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Long-range correlations in adsorbed layers
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We report regions of long-ranged correlations parallel to a surface as revealed in the
calculation of the correlation functions and density profile for a vapor adsorbed on a solid
substrate. The method underlying the calculations uses the modified hypernetted-chain
equation in conjunction with the first Yvon-Born-Green equation.

Vapors in contact with solid substrates constitute
an interesting class. of physical systems which can
be relatively dilute far from the interface yet,
depending on the nature of the interactions, rela-
tively dense close to the interface. There has been
considerable interest in the theoretical description
of such manifestly inhomogeneous systems.! ~*
While most work has concentrated on the single-
particle density profile, only recently have results
become available for the correlation functions.’
The purpose of this Report is to present the results
of the application of the method of Ref. 5 to cases
where layering occurs at the interface. Specifically,
we find interesting physical behavior in the manner
in which the range of correlations parallel to the
surface grows in the transition region adjacent to
the substrate.

The approach employed in Ref. 5 includes the
effect of the substrate by imposing an external po-
tential V., (T) on a vapor of particles whose mutu-
al interactions are described by pair potentials
¢(7T), taken to have the Lennard-Jones form. The
number density profile p(T) is computed from the
first member of the exact Yvon-Born-Green hierar-
chy® which is derived from the requirement of
mechanical equilibrium:

Vp(F)=—Bp(F)V Ve (T)
+p(D) [ (7,7 Vp(")dT" . (1)
Here ¢(7,1’) is the Ornstein-Zernike direct correla-
tion function for the inhomogeneous fluid. The
Ornstein-Zernike equation provides an additional

relationship between ¢ (T,r’) and the pair correla-
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tion function g(T,7')=h(T,T’)+ 1, namely

25

To close these equations, we require a relation-
ship between h(T,T’) and ¢(T,T’). This may be
obtained in three steps. First, we note the exact re-
sult

14+h(T,T")=exp[ —BH(T—T" )+ E(T,T’)
+h(T,T")—c(T,T")], (3)
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where E (T,T"’) is the bridge function or sum of
elementary diagrams.” Second, it has been shown®
that for uniform fluids E(r) is highly universal
and short ranged. In addition, it is well represent-
ed by the form appropriate for a hard-sphere sys-
tem. Third, as shown in Ref. 5, it is physically
justifiable for an inhomogeneous system to use a
local approximation for E(T,7”’), i.e.,

E(F,F)~E(| 77| ,p=[p(F)+p(F]/2),
)

where E(r,p) is actually determined from the
Percus-Yevick solution for a hard-sphere system of
local density p.” Equations (1) — (4) now provide a
closed set of coupled integro-differential equations
which may be used to describe inhomogeneous sys-
tems. In particular, for a planar interface, they
may be solved directly by using an iterative numer-
ical procedure.

The external one-body potential used in this
study is identical, except for an adjustable scale
parameter a, to the one used in Refs. 1 and 5, i.e.,
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Vex(2)=admeypyoly 5

(5)

where €y /kg= 153 K, o = 3.727 A, and pwaiy
= 0.988. For a = 1 it corresponds to the argon-
carbon dioxide system. All quantities are reported
in units reduced by the Lennard-Jones parameters
for argon (e/ky = 119.8 k and o = 3.405 A).
The results we discuss are appropriate to a bulk
density of p* = 0.03, a reduced temperature T*
=1.1,and ¢ = 1.0, 1.2, 1.25, and 1.35. The den-
sity profiles resulting from the converged iterative
procedure are presented in Fig. 1. The layered
structure displayed there agrees with previous
work. 13

Somewhat more interesting, however, is the
behavior of the pair correlation function in the in-
terfacial region. For points whose relative separa-
tion is perpendicular to the surface, the correlations
are quite similar to those of dense homogeneous
fluids. The results for g(z=z",R||), the pair corre-
lation function for two points equidistant from the
surface as a function of their mutual separation
parallel to the surface, are presented in Fig. 2
(@=1.35). For points in the first adsorbed layer
(z ~0), these correlations again have structure

FIG. 1. Density profile of a Lennard-Jones fluid in
contact with a solid substrate at T* =1.1 and bulk den-
sity p* = 0.03. The wall-particle interaction is given by
Eq. (5) witha = 1.0 (— — =), a=1.2( ), a=1.25
(++-),and a=135(—+—+—" )-

1367

Z'R)

q(z

1.0 20 30 4.0
R, /o

I
FIG. 2. Pair correlation function for two points a
distance z from the surface as a function of separation
parallel to the surface for T* = 1.1, bulk density p*
= 0.03, and a = 1.35. The curves show z=5.00
(— — =), z=3.050 ( b,and z=1.10 (- - ).

similar to that of dense fluids. This is expected.
Far from the surface they approach normal bulk
values. The new feature, however, is the slow de-
cay of the correlations in the transition region be-
tween the bulk and layered regions (see Fig. 1).

