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Continuity chords of bands in solids: The diamond structure
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The concept of a continuity chord is defined for denoting all those Bloch states at dif-

ferent symmetry points in the Brillouin zone that by symmetry and continuity can, in

principle, belong to one band of a solid. The continuity chords for different bands are
derived on the basis of band representations of space groups. A specific example of the
diamond group Oq is considered in detail and the continuity chords are calculated for all

the possible symmetry types of bands for this group.

I. INTRODUCTION

Irreducible representations of space groups serve
as a useful tool for labeling the Bloch states at dif-

ferent symmetry points k in the Brillouin zone. '

This symmetry labeling is so popular that it has
developed into a language among solid-state physi-
cists. It is hard today to dissociate the description
of bands in solids from the sets of letters I, L, X,
and so on, that are used for labeling of the different

symmetry points in the Brillouin zone. Each such
letter is assigned a subscript, like I &, I 2, that speci-
fies the particular representation at the given point.
This symmetry specification is local in k space in
that it assigns labels at different k points separate-
ly. Connections between symmetry labels at dif-
ferent points in the Brillouin zone are achieved by
compatibility or connectivity relations which are
based on both symmetry and continuity arguments.
However, because of its local character in k space
this symmetry labeling doesn't specify a band glo-
bally, as one whole entity. In particular, the local
k-space specification of Bloch states does not
answer the important question of whether or not
some sets of states, say I;, Lz, XI,XI, and so on,
can in principle, belong to one band in a solid.

In a recent paper it was shown that global sym-

metry properties of a band can be defined by means
of band representations of space groups. Unlike
usual representations which are built on Bloch
functions and correspond to a single energy, band
representations are built on localized orbitals and
they correspond to a band of energies. A band
representation is labeled by a symmetry center q in
the Signer-Seitz cell and by the representation in-

dex l of the point group of G&, the symmetry group

of the vector q. The indices q and l together de-
fine a symmetry label for a band in a solid.

Band representations provide a symmetry con-
nection between extended functions (in particular,
Bloch functions) and localized orbitals (in particu-
lar, Wannier functions) for a given band. Such a
connection was first considered in a series of papers
on molecular orbital theory and soon afterwards it
was extended to solids. ' Later this symmetry
connection was considered in a fundamental paper
by Des Cloizeaux who has shown how to con-
struct symmetry adapted sets of Wannier functions

by forming linear combinations of eigenfunctions
with preassigned symmetry. A similar approach is
adopted in other papers " where, as a rule, the
Wannier functions are defined as linear combina-
tions of Bloch functions. There is a difficulty that
arises in following this approach which was al-

ready mentioned above. This difficulty is connect-
ed with the local in k-space symmetry specification
of Bloch functions. The framework of such a local
specification is suited for Bloch functions which
correspond to a single energy but is not suited for
localized orbitals which correspond to a band of
energies. ' ' In the local k-space approach to the
problem there is no symmetry index for a band as
a whole entity. In Ref'. 4 the process is inverted
and one first specifies the symmetry of the local-
ized orbitals via band representations of the space
group. These representations specify from the very
beginning symmetries of bands as whole entities.
Having the band representations one can find the
symmetries of the corresponding Bloch states at
different points in the Brillouin zone.

In this paper it is shown how to find all those
Bloch states I;, LJ, XkXI, and so on, that can, in
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principle, belong to one particular band of a solid.
This is done by first finding the irreducible-band
representations of the space group which give the
symmetry types or the symmetry labels (q, l) for
the bands of the solid. The band representations
are then reduced at each point in the Brillouin
zone (at I, I., X, and so on) into the usual irredu-
cible representations of the space group. By doing
so we obtain the possible sets of states r;, LJ
XkXI, and so on, that belong to a given band in a
solid and that are labeled by a band index (q, t). It
turns out that the labels q and I carry the global
information about the symmetry of a band as a
whole in a solid. In particular, it can be shown

that this symmetry band label (q, l) defines a set of
local symmetries in k space of the Bloch states

