic metals has per-
mitted a variety of theoretical descriptions, differing
principally in the nature of the assumptions about the
magnetic atom and its interaction with the electrons
of the host-metal conduction band. Historically three
models have been of particular importance: (1) the
so-called “‘s-d >> model, (2) the Friedel-Anderson
model, and (3) the Hirst model which is closely relat-
ed to a picture proposed by Schrieffer and Mattis.

All three models may be described in terms of the
general Hamiltonian:

H=H2+Himp+Hmix ) (1)

where H, describes the conduction electrons, Him,
describes the impurity, and H ,;, describes the mixing
between the conduction electrons and the impurity
electrons. For the iron group impurities, to which we
are restricting this discussion, the important mixing is
that between the impurity d electrons and com-
ponents of the conduction electron wave functions
which may be expressed as d components. H,
represents the kinetic and potential energy of the
conduction electrons; since it is the same for all three
models, we do not discuss it in further detail at
present.

We have conducted experiments on the CuCr sys-
tem using the technique of satellite NMR (which is
reviewed later in this article). To our surprise, the
temperature dependence of the results possessed
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most unusual properties. In attempting to explain
them we have found that the results shed a good deal
of light on the electronic structure of the iron group
impurities. We find that one of the above theoretical
pictures gives a simple, natural explanation of the
results. In Sec. II we review in more detail the
theoretical and experimental background. At the end
of Sec. II we give an outline of the rest of the paper.

II. BACKGROUND
A. Theoretical background

The earliest attempts' to treat the magnetic impuri-
ty problem used the s-d model which assumes that
the impurity has net spin S and magnetic moment
g [.LBS., where up is the Bohr magneton and g is a
constant of proportionality called the ‘‘g value.”” This
model makes no attempt to deduce the spin and g
value from first principles. The magnetic susceptibili-
ty of such an atom would obey Curie’s law were it
not for the mixing with the conduction electrons.

The form of mixing interaction assumed is an ex-
change interaction:

Hyix=—J 38-5,8(F) )}
i

with the ith electron of spin §;. This model leads to
the Kondo effect,?> and thus explains why the mag-
netic susceptibility obeys a Curie-Weiss law rather
than Curie’s law.

Friedel* viewed the problem as a scattering prob-
lem, distinguishing magnetic from nonmagnetic
atoms by whether or not the up-spin and down-spin
scattering resonances were at different energies (mag-
netic atom) or coincident in energy (nonmagnetic
atom).

Anderson® proposed a modification of the Friedel
approach to explain why some atoms were magnetic,
whereas others were not. (In essence, circumstances
which lead to an energy splitting between the up and
down spin resonances.) In its simplest form, his
theory takes the impurity orbital state to be nonde-
generate and approximates

Himp=E(”[+nl)+U(”1nl) , (3)

where the number operators refer to the d electrons
on the impurity. The term proportional to E
represents the binding energy of the Coulomb poten-
tial. The term proportional to U represents the
Coulomb repulsion between opposite spin states due
to the symmetric spatial part of their total two-
electron wave function. Anderson uses a mixing
term of the form

H pix= 2 Var( CI:oCdo' + Cjacko) ’ 4)

ko

where the c,:, operator creates a conduction electron
with wave vector k and spin o and ¢, creates an im-
purity d electron with spin o. The Coulomb term in
Hnp tends to make the impurity magnetic while the
mixing term tends to break down the magnetic mo-
ment. The relative size of these two interactions
determines whether or not a moment exists. The
form of the mixing [Eq. (4)] makes the Hamiltonian
a many-body Hamiltonian; Anderson treated it in
Hartree-Fock (HF) approximation. With the HF ap-
proximation, the Anderson model produces virtual
bound states with a width A which is determined by
the strength of the mixing interaction. The condition
for the survival of a magnetic moment in the pres-
ence of the mixing interaction is then expressed in
terms of the ratio U/A—if the ratio is large enough
the moment survives. Blandin® expanded on
Anderson’s suggestions to treat the orbitally degen-
erate case. Cogblin and Blandin’ have treated the or-
bitally degenerate Anderson Hamiltonian with a
spin-orbit interaction added. Schrieffer and Wolff?
showed that in the strongly magnetic limit the s-d
form for the mixing interaction can be derived from
the Anderson form.

Schrieffer and Mattis® argued that the Hartree-Fock
approximation did not treat the correlation energy
properly, unduly favoring magnetism. They em-
phasized the importance of orbital degeneracy and
Hund’s rule matrix elements in stabilizing the mo-
ment. Our results strongly support such a picture.

Anderson’s model treats the Coulomb interaction
as large and important. The fact that some 3d alloys
do have a Curie-Weiss magnetic susceptibility and
hence a magnetic moment indicates that, in terms of
his model, U/A must be greater than unity for at
least the magnetic alloys. Thus Anderson recognizes
that Hin, is larger than H,,, for the magnetic alloys.
Hirst!® argues that if Hiy, is larger than H ;, it
should be treated in more detail than Anderson treats
it before the mixing interaction is considered. Hirst
models the magnetic impurity atom in a metal host in
close analogy to its circumstances in an insulator.
Flynn, Peters, and Wert'! independently concluded
that an ionic model was needed. They based their
conclusions on extensive studies of the variation of
the magnetic susceptibility of dilute liquid alloys of
iron group atoms as the valence of the host alloy is
changed.

Hirst’s picture is closely related to the Schrieffer-
Mattis concepts. In an insulator the number of 4
electrons on the magnetic atom is integral, depending
solely on the ionic state of the atom. The magnetic
atom d electron spins are coupled together to form a
total spin S and the orbital angular momenta are cou-
pled together to form a total angular momentum L.
The magnetic atom has a rich atomic level structure
including L-S, crystalline electric field, and spin-orbit
splittings. Hirst argues that the atomic structure of
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the magnetic atom is not much different when it is in
a metallic host—the level splittings change somewhat,
but the basic structure remains. The integral 34"
electronic configurations will have different energies
in general: designating the configuration with the
lowest energy ground state as 34", the 3d"~!, and
3d"*! configuration ground states have higher ener-
gies. The impurity electron-conduction electron in-
teraction mixes the configurations to some extent,
giving the 3d"~! and 34"*! configurations a lifetime
broadened level width, but the ground state cannot
decay in an energy conserving process and has a nar-
row width produced only by virtual decay processes.
If the ground-state level width is less than the split-
ting between the ground-state 3d” configuration and
the first excited alternate configuration ground state,
the impurity is characterized to a great extent by the
3d" configuration; further if the width is less than the
intraconfigurational fine structure splittings, the de-
tails of the atomic structure manifest themselves and
are not obscured, contrary to widely assumed treat-
ments with the other models. Having first treated
the impurity Hamiltonian in detail, Hirst treats the
mixing interaction as a perturbation.

B. Experimental background

Just as the many-body nature of the mixing in-
teraction has hindered understanding of the theoreti-
cal aspects of the dilute alloys, the difficulty of mea-
surements has hindered the establishment of the ex-
perimental facts. Most of the dilute alloys are a
problem metallurgically, i.e., few of the impurities
make nice, random solutions with any appreciable
concentration of the impurity. The impurity atoms
have a strong tendency to form clusters. Clusters of
impurities often have a Curie-Weiss susceptibility
with a much lower Weiss temperature than isolated
impurities, and hence at low temperatures the clus-
ters dominate the bulk susceptibility. It is only with
very dilute concentrations (as low as 5 ppm) of im-
purities and a careful study of the concentration
dependence that one can be certain one is measuring
the susceptibility of isolated impurities. Bulk tech-
niques in general are at a disadvantage for application
to nonrandom solutions because they only measure
average properties. Quantitative determinations are
difficult. Our group has developed satellite NMR as
a technique for probing dilute alloys. It avoids the
problems of bulk measurements.

The NMR frequency of a Cu nucleus which is near
a magnetic impurity atom is shifted relative to that of
pure Cu by a change in Knight shift. The shift of the
Cu Knight shift, AK, from its value, K, in pure Cu
produces weak resonances called ‘‘satellites’’ in the
tails of the *’main line”’ resonance produced by Cu
nuclei more distant from all impurities. In samples
of metal powder AK arises primarily from the isotro-

pic hyperfine coupling and hence is due to the Fermi
contact interaction. It thus represents a spin polariza-
tion of the conduction electrons.

During their study of CuCr near room tempera-
ture, Aton, Stakelon, and Slichter!? found that the
satellite resonances have an anomalous temperature
dependence. We have followed the temperature vari-
ation of AK from 8.0 to 334 K for two neighbor
shells and from 8.0 to 278 K for a third shell. For
CuFe'»*and CuMn'’, AK/K obeys a Curie-Weiss
law. The data from CuCr have a marked deviation
from a Curie-Weiss law; however, all three satellites
exhibit the same temperature dependence. In this ar-
ticle we provide detailed data and theory in support
of an ionic model, only sketched in previous publica-
tions,'®!” we have used to explain the observed tem-
perature dependence. The basic concepts of the
model follow Hirst; however we find it necessary to
modify some aspects in order to account for the
behavior of CuCr, CuMn, and CuFe. We demon-
strate satisfactory agreement between the model and
the data for all three of these alloys.

In Sec. III we develop the ionic model following
Hirst. We discuss the treatment of the mixing in-
teraction and the spin polarization which it produces
in the conduction electrons. We describe the calcula-
tion of the spin and orbital magnetic susceptibilities,
including the effects of the mixing interaction. Final-
ly, we describe the calculation of the impurity hyper-
fine fields from the model.

In Sec. IV we discuss the experimental procedures
using the gathering the NMR satellite data on CuCr.
In Sec. V we compare the experimental data with

the model developed in Sec. III. We show that the
CuCr NMR satellite data can be fitted by the model
and determine the model parameter values. Compar-
ison of the bulk impurity magnetic susceptibility of
CuCr, calculated from the model with no additional
free parameters, with the published data shows agree-
ment within the experimental uncertainties. Extend-
ing the model comparison to CuMn and CuFe, we
find good agreement with the available data.

In Sec. VI we discuss other related experiments.

Section VII is a summary and a discussion of possi-
ble future experimental and theoretical work which
should yield further understanding of the dilute mag-
netic alloys.

III. THEORY

In order to understand how information about the
magnetic impurity state can be deduced from NMR
satellite data, it is necessary to understand the in-
teractions which are included in the unperturbed im-
purity Hamiltonian H,p,, the effect of the mixing in-
teraction Hpix, the relationship between the impurity
magnetic susceptibility and the satellite data, and the
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calculation of the susceptibility from the model. We
also discuss the hyperfine fields predicted by this
model.

A. Ionic impurity model

We follow Hirst!'® in development of the basic pic-
ture of the ionic impurity. The level splittings we
consider, in order of decreasing size, are as follows:

(1) A balance between the Coulomb repulsion en-
ergy and the one-electron binding energy stabilizes a
definite 3d" configuration with splittings of about 10
eV.

(2) The Coulomb interaction splits the many-elec-
tron state into L-S terms with splittings of about 1 eV.

