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Thermoelectric power in a disordered two-dimensional electron system
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The thermoelectric power Q is studied for a two-dimensional disordered system by using two

different models in the weak-scattering limit. The first is a localization theory of noninteracting
electrons. No logarithmic divergence is found for Q. A second model including the effects of
electron-electron interaction gives rise to a logarithmic temperature-dependent term at low tem-

perature. In the present work the effect due to both the long-range and short-range interactions
are considered.

In recent years our understanding of electronic
conduction in two-dimensional disordered systems
where Anderson localization of noninteracting elec-
trons'~ may be important and the theory of
Altshuler et al. ,"which considers electron-electron
interaction may also be important, has advanced sig-
nificantly. ' " When these ideas were carried out in
the perturbation theory, valid in the weak scattering
limit, both theories predict the existence of a non-
Ohmic logarithmic ra- (frequency-) dependent correc-
tion to the conductivity. The coefficient in front of
the logarithmic term in localization theory is identical
to that of the interaction theory if only the long-range
interaction between electrons is considered. The Hall
constant has also been calculated. " No logarithmic
divergent term is found in the localization theory"
while in the interaction theory the logarithmic correc-
tion is still present.

The purpose of this manuscript is to point out that,
only in the interaction theory, there is an analogous
logarithmic correction to the thermoelectric power of
a two-dimensional disordered system. In the pres-
ence of both an electric field E and a temperature
gradient V T (in the same direction), the current den-
sity is given by'

j=LttE+Lt2( —AT)

Here L11=a. is the electrical conductivity and the
thermoelectric power

L12

L11

where Lt2=L2t/T. The response functions Ltt and

L21 are given by linear response theory in terms of
the current-current and heat current-current correla-
tion functions, respectively, L11 has been obtained
previously. In the following discussion the perturba-
tion theory in the weak scattering limit shall be used
to calculate L21. First let us consider the localization

theory, in this approach the conductivity has the form

L11=o.p 1 — ln—L
m Ep7

j ~

where o.c = ¹'r/m. N is the electron concentration,
m and e are the electron mass and charge. EF is the
Fermi energy, v is the scattering time, L is the sam-
ple length, and I is the mean-free path. L21 can be
determined from the Feynman graphs shown in Fig.
1, where the solid line represents the electron, Green
function G +(p, ro) = [tv —e(p) +1/2r] ' and the
wavy line is the diffusion propagator D(q, cu)
= u2r '/ (—i o&+Dq2), and D = VF'r/2 is the dif-
fusion constant in two dimensions. u measures the
impurity potential and VF is the Fermi velocity. The
open circle and the solid dot are, respectively, the
heat current vertex aov; and the electric current ver-
tex e v, here co can be regarded as the energy variable
associated with the electron Green functions in Fig.
1. v is the velocity of an electron. The evaluation of
these graphs is straightforward. If L21 is written as
L»=L21 +AL», we have

1

L21= L21 1 — ln-p 1 L
m'EF7' I

here L2et corresponds to Fig. 1(a) and is given by

m eX~T
3mEF

(b)

FIG. 1, Diagrams for heat current-current correlation
function L21 in the localization theory of noninteracting
electrons.
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AL2~ is the second term on the right-hand side of Eq.
(4). Using the formulas listed from Eqs. (2) to (5),
it is easy to show the ln(L/i) term in Eq. (3) cancels
that of Eq. (4); therefore the thermoelectric power in
localization theory does not contain a logarithmic T-

dependent term
(b) (c)

m'T .=Op=
3eEF

(6)
+ ~ rX

here Qp = L&p/op(Lt2 = L2& /T) is the thermoelectric
power without the contribution from the diffusion
propagator.

Next we wish to consider the thermoelectric power
in interaction theory. In this model the electric con-
ductivity at finite temperature has been determined

(e)

FIG. 2. Diagrams for heat current-current correlation
function L2~ in the theory of interacting electrons in the
presence of weak impurity scattering,

1 1
L)) =(rp 1 — ln

7T pV T

The diagrams used to calculate the electric conductivi-
ty also contribute to the heat current-current correla-
tion function. They are shown in Fig. 2. These dia-

grams are generalized in a conserving approximation
from exchange self-energy diagrams. The wavy line
here represents the dynamically screened Coulomb
interaction dressed with repeated particle-hole scatter-
ings through impurity potentials, and it has the form

v, (q, o))
f(q. ~) = (g)—iru+Dq

—icu+Dg(q")=
2N, (D, )

(10)

For the expressions of Figs. 2(b) and 2(c), we,
respectively, have

e N~ m7' co —0
(i) L2))2b=i

2
A 2

deaf�(o))

nA

N)m 7'

(AL2))"=—i, A deaf(co)
m2 mQ 4~

where 0 is the external frequency which will be tak-
en equal to zero at the end of the calculation.
f(co) = X f(q, co) and A is given by

2z 4mT
A = z sech dz=

2T 3

Nt = m/2m is the single spin density of states. Using
the standard finite-temperature Green-function
method, these diagrams can be evaluated without dif-
ficulty. The contribution from Fig. 2(a) and its sym-
metry graph is

t
0

+ J dGlf (Ctl)

(12)
1

m2 mQ

pO

+~ deaf(o))

It can be seen immediately that the sum of Figs.
2(a) —2(c) is exactly zero so that the correction to the
heat current-current correlation function comes
directly from Figs. 2(d) and 2(e). The contribution
from Fig. 2(d) and its symmetry graph has been
evaluated. %e have