I;, LJ, XkXI, and so on, at different symmetry

points in the Brillouin zone. Such a set of sym-

metry points belonging to a symmetry type (q, l) of
a band will be called the continuity chord. This
term comes to point out that only some very par-
ticular symmetries in k space can appear for a
band with a given symmetry label (q, I). The con-

tinuity chord is closely related to compatibility
and connectivity relations in band theory which

are derived from symmetry and continuity argu-

ments. It will be shown in this paper that by hav-

ing a symmetry band label (q, t) it becomes possi-
ble to find the continuity chord of the band or to
list all the irreducible representations I;, L~, XkXI,
and so on, at different points in the Brillouin zone

that are related to one another in a continuous for-

mation of a band. An explicit example is con-
sidered for the diamond-structure space group O~.
The results for the sets of different symmetry

points or the continuity chords belonging to a band

with a given symmetry type are listed in Tables V

and VII.

II. IRREDUCIBLE-BAND REPRESENTATIONS
OF Op,

space-group elements (y
l
c). The different sym-

metry centers q and the corresponding sets of Bra-
vais lattice vectors Rq ~

' have been used in the

past in establishing symmetry connections between

Wannier and Bloch functions. ' ' ' The signifi-

cance of q and Rq
' in the construction of band

representations is discussed below.
As examples we list in Tables I and II symmetry

centers q with their symmetry groups Gq for the
diamond space group O~. Together with each

symmetry center q, its star is also listed. The
latter is defined in the following way. In general,
the group Gq is a subgroup of G. One can decom-

pose G with respect to Gq as

G =6~+(ai
l
az)G~+".+(af l af)Gq,

where (a2
l

a2), . . . , (aI
l
a/) do not belong to G~

and they define the different cosets. Given the
decomposition (2) we can assign a star to each vec-
tor q which together with q contains the vectors

q "'=(&z
I
az) q, . . . , q

' '=(a/
I aI ) q .

In Table I we list the symmetry centers q, =(0,0,0)
and qi,

——(a/2, 0,0) with the symmetry Td and
their stars. Information on the symmetry centers
in the Wigner-Seitz cell can be found in the Inter-
national Tables. ' For the centers q, and qb the
decomposition (2) takes on the form

O/,'='rd+(I
l
a 14,a 14,a/4)&g,

where Td is the space group with the point sym-
metry Td and (I

l

a /4, a /4, a /4) is the inversion
element I accompanied by a translation
(a /4, a /4, a /4). Equation (3) shows explicitly that
the group OI, is nonsymmorphic. ' By definition
the star of the vector q, contains also

q,' '= (I la/4, a/4, a/4)q,

=(a/4, a/4, a/4) .

Similarly, the star of the center qb contains the
vector

Let G be a space group and let Gq be the group
of the symmetry center q in the Wigner-Seitz cell. '

By definition to G& all those elements (y l
c) of G

belong for which

(yl c)q=yq+c=q+R,"' '', (l)

where Rq~ ' ' is a Bravais lattice vector. Equation
(l) can also be interpreted as a definition of a set of
Bravais lattice vectors. For a given symmetry
center q these vectors vary as a function of the

q b
' ——(I

l
a/4, a/4, a/4)qs

=(a/4, a/4, a/4) .

In Table II we list the same information for the
symmetry centers q, =(a/S, a/S, a/8) and

q d
——(a /8, a /8, 3a /8) with the symmetry D 3d.

Equation (2) assumes the form

Oi, D3d+(Cg
l

a/4——,a /4, a/4)D3d+CJD3d

+(C4'
l
a/4, a/4, a/4)D3d, (4)
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where D3~ denotes the space group with the point
symmetry D3~ and C4, C2, and C&' are rotations
around the z axis by m. /2, ~, and 3a/2, corre-
spondingly. It should be pointed out that while for
the centers q, and qb and their star vectors the
symmetry group Gq is T~ and it is the same for all
of them, the situation is different for the symmetry
centers q, and q~. In this case the symmetry
group G& is denoted by the same symbol D3~ but it
is related to different symmetry axes as can be seen
from Table II. Thus, for iI and q~ the symmetry
group is D3~', while for q, ' and q q

' it is D3$'
and so on. (xyz) and (xyz) denote the threefold ro-
tation axes. Details are given in Table II. The
star of q, contains also the vectors

q,' '= (C4
~

a/4, a/4, a/4)q,

=(a /8, 3a/8, 3a/8),

q,' '=Cz q, =(a/8, a/8, a/8),

q,' '= (C4'
~

a/4, a/4, a/4)q,

=(3a/8, a/8, 3a/8) .