(3) A crystalline electric field splits the orbital
states by about 0.1 eV.

(4) The spin-orbit coupling further splits the crystal-
field-split orbital states by approximately 0.01 eV.

The orbital angular momenta of the impurity d
electrons couple together to give a many-electron or-
bital angular momentum f; similarly the spins couple
to yield a many-electron spin S. The Coulomb in-
teraction splits the various L-S terms.

The energy of an electronic orbital state localized at
an atomic site within a crystal depends on its orienta-
tion with respect to the crystal due to the crystalline
electric field present at the atomic site. Yafet!® dis-
cussed the nature of the crystal field present at the
site of an impurity in a Cu host and showed that it is
composed of two contributions of nearly the same
magnitude with opposite signs. Thus for a dilute al-
loy the sign of the crystal field depends crucially on
the relative magnitude of the two terms.

In cubic symmetry the crystal field splits the five d
one-electron orbitals into a doublet level with e; sym-
metry (3z2—r%x?—y?) and a triplet level with ¢y,
symmetry (xy, xz, yz). Hirst examined experimental
evidence to determine which term is lower, conclud-
ing that the triplet'is lower than the doublet; we find
that it is necessary to assume that the doublet is the
lower level in order to explain our data. In cubic
symmetry the crystal field is customarily represented
by an equivalent spin operator?’

Hcer=(A/120)(03+50%) (5)

where the subscript indicates the rank and the super-
script indicates the component of the spherical tensor
operators. Since both contributions to the crystal
field are constrained by symmetry to be of the form
of Eq. (5), we let A represent the sum of both terms;
its sign is determined by the larger of the two oppos-
ing terms.

The spin-orbit interaction, conventionally expressed

He=)\L-S , 6)

couples the orbital and spin degrees of freedom. A is
positive for 3d" configurations with » less than five

TABLE 1. 3d" ground-state L-S configurations.

n L S
4 2 2

5
5 0 5
6 2 2

3
7 3 3

and negative for configurations with » greater than
five.

The nature of the level structure of the many-
electron, impurity state depends on the relative mag-
nitudes of the L-S splitting, crystal-field splitting, and
spin-orbit splitting. The spin-orbit splitting is always
smaller than the L-S splitting. The three general
types of structure are designated ‘‘strong,”” ‘‘inter-
mediate,”” and ‘‘weak crystal field”> depending on the
size of the crystal field relative to the L-S and spin-
orbit splittings.

Hirst adopts the intermediate crystal field approach;
we find this assumption to be consistent with our
data. The many-electron, ground state, L-S term is
determined by the Hund rules. Table I gives the
ground state L-S terms of the 3d configurations of
immediate interest. Figure 1 shows how the crystal
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FIG. 1. (a) Cubic crystal-field splittings of a D (L =2)
many-electron orbital state. Tllg states given to the left are
states of definite zcomponent L. The states with the tilde
are fictitious angular momentum states with constant of pro-
portionality a. The energy splitting is related to the crystal-
field operator Eq. (5). (b) Cubic crystal-field splittings of an
F (L =3) many-electron orbital state.
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field represented by Eq. (5) splits the many-electron
orbital states. The states given on the left in the fig-
ure are states of definite z component of L. The
states with the tilde are states of fictitious angular
momenta. Matrix elements of L between these states
are proportional to the matrix elements between the
real states; the constant of proportionality is designat-
ed by a. These states are convenient for calculation
of the magnetic susceptibility as described in more
detail later in Sec. IIID. For further details of the
ionic structure see Ref. 20.

B. Mixing interaction

Schrieffer and Wolff® have shown that when the
mixing interaction can be treated as a perturbation,
the Anderson mixing interaction given in Eq. (4) tak-
en to second order is equivalent to an interaction of
the s-d form given by Eq. (2). Hirst?! uses a mixing
interaction of the form derived by Schrieffer and
Wolff, but he allows for orbital degeneracy. He finds
it convenient to use an irreducible-tensor operator
notation for the purpose of calculations, but he gives
a schematic form of the interaction projected onto
the L -S ground state which makes the exchange form
of the interaction more transparent (this form does
not reveal the dependence on the wave vectors of the
conduction electrons present in the tensor operator
formalism) '%:

Huix=JsS S+ L-T+JsL-T854+--- , (D

where L and S refer to the orbital and spin angular
momenta of the impurity and 1 and § refer to the
orbital and spin angular momenta of the conduction
electron. This form shows that the mixing interac-
tion couples both the orbital and the spin angular
momenta of the impurity to the conduction electrons.

We use Hirst’s alternate form of coupling

Hmix= E[kk/a,:gamrol(f:lmlaICkma >

where the operator a,Ia creates an impurity electron
with z component of orbital angular momentum m
and of spin o, and the operator ¢y, creates a con-
duction electron with wave vector magnitude k, z
component of orbital angular momentum m and of
spin o. Ikk, is a matrix element which depends on k&

and k. The dependence of the mixing interaction on
spatial distribution and wave vectors of the conduc-
tion electrons is contained in Ikk,.

C. Spin polarization

The mixing interaction causes some of the magnet-
ic moment which is localized at the impurity site be-
fore the mixing perturbation is applied to ‘‘leak out”
into the crystal in the neighborhood of the impurity,
polarizing the conduction electron spins in an oscillat-

ing, damped, spin-density wave. Thus the spin den-
sity of the conduction electrons at the host crystal
sites in the vicinity of the impurity is changed from
the density which exists in the pure host metal. In a
metal, the polarization of the conduction electrons at
the nuclear sites couples to the nuclear moment by
means of the hyperfine interaction to produce the
Knight shift. Therefore, in the alloy, the spin-density
wave changes the Knight shift of a host nucleus
which is a near neighbor of the impurity from that of
the pure host metal. The change AK from the pure
host Knight shift K produces weak resonances called
“‘satellites” in the tails of the ‘“main line’’ resonance
produced by host nuclei more distant from all impuri-
ties. In a powder each neighboring shell of nuclei
will in general produce a distinct satellite. The size of
AK for each shell, the width and intensity of the sa-
tellite resonances, and the quality of the measure-
ment determine whether or not the satellites are
resolved from the mainline and each other.

In Appendix A we show that

AK _ =)y
X g(M)X(D) , 8)

where X5(T) is the magnetic spin susceptibility of the
impurity and g( ) gives the spatial dependence of
the spin-density wave. The temperature dependence
of the satellite splittings is thus entirely determined
by the impurity spin susceptibility. Conversely, by
determining the temperature dependence of the satel-
lite splittings, we can determine the temperature
dependence of the impurity spin susceptibility.

D. Impurity magnetic susceptibility

The ground state of the impurity has a magnetic
susceptibility which consists of a temperature in-
dependent contribution, plus a temperature depen-
dent contribution that obeys a Curie-Weiss law. The
concept of a temperature independent orbital suscep-
tibility is quite familiar. It arises from admixture of a
higher energy orbital state into the ground state by
the applied magnetic field and gives an orbital suscep-
tibility of order

Py |
Xb===, 9)
where up is the Bohr magneton and A is the energy
splitting to the excited orbital state.

A temperature independent spin susceptibility ar-
ises when the spin Zeeman coupling admixes higher
states into the ground state. If one neglects spin-
orbit coupling, the ground-state wave function is a
product of an orbital wave function with a spin func-
tion of definite m;. Then the ground state is already
an eigenstate of S,, so that there are no nonzero ma-
trix elements of the spin Zeeman interaction between
the ground and excited states. On the other hand, if
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one includes spin-orbit coupling, it may happen that
the states prior to application of the magnetic field
consist of a sum of products of orbital functions with
states of different values of m,. Then the spin Zee-
man interaction will tend to change the weighting of
the various m, components in order to best take ad-
vantage of the magnetic polarization thereby induced
and one gets a temperature independent contribution
to the spin susceptibility.

When the ground state has orbital and spin angular
momenta, L and §, coupled togethgr to form a
ground-state angular momentum, J, S, is not a good
quantum number and the Zeeman interaction ad-
mixes excited states of the same L and S but dif-
ferent J into the ground state giving a temperature
independent spin susceptibility of order

i BB
X I (10)
where A is the spin-orbit coupling parameter. If the
ground-state orbital angular momentum is quenched
but there is a spin-orbit multiplet of energy A higher
due to the crystal field, one gets a temperature in-
dependent spin susceptibility of order

2
= — #AB;‘ an
which should be smaller than Eq. (10) for reasonable
crystal fields and is of the opposite sign for an atom
with a positive spin-orbit coupling parameter.

In the detailed calculation of the susceptibility we
first calculate the susceptibility of the impurity using
the structure derived from H;n,. We then include
the effect of H i, as a perturbation. Since the
highest temperature accessible experimentally is lim-
ited by the melting point of Cu to about 1300 K, and
the crystal-field splittings are expected to be several
thousand degrees, we have limited our calculation to
population of the ground state of the crystal field
only. Since spin-orbit splittings are on the order of
100 K we havejallowed for the population of higher
energy spin-orbit-split states in those cases where tne
ground state of the crystal field has a first-order
spin-orbit splitting.

E. Susceptibility without mixing

We need to consider four possible electronic
configurations (3d)%, (3d)%, (34)%, and (3d)". The
3d° configuration ground state has 4, symmetry and
no orbital angular momentum. The first excited state
is split by the L -S splitting and probably lies on the
order of 10000 K above the ground state. We ignore
all but the ground state. The susceptibility is then
completely spin susceptibility with a moment corre-
sponding to S =5/2; there is no temperature in-

dependent contribution

_gpis(s+1)

3ksT , (12)

where g is the g value of the impurity d electrons.

If the crystal field causes the states with symmetry
T, of the orbital D state [for example with (3d)* or
(3d)%] or the states with symmetry T; of an orbital F
state [for example with (34)7] to be the ground state
(see Fig. 1), we consider the ground state of the crys-
tal field only. We write the spin-orbit Hamiltonian

Hso=a)\f,-§ , (13)

relating the effective (fictitious) angular momentum
operator f, to L with constant of proportionality .
For the threefold degenerate state T, for example,
L,=1 and a=—1. The spin-orbit interaction couples
LC.and§ together to give states of total fictitious an-
gular momentum F and z-component Mg, It lifts the
(2L, +1)(2S8 +1) degeneracy of the ground state to
give energies

Er=SMF(F41) - L(LAD =SS +D]
|FMp) = 3 | LmSm') (LmSm'|FMzy (09

mm

where the coefficients of the states in the sum are
the Clebsch-Gordan coefficients, Having treated the
spin-orbit interaction exactly (within the orbital
ground state), we treat the Zeeman interaction as a
perturbation which mixes the states given in Eq.
(14). We calculate the expectation of L, and S, for
each of these mixed states and compute the thermal
averages, (L) and (S,), in the usual way. The sus-
ceptibility is then derived from

_ usN
H

where k is the orbital reduction factor which
represents a reduction of the orbital angular momen-
tum from that of a free ion due to the crystal en-
vironment (see Ref. 20). Both the spin and orbital
susceptibilities have a temperature dependent contri-
bution and a temperature independent contribution
of the form of Eq. (10).

