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Nonlinear screening of negative point charges in diamond, silicon, and germanium
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In the present paper we formulate a variational principle-for obtaining approximate

analytical solutions of a nonlinear differential equation established by Cornolti and Resta

for the potentials of negative point charges embedded in pure diamond, silicon, and ger-

manium. We consider the case of charges Z = —1, —2, —3, and —4 {in atomic units) in

these semiconductors, while Cornolti and Resta considered the cases of Z = —1 and —4.
We find that our approximate analytical results for the spatial dielectric furictions of dia-

mond, silicon, and germanium, depending on Z, are in excellent agreement with the nu-

merical results of Cornolti and Resta, who have presented their results in graphical form.

I. INTRODUCTION

Recently Resta' has formulated a nonlinear
Thomas-Fermi (TF) approach for obtaining the po-
tentials of positive and negative point charges em-
bedded in pure semiconductors. In another work,
Cornolti and Resta have numerically solved
Resta's nonlinear TF equation for the potential of
positive and negative point charges embedded in

pure diamond, silicon, and germanium. These au-

thors have presented graphical results for e„(r), the
spatial dielectric function associated with the non-
linear theory, for point charges Z =+1,+4 (in

atomic units).

Very recently Csavinszky and Brownstein have
obtained E„(r) analytically for point charges Z
= + 1, + 2, + 3, + 4 in pure diamond, silicon, and
germanium. The approximate analytical solution
for e„(r) was made feasible by an equivalent varia-
tional principle to the nonlinear TF equation. '

In the present paper we have extended our varia-
tional approach to the potentials of point charges

Z = —1,—2,—3,—4 in pure diamond, silicon, and
germanium. In what follows we present our theory
in a terse manner since the necessary mathematical
framework is detailed in our previous work (here-
after referred to as I). As in I, all quantities are
written using atomic units.

II. THEORY

The nonlinear TF equation'* solved by Cornolti
and Resta is

where a =27~2/3' and A = V(R„). In Eq. (1), V is
the potential of the negative point charge embed-

ded into the pure semiconductor, R„ is a screening
radius, ' R, is the radius of the Coulomb hole,
defined by

EF+A —V(R, ) =0, (2)

and EF denotes the valence Fermi energy which is
related to the valence Fermi momentum by
EF =kF/2.

Introducing the function

g(r) =r[V(r) A], —

Eq. (1) is transformed into

0, R„&r&~
a[re r(EF f/r) ~ ]—, R, &—r &R„

arEF, 0&r &R, .

(3)

(4)

This equation differs from that for a positive point
charge by the presence of the last line. (For a
positive point charge, the regions of interest are

R„&r& oo and 0&r &R„.)

For r )R„, the solution is '

0~ Rn &r

V V(r)= a I EF [EF+A——V(r)] ], R, &r &R„

aEF 0&r &R,
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z
e(0)r ' (5)

where e(0) is the static dielectric constant of the
semiconductor. We note here that with the aid of
Eq. (3) the definition of R, becomes

Q(R, )=R,EF .

It is easy to show that g & rEF for r & R„and
P& r EF for r &R, . Our goal is to solve Eq. (4), in
an approximate analytical form, by an equivalent
variational principle. As shown in I, the variation-
al principle can be established by working out the
(first) variation of the integral

I= J "F(f,P', r)dr .

We note here that, in the terminology of Courant
and Hilbert, our variational problem is of "vari-
able domain" type since not only the function P(r)
but also the upper limit R„ is a variable. As
shown in I, the variational principle can be stated

by finding the extremum of

J= J "Fdr+G,

where, with the F chosen below,
2

1 Z 1 2 s/2R
2 e(0) R„15

The quantity F in Eq. (8) has to be chosen in

such a manner that upon its substitution into the
Euler-Lagrange equation

(9)

(10)

one recovers Eq. (4) over 0 & r &R„. I.et us choose

Fby

F= —
2

(p')

a[rEF g+S(rE—r P) &
r (EF P«—) 1—

where S', i.e., the derivative of S with respect to its
argument, is 5(re P—). This delta function is,
however, multiplied by (EF gl—r) ~ which equals
zero for rEF f.——For this reason, the term involv-

ing S' in Eq. (13) vanishes. In view of this, Eq.
(13) becomes

a [re r(E—F +)—~ ], R, & r &R„

arEF, 0&r &R,
(14)

which is correct for 0 & r &R„.
The final task consists now in making a choice

for the trial function P(r) and finding the ex-
tremum of J in Eq. (8) with respect to the parame-
ters in the trial function. As in I, the trial func-
tion is chosen by

