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The calculation of the ac hopping conductivity for a linear chain with random interrup-
tions requires the solution of the hopping problem for an ordered segment of arbitrary
finite length. This problem was treated recently by the author using periodic boundary
conditions and, exactly, by Odagaki and Lax (OL) who considered properly terminated
segments. It is shown that the results obtained using the OL definition of the averaged
complex diffusion constant in the author’s treatment for periodic boundary conditions
coincide with the exact results to leading order for strong disorder, both at low and high
frequencies. These new results are compared in detail with those of OL for the whole
range of disorder. An important normalization correction is included in the author’s ear-
lier results, which were based on a different definition of the averaged diffusion constant.
It is shown that the two definitions of the diffusion constant may lead to substantial

quantitative differences.

Hopping on a linear chain lattice with random
interruptions of the nearest-neighbor hopping rate
along the chain has been studied extensively as a
simple model for carrier or exciton transport and
spectral diffusion in disordered systems. The car-
rier is assumed to hop between nearest neighbors
only and the hopping rate has a constant value W,
with probability p and vanishes with probability
1—p due, e.g., to random impurities or defects
which interrupt the hopping path. It is clear that
for p5£1 the infinite chain breaks up into a set of
ordered chain segments, where a segment refers to
a finite cluster of sites connected to each other by
transfer rates W, which are regarded as bonds.

In particular, the frequency-dependent conduc-
tivity given by
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is a generalized éiffusion constant, has been stud-
ied recently by Heinrichs' and by Odagaki and
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Lax.2 Here n is the density of effective carriers of
charge e, x denotes a site position in the chain, and
f(x') is the equilibrium distribution function for
the initial carrier position x'. 2 (x,u | x') is the
Laplace transform of the probability #(x,t | x’,0)
of finding a carrier at a site x at time ¢ if it was at
x'" at t=0 and is determined by the usual random-
walk equation® for a fixed configuration of the
random chain. The angular brackets in Eq. (2)
denote configuration averaging. Two different
forms for f(x’) have been suggested in the litera-
ture. Scher and Lax® assume f(x’) = 8y xyr 160
the carrier is initially placed in a localized state
centered around a fixed site x’ = xg, while
Odagaki and Lax* assume f(x’) = 1/L (with L
equal to the total number of sites in the system),
i.e., the carrier is found initially with equal proba-
bility on any site (high-temperature limit). By per-
forming the average over initial sites x’ in the ex-
pression between angular brackets in Eq. (2) we ob-
tain, for both forms of f(x’),
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where x denotes the initial location of the carrier.
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In the case where f(x') = 1/L, Eq. (2') is obtained
after interchanging averages over x’ and over con-
figurations in Eq. (2) and noting that the average
in (2') is independent of x, since the configuration
averaging includes, in particular, averaging over
the subensemble of realizations that differ only by
the initial position of the carrier. Since Z(x,t |x,,0)
and hence Z(x,iw | x, ) are zero unless x

and x, belong to the same segment, Eq. (2’) may
be reduced to a weighted average over ordered seg-
ments (clusters) of different sizes:
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where N denotes the number of sites on a segment
and the diffusion constant Dy (w) for a segment is
given by [with D(w)= 0]
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where Plx,io | x, ) is just Z(x,i ® | xo ) when x
and x belong to the same segment and the sum-
mation (1/N )Eivo - - - results from averaging over

the configurations corresponding to different initial
positions along a segment of N sites. In Ref. 1 the
diffusion constant Dy(w) is calculated by applying
periodic boundary conditions (PBC) for clusters
with N > 3 (the pair cluster is treated exactly) and
in Ref. 2 it is calculated exactly by considering
properly terminated clusters. When PBC are used
for an individual segment, all sites on it become
equivalent and Eq. (4) reduces to a simple sum
over sites x with the factor 1/N removed.!