If the crystal field causes the state with symmetry
A, of an orbital F state or the states with symmetry E
of an orbital D state to be the ground states, the orbi-
tal angular momentum is quenched in the ground
state and no first-order spin-orbit splitting exists. In
this case we treat both the spin-orbit interaction and
the Zeeman interaction as perturbations to the
crystal-field interaction. The first-order perturbation
correction to the ground state yields a temperature
independent contribution to the orbital susceptibility
of the form of Eq. (9) but no contribution to the spin
susceptibility. The second-order perturbation correc-

X= (ak <Lez) +2(Sz)) ’ (15)
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tion to the wave function yields temperature indepen-
dent contributions to both the spin and orbital sus-
ceptibilities of the form of Eq. (11) and a tempera-
ture dependent contribution to the orbital susceptibil-
ity.

For details on the calculation of the susceptibility
for specific configurations see Appendix B.

F. Effect of mixing on the susceptibility

There are two effects of the mixing for which we
must account quantitatively in order to obtain reason-
able agreement between the calculated susceptibility
and experiment: (1) the mixing produces an antifer-
romagnetic polarization of the conduction electrons
and thus reduces the total experimentally measured
susceptibility from that calculated in the previous sec-
tion. This effect is most simply illustrated for Mn
which is generally agreed to be in a °S, (3d)° state,
with negligibly low Kondo temperature. (2) The Kon-
do effect causes the temperature dependence of the
susceptibility to deviate from a Curie law.?2 We treat
the antiferromagnetic coupling to the conduction
electrons in perturbation theory as a reduction of the
effective impurity moment. We treat the Kondo ef-
fect by replacing the temperature 7 with 7 + 0 every-
where it appears in the expressions for the suscepti-
bility.?

The experimental susceptibility of a dilute alloy is
measured as the difference between the susceptibility
of the alloy and that of the pure host metal; thus the
experimental susceptibility includes not only the sus-
ceptibility of the impurity moment calculated as
described in the previous section, but also the sus-
ceptibility of the induced conduction electron polari-
zation. At temperatures far above the Kondo tem-
perature the mixing interaction can be treated as a
perturbation.

If the ground-state angular momentum is quenched
by the crystal field, only the first term in Eq. (7) pro-
duces a polarization of the conduction electrons (s,)
and we find

(8:) = (s)0—Jep(S:) (16)

where p is the density of states at the Fermi surface
for one spin direction, and (s,) is the polarization of
the conduction electrons which would exist in the ab-
sence of the impurity (see Ref. 24). The total experi-
mentally measured susceptibility thus takes the form

Xoxpt= (1 =J;p) X5+ X%, an

where x°and Xx* represent the spin and orbital sus-
ceptibilities of the impurity, respectively. It is cus-
tomary to define an effective magnetic moment such
that

2
s _Kefl_ 18
X T (18)

We write
Xexpt=n"X5+x- (19)

such that n?=1—Jsp and 7 thus represents the
reduction in the effective magnetic moment due to
the conduction electron polarization.

If the ground-state orbital angular momentum is
not quenched, the form of the mixing interaction is
quite complicated. To our knowledge the form of po-
larization induced by the general form of the mixing
interaction has not been calculated. The experimen-
tal precision with which the magnetic moments of the
impurities have been measured to date does not re-
quire great accuracy; therefore we make the assump-
tion that the spin and orbital susceptibilities are af-
fected equally because of the spin-orbit coupling and
use

Xexpl = nzximp (20)
with
n=1+Jp , (21)

where J is now a parameter which defines the
strength of the interaction. We let J;=—J in the case
described by Eq. (19); then Eq. (21) suffices to
describe the reduction of the magnetic moment for
all cases.

Near the Kondo temperature higher order pertur-
bation terms in the mixing become important, and in
fact as the temperature approaches the Kondo tem-
perature the coupling becomes so strong as to make
perturbation theory invalid—a calculation such as a
renormalization-group theory calculation is required.
Krishna-murthy, Wilson, and Wilkins*»? have done
such a calculation using both the s-d [Eq. (2)] and
Anderson [Eq. (4)] forms of the mixing interaction
for a spin--;- impurity. They find that, indeed, the
two forms of interaction yield results in the experi-
mentally accessible temperature regime identical to
those predicted by Schrieffer and Wolff.® At tem-
peratures above the Kondo temperature, they find
the susceptibility can be described over any decade of
temperature by a Curie-Weiss law with a moment de-
creased from the Curie moment. Below the Kondo
temperature the susceptibility becomes constant.
Although the calculation is for a spin-% impurity, it
explains the temperature dependence of the suscepti-
bility of CuFe and CuMn over the entire temperature
range for which it has been experimentally deter-
mined. It does not explain the temperature depen-
dence of the susceptibility of CuCr,

We take the failure of the renormalization-group
calculation which included no orbital degrees of free-
dom, to explain the temperature dependence of the
susceptibility of CuCr to be further evidence that a
model with orbital structure is necessary to describe
the magnetic impurities. Unfortunately, to our
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knowledge no calculation of even the perturbation
type, other than that which we give in Appendix A,
has been done with the more complete form of mix-
ing interaction [Eq. (7)]. Following the results of the
spin-only renormalization-group calculation, we com-
pute the susceptibility by reducing the effective mo-
ment according to Eq. (21) and replacing T every-
where it occurs in the expression for the susceptibility
with T + 6. This expression yields the Curie-Weiss
law behavior when only the ground state of the spin-
orbit splitting is populated and passes smoothly into
the proper high-temperature form. We have not at-
tempted to deduce the behavior at temperatures
below the Kondo temperature.

It remains to determine the value of J to be used
in calculating the reduction of the moment [Eq. (21)].
For the spin-only case Wilson?? gives an expression
which relates the exchange coupling constant for the
spin-only interaction j to the Kondo temperature

Tx =D (p|j)exp(—1/plj]) . (22)

In the spin-% case, at temperatures just above the
Kondo temperature § Weiss temperature in the
Curie-Weiss susceptibility, is 2Tx.> From the ob-
served Curie-Weiss temperature dependence we
determine Tk and then use Eq. (22) to find j. Jis
roughly j times the number of orbital degrees of free-
dom available for the mixing interaction; thus for a
completely symmetric 4, ground state with the full
orbital degeneracy of the L =2 state, J =5;.° Hirst?
has calculated the reduction in the effective degrees
of freedom which a crystal field produces. He
expresses this reduction in terms of the ratio of the
first order Born approximation to the resistivity p;p
to the second-order Born approximation term which
produces the Kondo effect p,px. For a crystal-field-
split ground state we have

J =5jlpi] [%] , 23)
P2BK Jr-s| P1B )cEF

where the subscript CEF refers to the resistivity
which obtains when a crystal field is present and L -S
refers to the resistivity which would exist if there
were no crystal-field splitting. In cases where the
crystal-field ground state is split by a spin-orbit cou-
pling which is much larger than the Kondo tempera-
ture, we further reduce the expression given by Eq.
(23) by the ratio of the degeneracy of the crystal-field
ground state

2F +1
3(28 +1)

P1B
P2BK

P2BK
P1B

J=5j (24)

L-S
G. Hyperfine fields

The hyperfine interaction between the impurity nu-
cleus and the impurity electronic state may be ex-

pressed
th=gNuNT‘[HLE+2(Hs)§] » (25)

where the subscript N denotes the nucleus and where
Eq. (25) defines the so-called orbital and spin satura-
tion magnetic and fields H; and Hy, respectively.
Narath?* has calculated the values of the saturation
hyperfine fields expected for 3d transition metals with:
a Hartree-Fock approximation. For CuFe enough ex-
perimental evidence exists to determine the satura-
tion hyperfine fields from our model and compare
these values with those of Narath’s calculation. If
the ground state of the impurity has zero angular
momentum, the orbital hyperfine contribution van-
ishes (except to the extent that the Zeeman interac-
tion causes mixing with excited states with un-
quenched orbital angular momentum) giving a total
hyperfine saturation field:

Hit=28Hs . (26)

For cases in which the ground-state orbital angular
momentum is not quenched, we project the hyperfine
interaction onto the spin-orbit ground state

Hﬁ?t=—2(Sz)Hs—ka(La)HL , (27)

where (S,) and (L) are the effective saturated z
components of the spin and fictitious angular
momentum of the spin-orbit ground state. Details
for specific impurities are given in Sec. V.

IV. EXPERIMENTAL PROCEDURES

The CuCr powders used in this experiment were
prepared by Boyce and Stakelon as part of a general
alloy preparation program which produced dilute al-
loys of all of the 3d transition metals in copper. De-
tails of the sample preparation procedure are given by
Boyce.? The samples were prepared from 99.999+ %
pure Cu rod (American Smelting and Refining Com-
pany) and 99.999% pure Cr lumps (United Mineral
and Chemical Corporation). The Cu and Cr were
heavily etched to remove surface contaminants. The
appropriate proportions of Cu and Cr were placed in
alumina crucibles inside quartz tubes and baked in
vacuum to remove water vapor. The quartz tubes
were then back filled with % atmosphere of pure ar-

gon and sealed. After baking for 1 h in an induction
furnace at 1200 °C, the tubes were rapidly quenched
to 20°C in water. The alloys were then wrapped in
5-mil copper (99.9% pure) foil and swaged to less
than half of their original diameter to improve homo-
geneity. The copper foil was removed and the sur-
face etched away. The alloys were again sealed with
argon in quartz tubes, annealed for approximately 3 d
at 30 to 70 °C below the melting point, and then
quenched in water. The surface was again etched and
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the alloy rod was ground to powder with a rotary
grinder with a tungsten carbide cutter. For maximum
penetration by the rf field, only powder which passed
through a 400 mesh (less than 37 um) sieve was used.
None of the powders were reannealed.

Analyses of the annealed rods were made from
pieces cut from both ends prior to grinding. The Cr
concentrations were homogeneous to about 5%. The
analyses yielded average Cr concentrations of 0.56,
0.102, 0.051, and 0.017 at.% for alloys which were
nominally 0.5, 0.1, 0.05, and 0.01 at. %, respectively.
The 0.56 at.% alloy was examined under a micro-
scope for macroscopic inhomogeneities. Electron mi-
croprobe analysis also showed the alloys to be homo-
geneous to about 5%.

For historical reasons three spectrometers were
used in this study. The first data obtained were tak-
en by Aton at temperatures of 230 K and higher in a
high field spectrometer with a room temperature ac-
cess dewar. When he noticed an anomalous tempera-
ture dependence to the satellites, we continued the
study in a low-field spectrometer with a double glass
dewar. With this spectrometer we were able to make
measurements at liquid-nitrogen (77 K), liquid-neon
(27 K), and liquid-helium (4.2 K) temperatures.
When we failed to observe the satellites at 4.2 K, it
became necessary to use a cryostat which allowed
operation at temperatures between 27 and 4.2 K.

The high field solenoid used for the high-temperature
measurements also has a cryostat dewar which allows
temperature control over this temperature range;
thus we inserted the cryostat into the high field
solenoid and assembled a spectrometer compatible
with the cryostat. All three spectrometers are
hybrid-junction, bridge spectrometers.

