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The exact solutions for electromagnetic wave propagation in laminar microstructures

lead via a waveguide mechanism to values of the effective dielectric function that lie out-

side the absolute Wiener quasistatic bounds as well as the more restrictive Hashin-

Shtrikman limits. The results explain recent refractive-index data of Egan and Hilgeman

on pressed-powder composites.

Much work has been done on establishing vari-
ous bounds to the allowed dielectric response, e, of
two-phase composite materials in the long-wave-
length (quasistatic) limit. ' It is now known that
the original bounds of Wiener' can be made more
restrictive if one takes advantage of measurable
macroscopic attributes such as average composi-
tion or the presence or absence of two- or three-
dimensional isotropy. However, the question
naturally arises as to the validity of these bounds
for more realistic finite-frequency conditions where
the dimensions of the microstructure may be com-
parable to the wavelength of light. Previous ef-
forts " to investigate finite-wavelength effects in
composite materials have been concerned with the
validity of the quasistatic approximation, and
specifically, only with the accuracy by which
Maxwell Garnett' or Bruggeman' effective-
medium theories can reproduce beam attenuation
for noninteracting spherical inclusions as calculat-
ed by Mie theory. ' Whether values of e that lie
outside the quasistatic bounds can be obtained at
finite wavelengths, and why, are problems that
have not yet been considered.

Here, we take the simple and direct approach of
investigating the behavior of the TE, TM, and
TEM solutions ' for wave propagation in the
same laminar configuration that is used to obtain
the least restrictive (Wiener) bounds to e in the
quasistatic limit. These solutions are exact for any

wavelength. They show clearly that bounds de-
rived in a quasistatic limit are relaxed at finite fre-
quencies because a new mechanism, not contained
in the quasistatic formulation, comes into play. In
essence, the constituent with the larger value of
Re(e) acts as a waveguide, concentrating the flux
and thereby exerting an anomalously large influ-
ence on the value of e. In striking contrast, it is
the constituent with the smaller value of

~

e
~

that
always dominates in the quasistatic case simply be-
cause the more polarizable fraction develops more
boundary charge and screens itself more effectively
from the external field.

The model is as follows. Let constituents a and
b having dielectric functions e, and eb form a
composite of alternating layers of thicknesses d,
and db, with the y axis perpendicular to the layers.
Within each layer,

kg/N =Ca, C kb/cO =fb

We consider first the TE and TM modes which
propagate in the z direction with electric and mag-
netic fields xE(r, t) and xH(r, t), respectively. If
the continuity equations for tangential E and H
and for normal D and B are to be realized, then
the phase factor exp(ik, z i cot) must be th—e same
at all boundaries. All the above conditions can be
achieved simultaneously only if k, and kb also
have components along y. Thus the phase factors
of the TE and TM waves will have the general
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form

exp(ikey +ik, z i c—ot) .

If kz is real, the solutions will combine to yield
standing waves xE, xH-cos(k~y) within the lam-
ination. If k» is imaginary, the wave will be
evanescent in that layer.

The boundary conditions lead to the following
equations' ':
(k~/g, )tan(k~d, /2)+(k~/gb)tan(k~„db/2) =0,

(2a)

(2b)e=(ck, /a))

=e, —(cd'/co)

=eh
—(cky /co )

(2c)

(2d)

where g, =gb = 1 for the TE mode and g, =e„
gb

——eb for the TM mode. The solution is exact,

valid for any values of the parameters. The prop-

agation rate through the composite defines e.
If d„db~0, then Eqs. (2) reduce to

fata +fb&b» (3a)

(3b)

where f, b d, b/(d, +——db) is the volume fraction
of the phase a, b. For 0&f, =1 fb = & 1, E—qs.
(3) trace out the absolute Wiener bounds. ' The
bounds are absolute because the region of the com-
plex e plane enclosed by them must contain all

physically realizable quasistatic values of e for
two-phase composites regardless of composition or
microstructure. This follows because there can
never be less screening than no screening [all boun-

daries parallel to the electrostatic field, Eq. (3a)]
nor more screening than maximum screening [all
boundaries perpendicular to the electrostatic field,
Eq. (3b)]. If the macroscopic compositions

f, =1 fb are known—, then all physically realizable
values of e, regardless of microstructure, must lie
within a smaller enclosed region bounded by the
Hashin-Shtrikman limits. For real e, and eb, the
Hashin-Shtrikman limits reduce to the two points
given by Eqs. (3).