Now, since an individual term in Eq. (2) may be
regarded as depending either on an initial site for a
carrier x’ and on a distant hopping site x or,
equivalently, on an initial site x’ and on a hopping
distance x —x’, it is as well suited for discussing a
site percolation problem as for describing a bond
percolation problem. This suggests the possibility
of introducing two different configuration averages
to define a generalized diffusion constant D(w) of
the form of Eq. (3). First, since one is actually
dealing with a bond percolation problem (a bond
corresponds to a transfer rate W, connecting two
sites) a natural definition of D(w) is obtained by
averaging Dy(w) with respect to the probability
R(N —1) for a bond to belong to a cluster of N —1
bonds (X sites) terminated by a broken bond at
each end.* In this case

Y(N)=R(N —1)
=(N-D(1—pyp¥-1, N>2 (5a)

Y(1)=1-p, (5b)

where Y(1) is the probability for a bond to be ab-
sent. One has the normalization condition!

l-p+ 3 RI(N-1)=1. (6)
N=2

Note that since the N=1 term gives no contribu-
tion in the numerator of Eq. (3) [because D (w)
=0], one might be led to conclude that the “no
bond probability” Y(1) should be omitted from the
summation of weighting factors in the denomina-
tor of Eq. (3). However, this is incorrect because it
would lead to an expression in which the effective
weighting factor YN/ 3 % _, Y(N) = p ~'Y(N) for
Dy(w) would not vanish for p = 0 for N = 2, and
hence the general property lim,_,,D(w)=0 would
not be obeyed. This shows that it is necessary to
retain the N = 1 term in the denominator of Eq.
(3) [where > % _, Y(N)=1] in order to ensure that
D(w) vanishes when no bonds are present in the
system.

Alternatively, one may define D(w) as the aver-
age of Dy(w) over the probability

Y(N)=Q(N)=N(1—p)?p"N ! 7)

for any given site to belong to a cluster of N sites.
Q(N) satisfies the normalization condition

S on=1, (8)
N=1

where Q(1) = (1—p)? gives the probability for a
site to be disconnected from its nearest neighbors.
As discussed above one must keep the contribution
of isolated sites [Q(1)] in the summation of weight-
ing factors in the denominator of Eq. (3) in order
to preserve the proper behavior of D(w) for p —0.
Heinrichs' used the definition of D(w) in terms
of the bond probability distribution R(N—1),
whereas Odagaki and Lax? used the definition in
terms of the site distribution Q(¥). While both
treatments yield the same frequency dependence
for the real and imaginary parts of D(w) at low
and high frequencies, it would appear? that for
strong disorder (p—0) the expansion coefficients
for these two ranges remain finite in the work of
Ref. 1 while going linearly to zero in that of Ref.
2. Unfortunately, the necessity of including the
“no bond term” Y(1) in the denominator of Eq. (3)
was overlooked in Ref. 1 with the result that a fac-
tor p is missing [as shown by Eq. (6)] in the final
expressions, Egs. (31)—(33), (38), (42), (50), and
(52), of Ref. 1. After correcting for this, the above
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expansion coefficients are also linear in p to lead-
ing order (p < 1), but their magnitude for p£0 is
only half that of the exact coefficients of Odagaki
and Lax at the same order. However, we find that
a direct comparison of the results of Refs. 1 and 2
for finite disorder (p=£0) is somewhat misleading
because of the use of different definitions of D(w)
in the two treatments.

For the purpose of making a proper comparison
with Ref. 2, we now discuss the results for PBC in
the case where Dy(w) is averaged with respect to
the site distribution (7). Following the notation of
Odagaki and Lax we write the low- and high-fre-
quency expansions of D(w) in the form [with
D (0)=D(w)/W, ]

D(0)=A&"+B&i +0(@°), d=-2 <<1
Wo
9)
~ B’ 2~
D(w)=C+—i+0(@7 "), a>>1. (10)
@
Using the detailed results of Ref. 1 for Dy(w) and

performing the average in Eq. (3) with respect to
Y(N) = Q(N) we obtain the final expressions