Temperature control in a magnetic resonance ex-
periment at temperatures of a few degrees kelvin
causes a problem. Ideally one would like to have the
sample, thermometer, heating element, and controll-
er temperature sensor all in excellent thermal contact.
To prevent stray rf pickup the heating element with
its relatively large currents must be kept electrically
isolated from the rf coil. These two constraints re-
quire that the material separating the sample and the
heating element be a poor electrical conductor but a
good thermal conductor at these temperatures. For
handling, the material must be rigid at room tem-
perature. The only material of which we are aware
that meets these criteria is solid sapphire. Besides
being expensive, sapphire has an ?’A1 NMR which
would swamp the weak satellite signals.

We have adopted a compromise approach to the
temperature control problem. The temperature of a
large thermal mass (the brass can and lid and the
copper foot) which surrounds the sample is con-
trolled. Good thermal contact is established between
the thermal mass, heating element, and controller
temperature sensor, but a temperature gradient is al-

lowed to develop between the thermal mass and the
sample. A thermometer which requires only a small
dc current and is protected from stray rf is placed in
thermal contact with the sample. With the thermal
mass, heating element, and controller temperature
sensor in good thermal contact the temperature of
the thermal mass can be controlled very stably. The
poor thermal contact between the thermal mass and
the sample means that it may take the system a while
to come to equilibrium, but once equilibrium is
reached the temperature of the sample should be
nearly as stable as that of the thermal mass. The
sample temperature can be read accurately with the
thermometer because they are in good thermal con-
tact.

With the help of P. Anthony we calibrated a GaAs
diode (Scientific Instruments Model GA-300, SN
90251) from 4.210 to 96.4 K. The calibration was
done in A. C. Anderson’s cryostat using his Ge resis-
tor thermometer (4182-R) as a secondary standard.
The diode was calibrated with a four lead configura-
tion and the voltages were read on a 101°-Q imput
impedance digital voltmeter (DVM) which was first
checked for calibration against a standard cell. A
homebuilt constant current source consisting of a 741
operational amplifier with a memory reference cell
provides 10 pA to a diode. Thermal cycling to room
temperature and back down to 10 K revealed that the
diode maintained its calibration to within the accuracy
with which the voltage was read. The temperature
was easily read to an accuracy of better than 0.1 K.

A slight sensitivity to magnetic fields (an error of
+0.1 K at 10 kOe followed by a drop to an error of
—0.9 K at 55 kOe) was measured at 4.2 K and
corrected for.

Four different impurity concentrations were used
to verify the concentration independence of the satel-
lite splittings and to optimize the experimental reso-
lution of the satellites over the wide temperature
range. At low temperatures the satellites become
broader and more difficult to resolve; it is often
easier to resolve the satellites in more dilute samples.
The fields used in the experiment ranged from 5 to
55 kOe. At high temperatures a large field is neces-
sary to split the satellites enough to resolve them; at
low temperatures the splittings are larger and a lower
field is advantageous. It is also important at low tem-
peratures to use a field small enough to avoid satura-
tion of the impurity moment, i.e., we want to mea-
sure the susceptibility in a field small enough that the
susceptibility is essentially field independent. Table
II shows the samples and field strengths used at the
various temperatures at which data were taken. No
concentration or field dependence was observed.

Cu has two isotopes with magnetic moments— *Cu
and %Cu. We verified that the satellite resonances
are present for both Cu isotopes, thus confirming
that the resonance we attribute to Cu nuclei which
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TABLE II. Impurity concentrations and field strengths. The field strengths used at each tem-
perature are given. The samples investigated are indicated by an x.

T Concentration (at.%)
(K) 0.56 0.102 0.051 0.017 Field (kOe)
334 x
278 x X 55
230 x
77 X X 10 to 23
27.1 X 10
15.1 X X 12
8.0 x
42 X b'e
3.0 X 5 to 12
.25 X
1.4 X
are neighbors of the Cr impurity are indeed Cu reso- B. CuCr

nances and not the spurious resonances of some oth-
er nuclei.

V. EXPERIMENTAL RESULTS
A. CuMn

CuMn is the simplest system. Since its configura-
tion is 34 %S, it has no orbital effects. Its Kondo
temperature is so low that the Kondo effect can be
neglected at temperatures of 1 K or higher. It there-
fore illustrates clearly solely the effect of the mixing
interaction in reducing the effective magnetic mo-
ment. The magnetic susceptibility is spin only and of
the form of Eq. (12) with S =5/2 giving a ‘“‘bare
ion”” magnetic moment of 5.92u 5 compared with the
experimental moment determined from measure-
ments from room temperature down to a few degrees
kelvin of (4.9 £0.3) u5.% Following the procedure
outlined in Sec. III F, we find the effective moment
to be 4.8uu5. Aton’s!> NMR satellite data show a
Weiss temperature of zero—consistent within the ex-
perimental uncertainty with the value of (9.5 £1.5)
mK determined from the low-temperature bulk sus-
ceptibility measurements of Hirschkoff, Symko, and
Wheatly.?” Neither the NMR satellite data nor the
bulk measurements show any temperature indepen-
dent contribution to the susceptibility.

From Eq. (26) with the assumption that S =5/2 we
have a saturation hyperfine field, H$' =5H;. Davi-
dov et al.?® measured the value of H to be —280
kOe—giving Hs=—56 kOe. Narath?* gives a theoret-
ical estimate of —25 kOe = Hs = —140 kOe. (We
deduce a value of Hg for CuFe of —50 kOe in a later
section.) Therefore, the Mn data can be explained
readily in the Hirst picture.

1. NMR satellite data

The NMR satellite data obtained in this investiga-
tion are displayed in Fig. 2. Since AK /K is propor-
tional to the impurity spin susceptibility [see Eq. (8)],
we have plotted K/AK versus the temperature; on
such a plot a Curie-Weiss law appears as a straight
line which intercepts the abscissa at the negative of
the Weiss temperature. The dashed lines are straight
lines drawn through the low-temperature data; the
uncertainties of the low-temperature data are suffi-
ciently small to require the slopes shown. The data
deviate by about 20% from the Curie-Weiss law at
300 K. It is fortunate that the satellite labeled ““C >’
is shifted to the opposite side of the main line from
N and P. Because all three satellites are shifted
closer to the abscissa (further from the main line)
than the Curie-Weiss law predicts, we know that the
deviation is not due to a shift in the main line reso-
nance caused by some experimental error.

We compare the data with the model developed in
Sec. IIT which first treats the impurity structure in de-
tail and then treats the mixing interaction as a pertur-
bation. Following Hirst we first attempt a fit to the
3d* E symmetry ground state which results if the 7,
symmetry single-electron orbitals have lower energy
than those with e, symmetry. Starting from the
results in Appendix B we calculate for the spin sus-
ceptibility

1 2xk

S_Q, 2
X smN[ T (28)

A Cr** ion (3d*) has a spin-orbit coupling A of +58

cm™, % and therefore the temperature independent
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K/AK

FIG. 2. A plot of the CuCr satellite data. The dashed
lines represent a Curie-Weiss law fit to the low-temperature
data. The solid lines are the fit to the model described in
the text.

term in Eq. (28) is negative while the fit to the satel-
lite data indicates a positive temperature independent
term; thus Hirst’s assignment of the ground state
does not explain the satellite data.

Comparison of the experimental evidence on CuCr
and CuFe gives a clue as to what is happening. Both
CuCr? 3 and CuFe?! have a temperature indepen-
dent contribution to their bulk magnetic susceptibili-
ty; but although the CuCr satellite data show a 20%
temperature independent contribution to AK /K at
300 K, no temperature independent contribution to
the satellite data is observed for CuFe to within the
experimental uncertainties (see, however, discussion
under Sec. VID).!* The indication is that the ground
state of Cr has an unquenched orbital angular
momentum with a temperature independent contri-
bution to the spin susceptibility of the form of Eq.

(10) while the ground state of Fe has its orbital angu-

lar momentum quenched and a temperature indepen-
dent contribution to its spin susceptibility like Eq.
(11) which is expected to be smaller than that of Eq.
(10). If the t,, symmetry single-electron orbitals are
lower than those with e, symmetry as Hirst suggests,
the 3d* configuration has an E symmetry ground
state with quenched orbital angular momentum and
the 3d%(Fe?*) and 3d7(Fe*) configurations have T,

and T, symmetries, respectively, with unquenched
orbital angular momentum. This assignment
disagrees with the conclusion made from the bulk
susceptibility and satellite data. If the sign of the
crystal field is opposite of that assumed by Hirst so
that the e, symmetry single-electron orbitals have
lower energy than those with ¢,, symmetry, the 3d*
configuration ground state has 7, symmetry with un-
quenched orbital angular momentum and the 3d% and
3d’ configurations have E and 4, symmetries,
respectively, with quenched orbital angular momen-
tum; thus by assuming the sign of the crystal field
opposite of that usually proposed, we can qualitative-
ly account for the experimental evidence on CuCr
and CuFe. In the following discussion we attempt to
make the agreement quantitative.

If the crystal field causes the e, single-electron or-
bitals to have lower energy than the t,, symmetry or-
bitals, the 34 atomic level structure is that shown in
Fig. 1(a). The ground state has T, symmetry with
fictitious angular momentum L, =1. The spin-orbit
interaction couples the orbital and spin states (S =2)
to give states of total fictitious angular momentum F.
The resultant level structure is shown in Fig. 3. Note
that only first-order spin-orbit splittings are shown.
Higher order spin-orbit terms split the remaining de-
generacies down to the degeneracies required by sym-
metry. These higher order splittings, except those in
the F =3 ground state where the splittings can be-
come of the order of the temperature or greater, are
unimportant for calculation of the susceptibility. We
ignore the higher order splittings for the moment and
will discuss them further when we discuss the low-
temperature bulk susceptibility data.