It is already clear that quasistatic bounds may
no longer be rigorously valid when the wavelength

becomes comparable to the microstructural dimen-

sions simply because the electric field can now
have components both parallel and perpendicular
to the internal boundaries. We show next that a
waveguide mechanism favors the component with
the larger Re(e) and is responsible for relaxing
these bounds. Suppose for simplicity that e, and
E'b are both real, with e, &eb. Since no absorption

mechanism is present, e must also be real and must
satisfy the general inequality e, &@&gab. Then
Eqs. (2c) and (2d) show that k~' must be purely im-
aginary and k~ purely real. Therefore, the wave is

b

evanescent in a and concentrated in b. Using the
inequalities tanh (x) &x & tan (x), we find that for
real tE„eb.

f 6+fb 6b'& 6 & 6b'TE

eb &p &f e~ +fbeb, TM .

(4a)

(4b)
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FIG. 1. Variation of e with D/k for a hypothetical
laminar composite of amorphous Si and Si02. The
Hashin-Shtrikman limits are shown as the two
horizontal lines on the left. The horizontal line on the
right indicates the limit e=eb.

Thus for finite frequencies e lies between the ap-
propriate Hashin-Shtrikman limit and eb.

In more quantitative terms, we show in Fig. 1

calculated values of e for layers (a) of SiOz
separating layers (b) of amorphous Si as a function
of D/A, , where D =d, +.db is the period of struc-
ture. In this example, we chose d, =db and
g =1.75 ep (g =7084A), so e, =2.12 and

eb ——19.0S + i0.13 =-19.0. The Hashin-Shtrikman
limits calculated from Eqs. (3) are shown as the
straight lines. For D/k, «0. 1 the quasistatic lim-

its are reasonably accurate; the lowest-order correc-
tion, -(coD/c) (eb —e, ) is, as usual, ' quadratic
in D/A, . However, the results for the TE and TM
modes deviate markedly from the quasistatic
values near D/k=0. 1 and 0.15, respectively. For
D/A, & 1, the waveguide effect completely dom-
inates and e=-eb. We note that the Hashin-
Shtrikman limits are exceeded for all D/A, for the
TE mode and for all D/A, & 0.32 for the TM mode.

If e, or eb is complex, then e is not constrained
to lie along the real axis and the bounds become
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FIG. 2. Two-dimensional quasistatic limits and the
variation of e with D/A, for the complex values of e,
and eb used by Milton (Ref. 4). Increments of 0.1 and
0.5 in D/A, are indicated by closed and open circles,
respectively.

two-dimensional in the complex e plane. We con-
sider the example given by Milton: e, = —2+ i 3,
eb ——1+i 1, and f, =0.60. The absolute Wiener
bounds, ' given by Eqs. (3), define the large semicir-
cular region in Fig. 2. But because the composi-
tion f, =0.60 is fixed, e is now restricted to the
crosshatched region determined by the Hashin-
Shtrikman limits. Superimposed on the figure are
traces that show the evolution of e with increasing
D/k for the laminar configuration for both TE
and TM modes. The dots signify increments of
0.1 in D/A, . The results show that the calculated
values of e lie outside the Hashin-Shtrikman limits
for all finite A, . Moreover, with a second dimen-
sion available, the Wiener bounds for the TE Inode
are also exceeded for all finite A, . For small
wavelengths, the waveguide mechanism again
causes e to converge to the dielectric function with
the largest value of Re(e).