1 1 1 1
A=7p(1—p) 1—5(—355_-‘;&
+ %S2+%S1) ,
(11)
1 1
B=-p(1—p) 1+E(S3—Sl) , (12)
C=p(14+p—p?), (13)
B'=p(24+9p)(1—p)?, (14)
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FIG. 1. Comparison of coefficients of the low-
frequency expansion of the generalized diffusion con-
stant with the exact results of Odagaki and Lax (Ref. 2)
as a function of disorder. 4 and B are defined in the
text.
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FIG. 2. Comparison of coefficients of the high-
frequency expansion of the generalized diffusion con-
stant with exact results of Odagaki and Lax (Ref. 2) as
a function of disorder. Curves a: coefficients C and B’
defined in the text. Curves b: coefficients C = Cy and
B’ = By obtained in the case of the bond-averaged dif-
fusion constant (Ref. 1). Curves c¢: exact results of
Odagaki and Lax (Ref. 2).

where
S,= > NN, (15)
N=3

whose values for various n have been tabulated in
Ref. 1. These expressions should be compared
with the exact results of Odagaki and Lax, namely
Aexa,ct = 4_1(1 '—P)_4P(1 +p)2’ B exact

=2-(1 _p)—-ZP’ Cexact = P, and Byoer = 2p(1—p).
The most important conclusions follow at once
from Egs. (11)—(14): (i) to leading order in p for p
< 1 we get the values 4 = p/4, B=p/2, C=p,
and B’ = 2p which coincide with the exact results
at the same order in p. We note that to leading
order the corresponding corrected coefficients

2

1 ....................................
< L
x |
< -
L L 1 L 1 L ! | |
050 05 p 1
1 ......................................
o L
x |
o] -
O»S_ 1 1 1 1 1 1 1 1 I
0 05 p 1

FIG. 3. Comparison of the low-frequency expansion
coefficients for the bond- and site-averaged diffusion
constants. A and B are the coefficients defined in the
text and Az and By are those obtained in Ref. 1.
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found in Ref. 1 are [using a subscript R to indicate
that they relate to an average with respect to the
bond distribution (5a),(5b)] A = p/8, Bx = p/4,
Cr =p/2,andBg =p. Their magnitude is seen to
be half that of the coefficients 4, B, C, and B’
evaluated at the same order, which indicates al-
ready a significant difference between the two
averaging procedures. (ii) for p close to unity the
coefficients 4 and B show the same critical
behavior as A, and B.,,, namely 4
~(p—p.)"* B~ (p—p. )7% p.=1, and the coef-
ficients C and B’ coincide with the corresponding
exact values at p=1.

In Figs. 1 and 2 we compare the above expres-
sions, Egs. (11)—(14), with the exact results of
Odagaki and Lax for the whole range of values of
the order parameter 0<p < 1. Also, in order to il-
lustrate quantitatively the differences between the
two averaging procedures discussed above, we com-
pare in Figs. 2 and 3 the expressions (11)—(14)
with the corrected results of Ref. 1.°

In conclusion, we have presented a proper com-
parison of Heinrichs’s calculation of ac conductivi-
ty for the interrupted chain model and the exact

calculation of Odagaki and Lax, in the low- and
high-frequency regimes. Such a comparison is of
interest since the main purpose of the exact solu-
tion of Odagaki and Lax is to provide a standard
against which approximate treatments of percola-
tion conduction problems can be tested in order to
assess their range of validity as well as their rela-
tive merits.> At low frequencies (long times) the
use of PBC is least reliable for p— 1 because, on
the one hand, cluster boundary effects are expected
to play an important role in this case and, on the
other hand, the dominant contribution to D(w)
comes from clusters of larger and larger size whose
boundaries are not properly described by imposing
PBC. At high frequencies (short times), end ef-
fects are expected to be relatively unimportant for
any cluster size. This explains why in this case the
deviations of the above results from the exact ones
of Ref. 2 are generally small for any disorder. Fi-
nally, we have compared the results based on PBC
for two different definitions of the averaged dif-
fusion constant and obtained important differences,
particularly for strong disorder.
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“4In this connection the last sentence before Eq. (28) of
Ref. 1 should be clarified to read “Since the probabili-

ty of finding a segment of connected bonds of length
N (N + 1 sites) is (1—p)*p¥, the probability R(N) for
any given bond to belong to a segment of length
Nis....”

SThe factor p*3—2p) in the first term of the square
bracket in Eq. (38) and in the second term of the
square bracket in Eq. (42) of Ref. 1 is incorrect and
should be replaced by p(2—p).