As discussed in Sec. III B, the crystal-field splitting
is expected to be several thousand degrees; we ignore

_uwe o)
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Crystal First - order
field spin —orbit
splitting splitting

FIG. 3. The level structure of Cr2* showing the effect of
the crystal field and first-order spin-orbit coupling. The
numbers in parentheses indicate the degeneracies of the lev.
els.
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TABLE III. Fit of model to CuCr NMR satellite data. The NMR data are compared with the
model calculation for satellites N, P, and C. The experimental uncertainties are given in

parentheses.
T (AK/K) y (AK/K)p (AK/K) ¢
(X) expt calc expt calc expt calc
334 039 (1) 0.396 -0.37 (1) —-0.363
278 0.469 (7) 0.469 0.281 (9) 0.276 —0.44 (2) —-0.430
230 0.55 (2 0.558 032 (1) 0.328 -0.51 (2) -0.511
77 1.48 (6) 1.45 0.87 (8) 0.851 -1.31 (6) -1.33
27.1 3.58 (8) 3.54 20 (2 2.08 =32 ) -3.24
15.1 6.1 4) 5.76 3.1 4) 3.38 =50 3 -5.27
8.0 9.1 (6) 9.38 5.8 (3) 5.51 -85 (5) —8.59

the excited crystal-field-split £ symmetry states.
Since the spin-orbit coupling parameter in Cr2* is 84
K, we include all of the spin-orbit-split T, states.
Each spin-orbit-split level has a Curie-Weiss law con-
tribution to the susceptibility plus a temperature in-
dependent contribution that results from mixing of
the spin-orbit-split states by the Zeeman interaction.
Thus the susceptibility of the Cr arises primarily from
the F =3 ground state with some contribution from
the excited F =2 and F =1 states at the higher tem-
peratures. A computer fit to the satellite data, allow-
ing the Weiss temperature, spin-orbit coupling
parameter, and the orbital reduction factor to be free
parameters, yields the fit shown in Fig. 2 and tabulat-
ed in Table III with §=2.9 +1.0 K, A=48 +32 cm™},
and k =0.84 £0.19. The normalized X? of this fit to
the data is 0.56. The orbital angular momentum and
spin-orbit coupling are both reduced to about 80% of
the free ion values. Such a reduction is to be expect-
ed and is of a reasonable magnitude.”’ The large un-
certainty in the determination of the parameters is
due to the strong interdependence of the parameters.
The uncertainties quoted are the amount of change
necessary in a given parameter to change the normal-
ized x? of the computed fit by one.

The fit shown in Fig. 2 and tabulated in Table III,
based on the assumption that the satellite splittings
are proportional to the impurity spin susceptibility
only, appears to explain the data quite well. We also
tested the hypothesis that the splittings are propor-
tional to the total impurity susceptibility. The fit thus
obtained is not as good as the fit to the spin suscepti-
bility only; furthermore the value of the spin-orbit
parameter required to produce the fit is 350 +160
cm~! and the magnetic moment obtained from the fit
is 3.2 up. The experimental value for the moment is
(3.7 £0.4)up (see the following section). The Cr2*
free ion has a spin-orbit coupling parameter of 59
cm™!. The spin-orbit interaction is expected to be re-

duced slightly in the metal host—certainly not in-
creased by a factor of 6. We conclude that the fit to
the total susceptibility is unphysical while the fit to
the spin susceptibility gives empirical evidence that
the satellite splittings are proportional to the spin sus-
ceptibility only and thus Eq. (8) is correct.

2. Bulk magnetic susceptibility data

Due to the spin-orbit coupling the spin and orbital
susceptibilities are not independent; the determina-
tion of the model parameters from the satellite data
allows calculation of the bulk susceptibility. The only
additional factor required is n% the mixing reduction
parameter, which is calculated from Eq. (24). The
calculated susceptibility is plotted versus 1/(T +2.9)
in Fig. 4. Note that since the first excited spin-orbit-
split state lies approximately 200 K above the ground
state, the susceptibility becomes essentially a Curie-
Weiss law plus a temperature independent term
below about 100 K. Since the spin-orbit splittings be-
come unimportant at temperatures much greater than

T(K)
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FIG. 4. The bulk magnetic susceptibility of CuCr. The
curve is the susceptibility calculated from the model
described in the text. The open circles are a representation
of the experimental data of Hoeve and Van Ostenburg, and
Vochten, Labro, and Vynckier as described in the text.
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the total spin-orbit splitting (the sum of the tempera-
ture independent terms of the three spin-orbit split
levels is zero), the temperature independent term
vanishes and the susceptibility approaches zero at in-
finite temperatures. The Weiss temperature is as-
sumed to be the same as that determined from the
satellite data since the spin and orbit are coupled; the
total effective magnetic moment in the low-
temperature regime is calculated to be (3.4 £0.4) wp.

Vochten, Labro, and Vynckier? have reported a
bulk susceptibility study of CuCr on three samples
with 5-, 15-, and 112-ppm atomic concentrations of Cr
at temperatures from 1.5 to 300 K and fields from
3.96 to 12.64 kOe. The susceptibility of the 5-ppm
Cr samples was plotted versus the susceptibility of
the 15-ppm Cr sample for all temperatures and fields.
The fact that all the data fall on a straight line is
strong evidence that the susceptibility measured is
the susceptibility of isolated impurities only. A simi-
lar plot for the 112-ppm Cr sample versus the 15-
ppm sample shows some deviation from a straight
line for the low-temperature data; this deviation is at-
tributed to cluster effects in the 112-ppm Cr sample.
Vochten et al. use the ratio of the susceptibilities
measured in the two most dilute samples to that mea-
sured in the 112-ppm sample to establish ‘‘more pre-
cise concentrations’’ for those samples—henceforth
using 4.13 and 12.7 ppm as the concentrations of
those samples. We shall focus on the data from the
15-ppm sample as it appears to be free from cluster
effects and gives essentially the same results as the
S-ppm sample with the exception of better precision,
presumably due to stronger signals. Vochten et al.
show their susceptibility data only as a function of
1/T which makes it impossible to determine the
high-temperature data, but they state that they can fit
their data from 300 K down to 12 K with the sum of
a Curie-Weiss term and a temperature independent
term and quote a Weiss temperature of 3.4 £0.3 K
and an effective magnetic moment of (3.99 +0.04) up.
The Weiss temperature and moment are both some-
what higher than the values calculated from the Hirst
model, but fall within the uncertainties of the calcula-
tion.

Although the model calculation gives fair agree-
ment with the data as analyzed by Vochten et al., in-
terpretation of the data in an alternate manner im-
proves the agreement. We are concerned about two
points: (1) we suspect the experimental uncertain-
ties, may be larger than stated, and (2) we worry about
the procedure of determining the impurity concentra-
tions for the two most dilute alloys by scaling the sus-
ceptibilities relative to the most concentrated sample.

Since the impurity susceptibility is proportional to
the number of impurity atoms contributing to the
susceptibility, determination of the effective magnetic
moment is limited by the precision to which the con-
centration of isolated impurities is known. Since

Vochten et al. were willing to adjust the impurity con-
centrations by 16% with their scaling procedure, we
would suppose that the uncertainty in the determina-
tion of the impurity concentration may be as high as
16% (Vochten et al. give no uncertainties for their
concentration analysis). A 16% error in the concen-
tration results in an 8% error in the determination of
the effective magnetic moment. The uncertainties
quoted for the susceptibility parameters appear to re-
flect only the uncertainties due to data scatter, as is
further evidenced by the fact that the size of the tem-
perature independent contributions to the susceptibil-
ities quoted for the three samples are by no means
proportional to the concentrations to within the un-
certainties quoted. The strong interdependence
between the parameters in a fitting procedure also
seems to have been neglected in stating the uncer-
tainties. An error in determination of the Weiss tem-
perature, for example, strongly affects the value
determined for the moment since the low- temperature
data are implicitly weighted strongly in a fit to a Curie-
Weiss law.

The scaling procedure used to determine the im-
purity concentration in the more dilute alloys tacitly
seems to us to assume that the analyzed concentra-
tion of the 112-ppm sample is all in the form of iso-
iated impurities—despite the experimental evidence
that the 112-ppm sample does suffer from clustering.
We view the fact that the percentages by which the
concentrations of the more dilute alloys were scaled
are nearly the same (—15% and —17%) as further
evidence that a preferable interpretation of the data is
that the 112-ppm sample has about 16% of its impur-
ity concentration in the form of clusters. In any
event, it seems to us that the possibility of this alter-
nate interpretation means that the moment determined
by the experiment is subject to considerable uncertainty.

In view of these objections to the analysis of the
bulk susceptibility data, we have reanalyzed the data
assuming the concentration of the ““12.7-ppm’’ alloy
is 15 ppm. The effective magnetic moment is then
(3.7 £0.4)jus, where the uncertainty is only our es-
timation as to the minimum experimental uncertain-
ties reflected by the data. We have plotted the rough
form of the data on Fig. 4 by using the expression
derived from our analysis of this experiment, given
as Eq. (29) below, for the susceptibility of 12 to 300
K and the expression given as Eq. (30) below,
derived from analysis of published data obtained in a
separate experiment by Hoeve and Van Ostenburg?®
at higher temperatures, for the temperature range of
300 to 700 K. The expressions used for the numeri-
cal fit to the susceptibility data are

_ (3.671)u3iN 1

—4
% 7133 +124 %107, (29
(4.00)2uj3N 1 -
= 3%, 7339 +3.6x107* . 30)
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The agreement shown in Fig. 4 is well within the ex-
perimental and calculation uncertainties. Note partic-
ularly that although experimental uncertainties pre-
clude a definite determination, the data do appear to
show the departure from the single Curie-Weiss-
plus-temperature-independent law at high tempera-
tures from the F =1 and 2 states.

3. Anomolous low-temperature susceptibility

Vochten et al. plot the data obtained from the 15-
ppm alloy as a function of 1/T to demonstrate that at
temperatures below about 10 K the susceptibility de-
viates markedly from the high-temperature Curie-
Weiss-plus-temperature-independent form. It ap-
pears that at least part of the low-temperature suscep-
tibility is due to a moment with a Weiss temperature
of essentially zero. The low Weiss temperature is
evidenced by the temperature dependence of the sus-
ceptibility and the ease with which the moment is sat-
urated by magnetic field. We comment further on
this problem in Sec. VI.

4. Hyperfine fields

There have been two studies of the hyperfine field
at the nucleus of 5'Cr in Cu. The first was by Willi-
ams, Campbell, Sanctuary, and Wilson,3? the second
by Brewer.’> The method was the measurement of
y-ray anisotropy produced by the alignment of the
SICr nucleus at temperatures of order (5—15) x 1073
K in applied magnetic fields of tens of kOe. The ex-
periments are interpreted on the assumption that the
SICr nuclear magnetic moment is aligned by the Cr
electron magnetic moment through the hyperfine
coupling. Brewer finds a hyperfine field of —153 kG.

For our model of Cr, there should also be an elec-
tric quadrupole contribution to the alignment since
when the electron magnetic moment is aligned the
orbital wave function would produce an alignment of
the electric field gradient at the *'Cr nucleus
(I=17/2). Unfortunately the 3'Cr electric quadrupole
moment has not been measured. However, one can
get an idea of the size of the alignment by examining
the quadrupole splittings of *’Fe in the (34)° config-
uration (Fe2*), the hole equivalent of Cr (3d)*. In-
galls® has analyzed Fe?* in a number of systems.
The quadrupole splittings are of the order 20—40
MHz. This is quite comparable to the 30 MHz pre-
cession frequency of *'Cr in 153 kG.

It is straightforward to estimate the hyperfine field
from our picture. Using Eq. (27) with (S,) =—2,
(L) =-1, a=1, and k =0.84, taking Narath’s
theoretical value of H; =325 kOe, and assuming
Hg=-50 kOe (the value deduced for CuMn), we get

H' =—470 kOe . (€)))

If, on reanalysis of the 3'Cr alignment data, one
could rule out a quadrupole contribution to the align-
ment, there would be a disagreement between our
model and experiment. If there were found to be
both a quadrupole alignment and a magnetic align-
ment, one could compare the magnetic alignment
with the prediction of Eq. (31).