The spatial extent of this behavior is displayed
most effectively by computing the planar integral
parallel to the surface of the total correlation func-
tion, i.e.,

h(zz',0=0)= [dRh(zz R)),

where ﬁll is the projection onto the plane parallel
to the surface of (r—T7"'). This is presented as a
function of z=z' in Fig. 3 for different values of
a. For a = 1.0, 1.2 the parallel correlations are
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FIG. 3. Total correlation function integrated in a
plane parallel to the surface for the conditions of Fig. 1.
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centered near z=20; for larger a, they are centered
near z=230, and so on. Comparison with the den-

sity profiles in Fig. 1 shows clearly that the corre-

lations are largest exactly where the new layers are
beginning to form.

Some insight into the variation of the density
profile with a change in bulk density can be ob-
tained by computing the response to a change in
chemical potential, u. It can be shown that®

é%:%)zﬁp(z)

1+ [hz,z,Q=0)p(z)dz’
(6)

The quantity in large parentheses is plotted in Fig.
4. It is apparent that the tendency toward layering
increases with bulk density. We also note that the
response near the first peak in the density de-
creases with stronger potentials. This signals the
onset of density saturation in the first layer as
must happen for a system with repulsive cores.

To verify that these general features are not ar-
tifacts of the closure approximation, we repeated
the calculations for @ = 1.25 with Eq. (3) replaced
by (a) the hypernetted-chain equation [E(T,T’)
=0], and (b) by the Percus-Yevick equation. In
both cases, the quantitative results are somewhat
different, but the qualitative behavior is preserved.

We also examined effects due to changing the
conditions in the bulk vapor. Calculations per-
formed at a lower density (p* = 0.01, T* = 1.1),
show less layering, as expected, but again the quali-
tative features described above are still present
though certainly less pronounced. Increasing the
temperature rapidly washes out these features. For
example, in calculations for p* = 0.03 and a =
1.25, both the increased correlations parallel to the
surface and the formation of secondary layers are
substantially reduced for T* = 1.4 and are almost
entirely eliminated for T* = 1.7.

The new aspect present in these results, the
long-ranged correlations in the transition region, is
physically plausible if one accepts the formation of
layers as an essential feature of adsorption. The
growth of a new layer requires that quantities such
as 8p(z)/8u be large in that region. This in turn
suggests that 4 (z,z',Q =0) will be large for z and
z' near the new layer as our results show.

The analogy with bulk fluids near a liquid-vapor
critical point, where the correlations look qualita-
tively similar, implies the existence of large density
fluctuations in the transition region. Such a possi-
bility is supported by the following simple argu-

ment. A vapor is manifestly highly compressible
and so can sustain large fluctuations in the local
chemical potential. The results presented in Fig. 4
show that such changes will produce the largest
relative density fluctuations in the transition re-
gion. Large density fluctuations in a weakly ab-
sorbed layer are also intuitively appealing since the
effective mean potential responsible for the local
accumulation of particles is weak and the density
is thus easily perturbed.

Computer simulations of fluid-solid interfaces
have not so far revealed the behavior of the pair
correlation function that we describe. In the main,
these studies have focused on dense Lennard-Jones
fluids'® and dilute hard-sphere gases* at solid sub-
strates, and have found no significant variation
with the distance from the surface of the pair
correlations parallel to the surface. A dense fluid
in contact with a solid differs qualitatively from
the systems studied here in that there is no transi-
tion from a dilute to a dense region. Thus the
qualitative behavior need not be the same. The
hard-sphere results are certainly consistent with
our observation of the temperature dependence of
the effect. At higher temperatures, the interparti-
cle attractions become less important and the sys-
tem approaches a hard-sphere system. Comparison
of these physical situations implies that strong
particle-particle interactions and dilute bulk condi-
tions are both required. Thus, the long-ranged
correlations appear to be associated with a local

l [Sp*(z)/S/.L]

[8p*@)]
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FIG. 4. Relative density response to a change in
chemical potential for the conditions of Fig. 1.
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condensation of a dilute gas into a dense layer as a
consequence of the interparticle interactions. Com-
puter simulations for parameters similar to those
studied here would therefore be of great interest.
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