The star of q~ is found in the same way and is
given in Table II. In Ref. 14, q&
=(5a/8, 5a/8, 5a/8). The symmetry center q~ in
Table II is (a /g, a /8, 3a /8) which differs from the
one in Ref. 14 by the Bravais lattice vector
(a/2, a/2, a). We use here the fact that symmetry
centers that differ by a Bravais lattice vector are
equivalent.

We turn now to the construction of the
irreducible-band representations of the space group
O~. For doing this we construct first the
irreducible-band representations D' q' '[(y

~
c),k] of

the subgroups G& of O~ for different symmetry
centers. They are obtained according to the follow-
ing rule:

(y~ c):

D'q "[(y~ c),k]=exp(ik R r )D '(y),

where D' '(y) are the irreducible representations of
the point theory of Gz (which is obtained by sim-

ply taking all the point-group elements of Gq
without any translations) and R&r~ ' are defined
in Eq. (1). It should be pointed out that in its
form (5) the band representations are written in the
kq representation. ' Since k is a variable the
correspondence in (5) gives actually an infinite-
dimensional representation. Only in its k-

dependent form as a band representation, is (5) fin-

ite dimensional [it has then the dimensionality of
D (1)(y)]

For O~ we have mentioned above the symmetry
centers q„qb, q„and q~. The centers q, and

qb have the same symmetry group which is T~.
In Table I we list the phase factors exp(i k ~ R&~) of
Eq. (5) corresponding to the sets of the Bravais lat-

tice vectors R, = —q, +yq, and R$= —qb+yq„
and accordingly also for the stars of q, and qb.
Table II contains the phase factors of Eq. (5) for
the symmetry centers q, and q~ and their stars.

Let us first consider in detail Eq. (5) for the

symmetry centers q, and qb. Their symmetry

group is T& and Eq. (5) gives four different

irreducible-band representations of this space group
for each irreducible representation D (y) of the

point group T~. Two band representations are ob-

tained from the star of q, and two from the star of
qs. The phases in Eq. (5) can be interpreted in the
following way. Let y be an element of the space
group around the origin of the crystal (it some-

times appears with a partial translation c) and

denote by yq the same element when related to the
origin at q. Then [see Eq. (1)]

yq=(&~ —q)y(e~+q)=(y~ c —Rq~' '') . (6)

We see therefore that the operation of the point-
group element yq around q can be achieved by ap-
plying the same element around the origin (y

~
c)

and by accompanying it by a translation R&~
' '.

Correspondingly, the phase factor exp(i k .R~r' ' ')
in (5) can be interpreted as following from the
choice of the point group center at q. We come
therefore to the conclusion that the rule (5) gives
the representations of Gq with respect to the fixed
point-group center at q. This shows that the sym-
metry center q can be used as a label (via the Bra-
vais lattice vectors R~r' '

) in specifying the band
representations of the group G&. As was already
mentioned, for the space group T~ we have four
symmetry centers q„q,' ', qb, and q b

' and by
choosing each of these centers as an origin for the
point-group elements we obtain four different
irreducible-band representations for each irreduci-
ble representation D' '(y) of the point group Tq
The phases of Eq. (5) for these band representa-
tions are listed in Table I. Since T& is a sym-
morphic space group' all the elements in Table I
are pure point-group elements.