C. CuFe
1. Bulk magnetic susceptibility and satellite data

We analyze Fe in both 3d° and 34’ configurations.
We begin following Hirst with the 3d° configurational
ground state with 7, symmetry [see Fig. 1(a)]l. We
calculate an effective magnetic moment of 4.8 up, as-
suming the orbital reduction factor is 1. If the orbital
angular momentum is completely quenched (k =0),
the calculated effective moment is 4.1up. Steiner
et al. ! experimentally determined the value to be
(3.54 £0.08)up. For the calculated value of 4.1 up
which corresponds to k =0, to be correct, the experi-
mental concentration must be in error by more than
30%; the value of 4.8 wp which corresponds to k =1,
requires that the concentration be in error by more
than 90%. Since k is expected to be closer to 1 than
0, we conclude that the experimental concentration is
probably not in error enough to make the experimen-
tally determined moment consistent with the 3d%, T,
symmetry ground state.

The T, ground state has a temperature indepen-
dent contribution to the spin susceptibility of the
form of Eq. (10); as a consequence the NMR satellite
splittings would be expected to deviate from the low-
temperature Curie-Weiss law by about 30% at 300 K.
Boyce and Slichter!>!* detected no deviation from a
Curie-Weiss law. The experimental uncertainties
were sufficiently small that such a large deviation
should have been detected.

We next try reversing the sign of the crystal field
within the 34° configuration as we did for CuCr [Fig.
1(a) with A negative]. The ground state then has E
symmetry with the smaller temperature independent

- contribution to the susceptibility of the form of Eq.

(11); however the effective magnetic moment calcu-
lated for this ground state is 4.5 wp, which would re-
quire a 60% error in the experimental concentration.

We conclude that the 3d® assignment must be in-
correct. The 3d° assignment corresponds to that of
CuMn which has an effective magnetic moment
much larger than CuFe. We therefore try the 34’
configurational assignment.

With Hirst’s assignment of the crystal field sign the
3d’ configurational ground state has T; symmetry
[Fig. 1(b) with A negativel with an effective magnetic
moment of about the right size, but the temperature
independent contribution of the spin-orbit split
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ground state is again large. The NMR satellite data
would be expected to show a 70% deviation from the
low temperature Curie-Weiss law at 300 K which was
not observed.

Finally we reverse the sign of the crystal field
within the 347 configuration so that it agrees with the
sign which successfully explained the CuCr data [Fig.
1(b)] and find we are above to obtain a reasonable fit
to the CuFe data also. The ground state has 4, sym-
metry. The effective magnetic moment is calculated
to be 3.5up, in excellent agreement with the experi-
mental value of (3.54 £0.08)u5.

We assume that the orbital angular momentum and
spin-orbit coupling parameter are reduced to 80% of
their free ion values, similar to the reduction deduced
for CuCr, and use the observed bulk susceptibility to
estimate the size of the crystal-field splitting. The
value obtained is of the order expected. Using the
estimated value of the crystal-field splitting we com-
pute the deviation from a Curie-Weiss law expected
for the NMR satellite data and find it is consistent
with the data.

From Appendix B we have that the ratio of the
temperature independent contribution to the suscepti-
bility to the temperature dependent contribution is

Xn _ 2k(2Ak =3\ kg
XTD SA(5A—2k\)

The observed ratio is 4.348 X 10~*(T +6).’! The Fe™*
free ion has a spin-orbit coupling parameter of —119
cm~!; we assume it is reduced to —95 cm™! and use
k =0.8. Equating Eq. (32) with the experimentally
determined ratio, we solve for A and find A =249
cm™!; therefore the energy splitting from the 4,
ground state to the first excited crystal-field-split state
is obtained from SA =1245 cm™!. The splitting is the
equivalent of about 1800 K which is of the order of
the size of crystal field expected.'®

The ratio of the temperature independent contribu-
tion to the spin susceptibility to the temperature
dependent spin susceptibility is just:

Xh _ 4xkkp(T +6)

Xip 25A2

Evaluating Eq. (33) with §=28 K at 7 =300 K, we
find the ratio to be 4.5%. While the assumption that
the NMR satellite data have no temperature indepen-
dent contribution is certainly possible within the ex-
perimental uncertainty, the addition of this small,
temperature independent term actually improves the
fit to Boyce and Slichter’s data.

(T+9) . 32)

(33)

2. Hpyperfine field data

Steiner et al.’! have analyzed the Méssbauer and
bulk susceptibility data and conclude Hg=—50 kOe
and H; =470 kOe. They analyzed the data assuming

that the temperature independent contributions to the
local and macroscopic susceptibility are entirely due
to the orbital susceptibility and the temperature
dependent contributions are due to the spin only. As
can be seen from Appendix B with K =0.8, A=-95
cm™ and A =249 cm™, the spin susceptibility contri-
butes about 28% of the temperature independent sus-
ceptibility and the orbital susceptibility contributes
about 11% of the temperature dependent susceptibil-
ity. Using

L
Xmac— H(z(sz>+<Lz>) ’

, (34)
Xloc='"HS<Sz>/SH'_HL (Lz>/LH ’
to deduce
Xloc=xgxac(HS) +Xrlflac(HL) s (35)
we find
XH = xIT..[0.28 (Hs) +0.72(H)1 (36)

X2 = xID[1.11(Hs) ~0.11(H,)]1 .

Using the values calculated by Steiner et al. from the
data for Xioc and Xmax we have X&L/xTL. =470 kOe and
Xi2/xID =—151 kOe. Substituting these values into
Eq. (35) and solving, we find H; =679 kOe, which
agrees somewhat better with Narath’s?* calculated
value of 600 kOe than the value of 470 kOe given by
Steiner et al., and H;=—69 kOe comparable to the
value found in Mn, and well within Narath’s estimate
of —25 kOe = H; = —140 kOe.

When Hirst® analyzes the hyperfine fields in terms
of the 3d° configuration with a T, symmetry ground
state, he finds it necessary to assume that k is less
than 0.4 and the best fit value is k =0. He states
that such a great orbital angular momentum reduc-
tion is too much to explain by the usual admixture of
neighboring atomic wave functions. He postulates
that a dynamic Jahn-Teller effect is present which has
the effect of reducing the effective orbital angular
momentum. We find it equally satisfying to assume
that the ground state has its orbital angular momen-
tum quenched by the crystal field.

VI. OTHER RELATED EXPERIMENTS

A. Magnetic susceptibility at
low temperatures

In their studies of magnetic susceptibility, Vochten,
Labro, and Vynckier report that their data fit a
Curie-Weiss law down to about 10 K, but the experi-
mental values below 10 K are higher. In Fig. 5, we .
have plotted 1/x vs T (obtained by reading data from
their Fig. 2) to illustrate their point. This result is
quite surprising on both theoretical and experimental
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FIG. 5. Inverse of magnetic susceptibility vs temperature,
showing the deviation from a Curie-Weiss law observed by

Vochten, Labro, and Vynckier (Ref. 29) at low temperatures.

grounds. Theoretical calculations show that the Kon-
do susceptibility is well approximated by a Curie-
Weiss law except at the very lowest temperatures.
Even there the deviation is opposite to that found by
Vochten, Labro, and Vynckier. The experimental
results on CuFe, also believed to be a Kondo system,
are in excellent agreement with the theoretical predic-
tion of a Curie-Weiss law. In the case of CuFe pairs
of iron atoms have a lower Kondo temperature than
isolated iron atoms so that the presence of pairs
causes the measured susceptibility to have a strongly
temperature dependent term well below the Kondo
temperature of isolated Fe atoms. This term is iden-
tified as coming from clumps of two or more atoms
by studies in which Fe concentrations are varied.
Vochten, Labro, and Vynckier argue that the devia-
tions are not the result of clumping effects since they
get identical results for a sample containing 5 ppm of
Cr as for a sample containing 15 ppm.

We have found that it is possible to simulate the
results of Vochten, Labro, and Vynckier by assuming
that instead of having a Kondo effect, the sevenfold
degenerate Cr ground state is split by a Hamiltonian
of cubic symmetry. Such a coupling gives three ener-
gy levels: a singlet and two triplets. If the sign of
the coupling puts the singlet highest and one of the
triplets lowest, the susceptibility varies with tempera-
ture as shown in Fig. 6. (In Fig. 6, A is the crystal
splitting of the middle triplet state from the lowest
triplet state.) (A cubic splitting of this form but op-
posite sign arises from treating spin-orbit coupling to
second order in the spin-orbit coupling constant. We
do not know a mechanism to provide the sign cou-
pling we would need.) The form of the resultant sus-
ceptibility is much like that of Labro et al. In addi-
tion, there could be a Kondo effect of the ground
triplet, or its energy could be split further by a Jahn-
Teller distortion. Thus there are several possible ex-
planations of the low-temperature susceptibility
results. (Symko has told us that he likewise finds the
susceptibility to be much more strongly temperature

04
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0.2

[oX]
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FIG. 6. Inverse of the theoretical value of magnetic sus-
ceptibility vs temperature, both in dimensionless units, for
an effective angular momentum F =3, whose degeneracy is
split by a cubic spin Hamiltonian into a singlet, and two trip-
lets. A is the splitting between the two triplet states. It is
assumed that one of the triplet states is the ground state.
Note that for kT/A greater than about 0.2 the data simulate
a Curie-Weiss law closely, though at low kT/A they go over
to a Curie law, much like the data of Fig. 5.

dependent below 1 K than would be implied by a
Curie-Weiss law with Kondo temperature of 3 K such
as implied by our satellite data or the high-
temperature susceptibility data.)

We believe there are sufficient uncertainties in
knowledge of the low-temperature susceptibility of
isolated Cr atoms in Cu that we cannot select among
the various suggested explanations of the susceptibili-
ty data currently in hand. Careful study of the con-
centration and temperature dependence of the mag-
netic susceptibility are clearly very important to deter-
mine the functional form of the magnetic susceptibil-
ity below 1 K.

B. Satellites at low temperatures
and high magnetic fields

Azevedo, Follstaedt, and Narath*® have performed
an important test of the CuCr model by studying the
satellite splittings at low temperatures (1.08 K) and
high magnetic fields (up to 120 kG). At such low
temperatures and high fields, the Cr magnetization
should be saturated. In low magnetic fields, the ther-
mal average of the Cr spin S, is given by

gupt(J +1)
3kg(T+Te)

where up is the Bohr magneton. Whereas the sat-
urated value in high field is given by

<Sz)sat= —-al ,
where “‘a ”’ is defined by the relation
(S:)=a(J;)

(Sz> =—a
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a relationship which follows from the Wigner-Eckart
theorem (a =2/3 for our model). Therefore, the ra-
tio of satellite splittings at a known low field to the
saturated splitting gives one the product g(J +1).
Using the satellite labeled ‘B ’’, the value J =3, the
data of Azevedo et al we find g =1.15 £0.03, which,
though slightly larger than our value of

g=1.05 £0.09, gives in our judgement a strong con-
firmation of the ionic model.