TEM propagation perpendicular to the lamina-
tions is qualitatively different because multiple re-
Aections cause waves to propagate in both direc-
tions. If e is to have meaning, then the coeffi-
cients of both waves must differ by the same fac-
tor g = exp(ik, D) upon a displacement by one full
period D. This restriction leads to an eigenvalue
equation for k, which reduces to Eq. (3a) when
D~O. The TEM branches of e are also plotted in
Figs. 1 and 2. They tend initially to follow the TE
branch, but in general there exist ranges of D/A,
for which propagation is not possible.

The tendency of wave energy to concentrate in
the more dense constituent, as seen in the simple
laminar case treated here, will clearly also occur
for more complex microstructures. The calcula-
tions could easily be extended to cylindrical micro-
structures appropriate to columnar materials such
as glow-discharge-deposited a-Si(H). ' The quasi-
static limit should remain a good approximation
for d/k (0.1, but for larger ratios the Inore dense
columnar material should dominate. The present
development also indicates why effective-medium
models describe' microscopically rough surfaces:
the impinging wave front is refracted into the
more dense medium as the TE amd TM com-
ponents realize local boundary conditions and
preserve a common phase factor. But the distor-
tion will be small, and the quasistatic limit a good
approximation if the microstructural dimensions
are small compared to k. This appears to be the
case for microscopically rough amorphous Si
films. "

Finally, we consider the recent remarkable re-
sults of Egan and Hilgeman, who measured re-
fractive indices for selected transparent materials
in pressed-powder form with independently deter-
mined packing fractions. For MgCO3 and BaSOz
with average bulk dielectric functions of 2.692 at

0
5890 A for each material, ' the void fractions were
0.50 and 0.48, respectively. Because the packing
fractions are known, the relevant quasistatic limits
for any microstructure are given by Eqs. (3a) and
(3b). For samples that are macroscopically isotro-
pic in three dimensions, the more restrictive
Bergman-Milton limits will apply. Evaluating
both sets of limits explicitly, we calculate

and

l.46 & 1.66 & e(MgCO3) ( 1.75 & l. 8S

1.49 & 1.69 & e'(BaSO4) ( 1.78 & 1.85 .

The measured values of 2.161 (MgCO3) and 2.076
(BaSO4) lie well outside both sets of allowed
ranges. Consequently, these data cannot be ex-
plained by microstructural effects alone.

It is significant that these materials were the two
for which the constituent particle dimensions
(0.1X1.0 pm platelets for MgCO3, 0.1 —1.0 pm
spheroids for BaSO4) were of the order of A, . A
waveguide effect should therefore be expected.
The calculated values of e for all modes as a func-
tion of D/k are shown in Fig. 3. The TEM mode
can be neglected because the conditions for the
development of a forbidden band obviously cannot
be realized in these samples. The actual depen-
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FIG. 3. As Fig. 1, but for the parameters of the sam-

ples used in Ref. 20. Measured values are indicated by

the dashed lines.

dence of e on D/A, will undoubtedly differ from
the predictions of the simple laminar model, but a
mean value should be representative. The experi-
mental values intersect the TE and TM branches

near d„db -0.3 IMm, of the order of the mean par-

ticle dimensions determined by electron micros-
copy. Thus the anomalously large values of e are
explained with microstructural parameters in
agreement with experiment.

In conclusion, we have shown by means of a
model calculation that values of e can be obtained

at finite wavelengths that not only lie outside the
quasistatic Hashin-Shtrikman limits, but also lie

outside the more general absolute %iener bounds.

These results can explained the recent data of Egan
and Hilgeman, who observed the refractive index

values that were impossibly large according to
quasistatic theory. It would now be of interest to
determine whether absolute bounds, analogous to
those derived in the quasistatic limit, can also be
obtained for finite wavelengths. This work is in

progress and wi11 be reported elsewhere.

I wish to thank %. G. Egan for verifying the
macroscopic uniformity of MgCO3 and BaSO4
samples.
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