(EL2t) = i
2 2

A gq& dcuFq(ra, 0) + J dcoFq(co, 0)
m2 ~2E Q q

(13)

F,(co, 0) =f(q, o))D(q, au+0)

For Fig. 2(e) and its symmetry graph we obtain

(14)

(4mEFNtr ) r&i~
(AL2))"=—i, , A Xq„' q

do) [F,(o), 0) +F,(co, —n)]
m ~ EFO

(15)
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In the limit 0 0, the sum of (EL2~)'"and
(EL2~)"can be written

(2mEFr3)2, ~v.
AL2) =i

2 2
A gq„2 „d«)Eq(o), 0)m' 2m'EF T (b)

(16)

At finite temperature and in the limit of 0 0, 0
should be replaced by T. After the integration in the
above equation is carried out, AL2~ becomes

(

eT' 1
b,L2] = — ln

TT
(17)

From Eq. (5) and using the relation L~2
= (Lf~ +/!L2t)/T, we obtain

1 1
ln

mEFT T T
(18)

FIG. 3. Self-energy correction from exchange diagrams
[(a) and (b)] and from Hartree diagrams [(c) and (d)l in
particle-hole channel.

Q =Qp 1 — ln
1

2mEFT T T
(19)

The thermoelectric power can be determined from
Eqs. (7) and (18); the result is

account, the result becomes
1

L))=L)I 1 — ln--p g 1

FT T
(23)

The above result is the consequence of including
only the exchange diagrams in the self-energy [see
Figs. 3(a) and 3(b)]. As pointed out in Ref. 8, the
Hartree diagrams in Figs. 3(c) and 3(d) may also be
important if the interaction is short ranged. In the
Hartree diagrams the momentum transfer in the in-
teraction line (double wavy line)

2me
V(q) =

I ql + k
(20)

is not small and must be integrated over. It is
straightforward to show that associated with Hartree
diagrams of particle-hole channel in Figs. 3(a) and
3(b), an effective interaction Vcan be defineds

t

L)2=L)2 1 —
E lnp g 1

FT TT
(24)

where g =1 —F. Thus, the inclusion of the Hartree
diagrams [Figs. 3(c) and 3(d)] introduce a factor F—
in g. In the absence of a magnetic field the self-
energy diagrams in particle-particle channel [Figs.
4(a) to 4(d)] are equally important. Their contribu-
tions to the transport coefficients can be obtained in
a similar way. It is straightforward to show that the
Hartree diagrams [Figs. 4(a) and 4(b)] and the ex-
change diagrams [Figs. 4(c) and 4(d)] give rise,
respectively, to additional factors —Pand

2
Fin g.

V= —u $ G+(p )G (p ) V(p —p )
P P

x G+(p )G (p ) (21)

~l ~I I
After the summations over p and p are carried
out, we obtain

(a)

2Ni
'

d8 1

2w 1+(2kF/k) sin(8/2)

(22)
I

g !~ I g
! 4~ I !

/
I 4r

XX 4y XX
I ! i~ 4!!

In order to consider the effect of the Hartree dia-

grams [Figs. 3(c) and 3(d)] on the transport coeffi-
cient, we need only to replace V, (q, w) in Eq. (8) by
V. The evaluation can be worked out easily and if
the spin degeneracy of the closed loop is taken into

FIG. 4. Self-energy correction from Hartree diagrams [(a)
and (b) j and from exchange diagrams [(c) and (d)] in

particle-particle channel.
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Thus we have

g=l —I' —I'+ —E=l ——F .1 3

2 . 2
(2S)

In Figs. 4(c) and 4(d), the interaction lines between
electrons should be co dependent and co ~ I/~. Since
the momentum of the interaction line is quite large—kF, we have neglected its frequency dependence
and use Eq. (20) to represent this interaction. The
contribution of these diagrams [Figs. 4(a) to 4(d)]
to the conductivity L ~~ has been studied previously
by Fukuyama. " The present result for L~~ reduces
to that of Altshuler et al. if the diagrams in particle-
particle channel are neglected. From Eqs. (23), (24),
and (25), the thermoelectric power in the absence of
a magnetic field can be written

(26)

According to Eq. (22), it is clear that F approaches
unity if 2k+/k 0 and zero for large 2k~/k.

Finally, we also insert a note on the effects of orbi-
tal degeneracy in the Hartree diagrams for silicon in-
version layers. In the absence of intervalley scatter-
ing, the Hartree term has an additional valley degen-
eracy factor n„. The thermoelectric power Q for such

a system can be shown to have the expression

Q=QO I— 1 [I -(2n„--, )r] in
i 1

2mEFvn„ 2 TT

In this paper we have studied the thermoelectric
power for a two-dimensional disordered system in
two different models. The first model deals with the
localization of noninteraction electrons. We find that
there is no logarithmic T-dependent term in Q. The
second model deals with interacting electrons in the
presence of weak impurity scattering. The ther-
moelectric power is predicted to have a logarithmic
correction at low temperature. It is hoped this work,
which is in the same spirit of the Hall constant calcu-
lation, will help to decide which of the two models is
more clearly related to experiments. Moreover, it
seems that the thermoelectric po~er measurement
constitutes so far the only proposed experiment
which is able to separate the logarithmic term of the
second model from that of the first model in the ab-
sence of a magnetic field.
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