In the previous section we pointed out that a possi-
ble explanation of the mysterious low-temperature
susceptibility results is the existence of cubic crystal
splitting of the J =3 state. We have explored the ef-
fect of such a splitting on the shape of the curve of
satellite splitting versus magnetic field. We have also
explored the shape of the same saturation curve as-
suming only a Kondo effect. Unfortunately, there is
no rigorous treatment of the Kondo effect at large
magnetic fields. We were forced therefore to assume
a Brillouin function for J =3 with T replaced by
T +6. We find that we can get a better fit of the sat-
uration curve using the crystal-field fit, but that even
our crude approach to saturation using the Kondo ef-
fect gives a fit which must be considered satisfactory
considering its lack of rigorous theoretical justifica-
tion.

Azevedo, Follstaedt, and Narath have also mea-
sured the spin-lattice relaxation time of satellite B.
They find that its field dependence has the same
form as that of other Kondo systems ( WCo). They
use a scaling procedure involving the T’s measured
for WCo and CuCr to deduce that the Kondo tem-
perature of CuCr is 3.3 K, a value close to that which
we find. They therefore favor the concept that CuCr
has a real Kondo effect, not a crystal-field effect.’’

Thus our data at low field and high temperature to-
gether with that of Azevedo, Follstaedt, and Narath
at high field and low temperature are internally con-
sistent, all supporting the ionic model of Cr with
J=3, g =1, and a Kondo effect wtih T, =3 K.

C. Transmission electron spin resonance

Transmission electron spin resonance (TESR) has
been used to study CuMn,*® CuCr,* and CuFe.®* In
this technique the magnetic impurity is observed in-
directly by its effect on the conduction electron spin
resonance. For CuMn, the Mn resonance has also
been observed directly through conventional reflec-
tion electron spin resonance.

The presence of an impurity produces scattering of
a conduction electron. Even nonmagnetic impurities
can in the process flip the electron spins. Such a pro-
cess gives an ESR line breadth proportional to the
impurity concentration. For a nonmagnetic impurity
the impurity scattering line breadth is independent of
temperature.

When the impurity is magnetic we expect two extra

effects. Since the TESR is observed under the action
of an applied magnetic field, the impurity moments
are somewhat polarized, giving rise to Weiss field act-
ing on the conduction electrons resulting in a g shift
of the TESR proportional to the impurity concentra-
tion and susceptibility. That field displaces the TESR
from its field in the pure host. Also, the spin-flip
scattering cross section becomes temperature depen-
dent, growing at low temperatures as a result of the
Kondo effect. (The Kondo effect acts much like a
narrow scattering resonance located at the Fermi en-
ergy.)

Both CuCr and CuFe have such a behavior. Both
display TESR linewidths proportional to impurity con-
centration, the linewidth growing somewhat at low
temperatures. In CuCr the g shift from its value in
pure Cu is proportional to Cr concentration, and
roughly follows the Cr susceptibility with tempera-
ture. In CuFe no g shift is observed, probably be-
cause the high Kondo temperature (7, =28 K)
makes the CuFe susceptibility so small that the polar-
ization of the Fe atom is negligible.

If the impurity itself has a g factor close to that of
the conduction electrons (g =2), the conduction
electron and impurity may act like a strongly coupled
system. At sufficiently low temperatures, if the im-
purity Kondo temperature is low enough the magnet-
ic susceptibility of the impurity completely dominates
the response, and the width of the resonance line be-
comes independent of concentration. The concen-
tration-independent line breadth is one hallmark of
the closely coupled case. The second hallmark is that
the TESR g factor at low temperature goes to that
found for the impurity by reflection experiments.
For CuMn both hallmarks of the coupled systems are
observed. The reflection and transmission experi-
ments are completely consistent with the ionic model
of Mn being g =2, &’ configuration with S =5/2,
L=0.

Monod and Schultz assumed in their analysis of
CuCr that it too was a strongly coupled system with
g =2, in sharp contrast with our deduction that
g =1. However, their assumption is not necessary
since neither hallmark of the coupled system is ob-
served (the Cr resonance has never been seen in re-
flection, and the line breadth is proportional to con-
centration at even the lowest temperatures). Thus
there is no reason to assume that the Cr g value is
two as would be required by a coupled system.

The analysis of Ritter and Silsbee of CuFe exam-
ines various models of the Fe atom, including ionic
models for 3d° and 347, and both signs of crystal
field. They are not able to make a conclusive deter-
mination of the electronic structure. They likewise
assume a strongly coupled system with iron having a
g =2. Their data likewise does not require such an
assumption since neither hallmark of the strongly
coupled system is present. They neither confirm nor
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rule out our picture.

We therefore find that reflection ESR and TESR
confirm the ionic model for CuMn, but do not distin-
guish various models for CuCr or CuFe.

D. Linewidths of CuFe satellites

Alloul and Ishii*! have observed a strong tempera-
ture dependence of the width of satellites B and M in
the CuFe system. In seeking an explanation, they
also propose that spin-orbit coupling in the Fe atom
plays a role. They predict a temperature independent
contribution to AK/K as a result, and reanalyze their
data to conclude that the size of the temperature in-
dependent AK /K for satellite Bis 0.15 +0.05. This
is somewhat larger than we conclude in Sec. VC
from our analysis of the data. The result is very
much dependent on the Kondo temperature one as-
sumes.

Alloul and Ishii utilize the Friedel-Anderson model
to analyze their result. They find rough agreement as
to magnitude, but the wrong sign for the temperature
independent term. They attribute the temperature
independent term of AK/K to the temperature in-
dependent part of the orbital susceptibility.

As we remarked earlier, we do not believe the
Friedel-Anderson approach would be able to explain
the great difference between CuFe and CuCr. The
ionic model is able to explain correctly not only the
magnitudes but also the signs of the temperature in-
dependent terms.

VII. CONCLUSIONS

The observation of temperature independent con-
tributions to the bulk magnetic susceptibility and
NMR satellite data require the inclusion of nonde-
generate orbital states in the model used for explain-
ing the nature of the isolated Cr impurities in dilute
CuCr alloys; further, the temperature independent
contribution to the NMR satellite splittings, which

are proportional to the spin susceptibility, requires
that there be spin-orbit coupling present. The only
model of 3d impurities in nonmagnetic metallic hosts
which has been worked out in sufficient detail to in-
clude such fine structure is the ionic model proposed
by Hirst. Our data support his model, though the de-
tails are somewhat different. Attempting to under-
stand the experimental evidence on CuCr, CuMn,
and CuFe in terms of the ground state configurations
proposed by Hirst, we are forced to conclude that his
assignments are incorrect. By choosing the sign of
the crystal field present at the impurity sites opposite
of that proposed by Hirst, we find good agreement
between the model and the experimental evidence
when we assign the 3d*, 34°, and 34’ configurations
to Cr, Mn, and Fe, respectively. These configura-
tions agree with those proposed by Hirst except for
Fe which he considers to be 34°. Hirst® expects a
jump in the regular progression of 3d” ground-state
configurations such as we find between Mn and Fe
since he believes Cu to be 34", but he proposed that
the jump occurs at Ni. Cohen and Slichter*? also
find a jump between Mn and Fe when they fit NMR
satellite data to a potential scattering model. They
find 4.0, 5.0, and 7.0 d electrons for Cr, Mn, and Fe,
respectively. Johnson, Vvedensky, and Messmer’s®
cluster calculations also agree. The apparent integral
jump in the number of d electrons on the impurity is
additional evidence that the ground-state level widths
are much smaller than the virtual bound state widths
calculated in a Friedel scattering model or a Hartree-
Fock approximation to the Anderson model and thus
further confirms Hirst’s model.

In Table IV we summarize the configurations and
model parameters which we have determined or es-
timated for the three alloys.

We believe that our satellite data and the low-
temperature, high-field data of Azevedo, Follstaedt,
and Narath verify the theoretical description of Cr,
including the facts that /=3 and g =1. Still un-
resolved, however, is the behavior of the Cr ground
state at temperatures below about 1 K. In particular,

TABLE IV. Summary of model configurations and parameters.

Ground Crystal

Spin Orbital

state field orbit reduc. Heff
H. H,
Alloy  Configuration L S symm. A(em™) A (em™) k -2—;, (kOe) —Li(kOe) (up) oJ
CuCr 344 2 2 T, 48(32) 0.84(19) —402 2252 344) 011
CuMn 3d° 0 5/2 Ay -56 R 4.8 —-0.33
CuFe 3d’ 3 32 A, 2490 —95¢ 0.8¢ —69 679 3.5 —-0.31

2 Speculation only. See Sec. A.

b Calculated from assumed values of A and k.

¢ Estimated at 80% of free ion values.
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the anomalous behavior of the magnetic susceptibility
raises the question of whether or not CuCr truly has

.a Kondo effect, and if so what is the Kondo tempera-
ture. Extension of the low-temperature susceptibility
measurements to check more extensively for possible
concentration dependent effects is highly desirable.

A reexamination of the low-temperature Cr nuclear
alignment data to see whether or not there is a quad-
rupole alignment would provide an independent test
of our claims because our model requires a quadru-
pole coupling in order to explain the observed nu-
clear alignment.

This research was supported in part by the U.S.
Department of Energy under Contract No. DE-
AC02-76ER01198.

APPENDIX A: TEMPERATURE DEPENDENCE
OF NMR SATELLITES

In this Appendix we show that the temperature
dependence of the NMR satellite splittings AKX is pro-
portional to the spin susceptibility of the impurity,
ie.,

AK _ s
—K-—g(r)x(T) , (A1)

where g( 1) is determined by the spatial dependence
of the conduction electron polarization and is not a
function of temperature. We consider only the part
of AK due to the polarization of the conduction elec-
trons through the Fermi contact interaction, which in
the magnetic alloys is nearly all of AK for the mag-
netic field strengths commonly used in NMR.
We use the general form of the mixing interac-

tion?!

N
Hix= kg, Ly Amad, 1 1C 1 iChmo (A2)
o

Pt
kmo

where the operator a,,T“7 creates an impurity electron
with z component of angular momentum m and spin
o and the operator ¢, Creates a conduction electron
with wave vector magntiude k, z component of angu-
lar momentum m and spin o. The Fermi contact in-
teraction between the conduction electrons and a host
nucleus which is a neighbor of the impurity is given by

N
H,, = §§n—'}’eﬁl4’«z zszia( I—"i'_l—() ’ (A3)
=1

where v, is the electron gyromagnetic ratio, u, is the
z component of the nuclear magnetic moment, R is
the position of the nucleus, and the sum over iis a
sum over the N conduction electrons specified by po-
sitions T';. In second quantization notation Eq. (A3)
may be written

o =Y t
Hen=§3£‘yé’h—ﬂl Z l’l}l(R)lIJ?(R)o’Bvu'crlu'cr” '
ko

k'e (A4)

(For a discussion of a similar calculation which clari-
fies many of the details of this calculation, see Ref.
44.) Ordinarily one would take the electrons to be in
Bloch states, ug( )e'k " T. We will take the states
to be plane wave states instead, thus neglecting the
large amplitude of the electron wave function near
the nuclei as expressed by the u( T) factor. Since
it is only the ratio of AK to K which is to be calculat-
ed this approximation should be reasonable. We
then express the plane wave states as spherical
waves, i.e., we assume they are in states of definite /,
m about the impurity position. Equation (A4) then
becomes

Hen=§3lr_’yeh—#‘z 2 Y;m'(ﬁ)Yzm(lé)vk’(R)vk(R)Usavlc:'m’vlckm” ’ . (AS)
kmo

K'm'o’
since the impurity moment complex couples only to d
electrons, where v, (r) is the radial free electron d
function with wave vector of magnitude k.