P(r) = [(1—A, )+Re ']

X [—Z sinhq(R„—r)/sinhqR„],

0&r &Rn

(15)

S ILI CON

Z= 0

where A, and ro are variational parameters, and
the quantity q is a constant defined ' by

q =(4kF le) . It is easy to see that the function
in Eq. (15) satisfies the lt(0) = —Z boundary condi-
tion at the origin and the matching condition for
l(t(R„). It also satisfies all matching conditions
(on g and tP') at r =R,

The motivation for the choice of this trial func-
tion is the following. For A, =O, it reduces in form
to the solution' of the linearized TF equation. Ap-

where S is the unit step function, i.e.,

S( ),0 z&o
1, z&0. (12)

Substitution of Eq. (11) into Eq. (10) leads to
' 3/2

Q = a rEF S(rEF P)r EF— —rr 3/2

r
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FIG. 1. The spatial dielectric function of silicon [Eq.
(18)] versus the distance (in a.u. ) from the charge.
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TABLE I. Parameters entering into the spatial
dielectric function of diamond for which e(0) is 5.7 and

q is 1.36 a.u.

TABLE III. Parameters entering into the spatial
dielectric function of germanium for which e(0) is 16
and q is 1.12 a.u. (Ref. 8).

z
R„

(a.u. )

ro
(a.u. )

R„
(a.u. )

ro
(a.u. )

0
—1

—3

2.76
2.97
3.18
3.30
3.43

0
—0.233
—0.544
—0.769
—1.077

0.47
0.85
1.04
1.34

0
—1

—2
—3
—4

4.54
4.97
5.27
5.61
5.95

0
—0.469
—0.965
—1.895
—3.953

0.92
1.50
2.68
5.28

plying the matching condition for 1(t'(r) at r =R„,
one finds that

A, =[1—sinhqR„/e(0)qR„][1/(1 —e " )],

ters.
The evaluation of the integral in Eq. (8) is dis-

cussed in I. It is also shown in I that the spatial
dielectric function e„(r), defined by

which gives the parameter A, in terms of the
parameters R„and ro. These quantities will, from
now on, be considered as the variational parame- can be expressed by

(17)

en (")= [(1—~)+&e ][sinhq(R„—r ) /sinhqR„] +
e(0)R„

(18)

TABLE II. Parameters entering into the spatial
dielectric function of silicon for which e(0) is 11.94 and
q is 1.10 a.u.

R„
(a.u.)

ro

(a,u. )

0
—1

—2
—3

4.28
4.75
5.07
5.45
5.78

0
—0.492
—1.026
—2.179
—4.628

0.96
1.60
3.11
6.23

Equation (18) is the central result of this paper.
The spatial dielectric function e„(r) for charges

Z = —1, —4 in silicon, is illustrated in Fig. 1.
The figure also shows the Z =0 result' of the
linearized theory, and, for comparison, the
Z=+1, +4results of I. In Tables I, II, and III
we list the parameter values R„R„,k, and ro for
changes Z =—1, —2, —3, —4, in pure diamond,
silicon, and germanium. The values of e(0) and q,
entering into Eq. (18), are listed in the respective
table captions.

III. DISCUSSION

Inspection of Fig. 1 shows that the Z = —4
curve deviates more significantly from the Z =0
curve than does the Z = —1 curve. This has al-
ready been established by Cornolti and Resta.
The Z = —2, —3 curves are not shown in Fig. 1,
to avoid overcrowding the illustration. They both
lie in the area bordered by the Z = —1 and
Z = —4 curves, with the Z = —2 curve closer to
the Z =0 curve than the Z = —3 curve.

Inspection of Fig. 1 also shows that the Z = —1

curve lies further from the Z =0 curve than does
the Z =+1 curve. The same situation prevails
also with respect to the Z = —4 and Z =+-4
curves. This is in accord with the finding of Cor-
nolti and Resta. The numerical solution of Eq.
(1) agrees remarkably well with the analytical solu-
tion. On the scale of the figure the former is al-
most indistinguishable from the latter. Finally, it
is mentioned that the corresponding e„(r) versus r
curves in diamond and germanium are quite simi-
lar to those shown in Fig. 1. For the purpose of
saving space, they are not given here.
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