Let |a) be the exact many-electron states of the
impurity moment in the absence of Hpy; let |8) be
the exact many-electron states of the conduction elec-
trons in the absence of H,,. The energy of interac-

tion between the impurity moment and the neighbor-
J

-
ing nucleus is

<aBleix|a/B,) <a’B,|Hen|a:8> +eoc.
EaB—Ealﬁl

AEaﬂ - 721
“F (A6)

Substituting Eqs. (A2) and (AS) into Eq. (A6) and
simplifying we have

AE 5= §31‘yeﬁ'p~z p> LyAelansa . la)(Blc) . cimolB) BV (R) Yom(R)v (R)vi(R) 0 Chmac,, 1 |B) +e.c.
mao ‘

klmlﬁl
167

=22y ip, 3 (alapea, la) Y2 (R) Yon(R) o 3,
B,kk'

3

’
mm o

(Bleys, 1. Ckmal B') (B Cimotys, 1| BYv, (R vi(R)

k'm o
; 1
—_ k
Eg—E, k
(A7

’
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We now note that

S Gamea,, Y (R) Yom(R) (A8)

’
mm a

in second quantization notation for

N
Zs,,S(rAI—IQ) B (A9)

i=1

where the sum is over the N impurity d electrons
with angular position specified by 7. We approximate
that the conduction electron states are the same as in
the absence of a magnetic field; then

(Ble): 1 cimolB)Y =0, (A10)

unless |8) contains an electron with quantum
numbers k'm’c and |B8’) contains an electron with
quantum numbers km o, in which case it equals one.
Let p, be the probability that |«) is occupied and pj
be the probability that the conduction electron state
with wave vector magnitude k is occupied. The ther-
mal average of (A7) becomes

AEqs=40 3,pe] ;s,,zs(;,—zé)’a) ., (A1)

where

Ao= 12" Yelip:

s1 2e(1=p v (R)vi(R)
x '
k.k' kk Ek_E ’

k

(A12)

The unit vector R points towards a particular
neighbor in a shell. Let there be N, atoms in a shell,
designated by R, where n=1, ... Ns. In a single
crystal, the spectra of a given shell consist of a small
number of closely spaced lines. In a powder, these
lines are smeared together so that each shell gives
rise to a single satellite. Thus, to get the position of
a satellite for a powder, we must average over all
orientations of R. To do so we have that the average
of (|3, 5:8(#—R,)|a) for a shell is

N,

a>av
s

1 n ~
T\Ijn-l <a"2Szi8(r,—R,,)

<012Szi5(f1“1én)

)

Ezl;fda@\‘zsﬁa(ﬂ—ﬁ)]a) . (A13)

where we replace the sum by an integral over solid
angle Q, and where the unit vector R roams over a
sphere. Performing the Q) integral before evaluating

the expectation value, we get

<al zszia(;l—ﬁn a>av=<a| Eszl Ot> = (alSzIOI) .
i i
(A14)
Therefore for a full shell
AE.g=Ao 3 pa{alS,la) =A4o(S;) . (A15)

Although A4, involves temperature (in the p; ’s)
the temperature dependence is negligible for the
same reasons that the Knight shift X of a|pure metal
is temperature independent. Thus the temperature
dependence of the satellite arises solely from (S, ).
Equation (A15) implies that a/l satellite shells of a
given impurity in a given host have the same tem-
perature dependence of their splitting from the main
line, in agreement with experiment for CuCr, CuMn,
and CuFe.

APPENDIX B: SUSCEPTIBILITY CALCULATIONS

In this Appendix we describe the calculation of the
magnetic susceptibility from the ionic model for the
various configurations and give the formulas for the
spin susceptibility and the total susceptibility. For
those configurations of particular interest for this
study, we give the calculation of the reduction of the
effective magnetic moment due to the impurity
electron-conduction electron mixing interaction.

A. Triplet ground state

If the crystal-field ground state is a triplet, the orbi-
tal angular momentum is unquenched and the
crystal-field ground state degeneracy will be further
split by the spin-orbit coupling. We calculate the sus-
ceptibility of the crystal-field ground state only, ig-
noring the excited crystal-field states which probably
lie several thousand degrees above the ground state.
Within the triplet ground state we write

H=H,+H, , (B1)
where
Hyo=AL'S; H,=ugH(kL,+2S,) , (B2)

where k is an orbital reduction parameter which
represents a reduction of the orbital angular momen-
tum from that of the free ion due to the crystal en-
vironment (see Ref. 16). We have made use of the
cubic symmetry and assumed that H lies along the z
axis. Let

H | FM) = Ef|FM) . (B3)
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To create states which are nearly eigenstates of H, we
treat H, as a perturbation of Hg,:

FM\H|FM) | :
|FM) =|FM) + 3, <—E—|—7E|——>—IFM> (B4)
F'=F F g
so that
H|FM) = Ep|FM) + H,|FM) . (BS)

To calculate the thermal average of S, we evaluate
the trace of S, times the density operator. As dis-
cussed in Sec. II D, since the excited crystal-field
states are far above the ground state, the Boltzman
factor makes the contribution from these states small
and we ignore their contribution, approximating the
trace by a trace over the ground crystal-field state
only:

-BEF

-1
(S.) zlz(2F+1)e“’EF pAP
F FM

F=F'

From Eq. (B6) we see that within the spin-orbit
ground state the spin polarization has both a tem-
perature dependent and a temperature independent
term. The formula for the thermal average of L, is
obtained completely analogously to Eq. (B6) and is
identical to it with L, substituted for S, everywhere in
the expression. The susceptibility is obtained from

x’=—2’ZN (S, (B7)
xo =22 (e
=——(a (Les) +2(S8,)) . (B8)

We find it convenient to use a matrix transforma-
tion to obtain the matrix elements required to com-
pute Eq. (B6). Designate

M= (ilHylj) with |i) =|LM; SMs) .  (B9)
We define a matrix V:
M=vVMV (B10)

such that M’ is diagonal. Since H,, simply couples
the fictitious angular momentum L, with the spin S
to form a total fictitious momentum F, Vis simply
composed of Clebsch-Gordan coefficients and can be
written down immediately. We define

z§=ilS:lj), zf=GlLl)
(B11)
z8'=v-zsv, ZV=v-izly

’

The last two matrices are the matrices required for
Eq. (B6) and the analogous equation for L,.

s (FM|H,|F'M") (F'M'|S,| FM )
EF—EF/

~B(FM|S,|FM) (FM|H,|FM) |e

(B6)

B. Doublet or singlet ground state

If the crystal-field ground state is a doublet or a
singlet, the orbital angular momentum is quenched
within the ground state. Some orbital susceptibility
and some temperature independent spin susceptibility
result from a mixing of the excited crystal-field states
into the ground state by the applied magnetic field.
We treat both the spin orbit and Zeeman interactions
as perturbations on the crystal field. From group
theory we know that the perturbing Hamiltonian,
given as Eqgs. (B1) and (B2) with a =1 since we are
now using states of real angular momentum, con-
nects an A, ground state only to the T, excited
crystal-field states of an Fstate. (Refer to Fig. 1.) It
also connects the E ground state to the excited T,
states of a D state. We therefore treat both cases
simultaneously. We designate an unperturbed
ground state by |im;) (irefers to A, or one of the E
orbital states) and calculate the corrections to the
ground states to second order:

Y (FM|H |imy)
limg) = |imy) +F%——————Ei_EF |FM)
(FM'\H|FM) (FM|H\img) |, ,
VAT G-E BBy TMD
F'M'
(B12)

We have written the T excited states as | FM) be-
cause of the spin-orbit splitting withing the triplet
state. We calculate the thermal average of L,, again
approximating with a trace over the ground crystal-
field state only:

(L,) *Lz S, [Cim, | L.l im) = BCim, | L, H |im,)]

s

(B13)

To second order in H
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(2)
|L|FM) (FM|H|imy)

<Lz>=72 (imlez“ms> +21§[ Ei—Er

im s

(3)

(img|H|FM) (FM|L|F'M’')y (F'M'| H|imy)

+ 3

F'M’

- (E,—E_)(E,—Ep)

(4)
(im| L|F'M'y (F'M'|H|FM ) ( FM| H | imy)

+2 3

F'm’

FM (EI_EF/)(Ei—Ep)

|L,H|FM) (FM|H|im,)

(B14)

— 8| (imy| L H imy) +2 3 LMs
FM

Equation (B14) appears rather formidable, but with
an approximation and a few tricks it is easily evaluat-
ed. Since the spin-orbit splittings are much smaller
than the crystal-field splittings, we ignore the differ-
ences in the energies of the excited state and let
E—Er=E—E.= A. Since the excited states are
composed of orbital states which are orthogonal to
the ground state, S, does not connect the ground and
excited states. Consider the terms of Eq. (B14):

(1) =0 since L, vanishes in the ground state . (B15)

Since the sum in term (2) extends over all of the

| FM) states, a change of basis to | M My) states is
possible. Although the |M; Ms) basis includes states
in the ground state, and also states in the 77 excited
state for the crystal-field-split F states, the matrix ele-
ments of L, between the ground state and these
states vanish. Thus

A

My Mg

2)=—2 S, (img| LI My M) (M, Ms|H|im,)
ims

(B16)

With the IMLMS) basis states the orbital and spin
subspaces are separated and the operators L, and S,
must appear in the trace to even powers or the trace
vanishes. This allows immediate elimination of the
majority of terms. Thus

2028 +1
(2) =228 +DupHk® (B17)
A
where we have defined
=3 1GILAM )P, (B18)
imL

(3)=0, (B19)

Ei—"EF

f
since after a change of basis to the | My M) states, it
is impossible to form the L, and S, operators both to
even powers

(4)=i“—Zf[—2TrS} , (B20)
(5)=0, (B21)
(6)=4—M57T)\ETrSZ . (B22)

Collecting terms:

(L >=_M k _2S(S+DA _ 25(S+1)AB
: n o |A 3A2 3A

(B23)

where n; is the orbital degeneracy of the ground state

e 43Nk - 28(S+DN _ 28(S+D)
nA 3A 3ksT
(B24)

We obtain the spin susceptibility in a similar
manner. The result is
_ 4 ANS(S +1)

3

s

ksT — mA? (B25)

1 _2k)\2]

Combining the spin and orbital susceptibilities

S(s+1) |, 2xk2]

3kgT

1

tot — 4 ZN
X a I H;A

k|, _4S(S+DA
+an [k 5y ” (B26)
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