Having the band representations of T~ we can by
induction ' find the corresponding band represen-
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tations of the full space group OI, . Let us denote

by C,'"' '(k, q), s =1, . . . , m the basis for a band
representation of G„corresponding to the sym-
metry center q, and the irreducible representation I
of the point group of G, . Correspondingly we
denote

C,
' (k, q)=(a;

~

a;)C,'"' '(k, q) )

where (a;
~
a;) is an element in the decomposition

(2). With this notation the band representation of
6 that is induced from the band representation
D" ' of 6, can be written in the following form:

m

(~
~
a)C,'"""(k,q) =. p[ k. [—q'„J'+(~

~

a }q ',"]I g D,",'(}')C, ' (k, q },

where the following relation

(r
I
c)(~;

I

a ) =(~
I

a )(}"
I

c ')

Correspondingly, the induced-band representation
of Eq. (7) for the elements (y

~

c) of G„will be-

come

(y~ c)C, ' (k, q)=exp( ik R,'r '—')

where

X g Dz'z'(y')Cz ' (k, q),
s'=1

(10)

~(g~ &) s i x (i) (&)
Yl c j

For elements (a
~

a) of 6 that do not belong to 6„
the block matrix D(a

~
a) has only vanishing block

matrices on the diagonal. This follows directly
from Eq. (8) when written for an invariant sub-

group and the general expression (7) for the
induced-band representation.

Having Eq. (10) it becomes a simple matter to
find the band representations of O~ that are in-

(a, a)(a;
~

a;)=(u,
~
a, )(y'

~

c ')

was assumed. In (7) and (8) (a
~

a) is a general ele-

ment of the space group 6, (a;
~
a;) and (aj

~
aj)

are the elements of the cosets [Eq. (2)], and
(y'

~

c ') is an element of G„. It is convenient to
look at the matrix D (a

~

a) which represents the
element (a

~

a) in Eq. (7) as consisting of block ma-
trices of dimension mmmm. In this form the only
nonvanishing block in column i of the matrix
D(a

~
a) is in the row j. Equation (7) induces band

representations of the space group G from the band
representations of its subgroup 6„.

For the symmetry centers q, and qb Eq. (7)
simplifies because the symmetry group of these
centers T~ is an invariant subgroup of the full

space group OI, . When 6, is an invariant sub-

group of 6, Eq. (8) for the elements (y
~
c) of 6,

assumes the form

I

duced from the band representations of Td. Since

Td is a symmorphic group, c is a Bravais lattice
vector. For using Eq. (10) we need the multiplica-
tion table of Eq. (9) for the decomposition (3). If y
is an element of T~ (e is the unit element), then Iy
is an element of the second coset in the decomposi-
tion (3), and Eq. (9) assumes the form

(Iy)e=(Iy)e, (Iy}I=ay .

With the aid of Table I we can now construct the
band representations of OI, that are induced from

the symmetry centers q, and q~. As an example
let us find explicitly the matrices D' ' '(Ciy') and
D' "(C3~} From T.able I we find that for C&y' the

phase factor exp(ik .Rr) assumes the following

values: It is 1 for the centers q, and q,' '; it is 5y*
for qb, and 5 y for q b

'. By using Eq. (10) and

the multiplication table (12) we find that the only

nonzero block matrices are on the diagonal

D (a, I)(Cxyz} D (a, I)(Cxyz} D(I)(Cxyz)

D (b, ()
( Cxyz } g zc D ( t)( Cxyz }

D(b, l)(( xyz) 5 aD(o(( xyz)

(13)

where D,J denote block matrices. Similarly, one
can find the matrices for the other elements of OI, .

Let us now turn to the symmetry centers q, and

qd. For these centers the symmetry group Gq
(which is D3~) is not an invariant subgroup of the
full space group OI, . Each of the centers has four
vectors in the star and in Table II we list the
phases exp(ik R~r( ') that correspond to the
Bravais lattice vectors Rzr '. By using Eq. (5)
we find the irreducible-band representations of the
space groups D3d for the different centers q, and

qd and their stars. As was already mentioned be-

fore, the symmetry groups for different centers in
the same star are different (despite the fact that
they are denoted by the same symbol D&~} Thus, .



for q, the symmetry group is D3~~'while for q,' ' it
is DP»*, and so on (see Table II). Correspondingly,
each vector in the star defines, according to Eq.
(5), the band representations of its symmetry
group. Thus q, leads to six-irreducible-band
representations of DPq (six is the number of irredu-
cible representations of the point group D3»). They
are obtained from Eq. (5) by varying l (/ runs from
one to six over the six irreducible representations'
of the point group D3») for the fixed set of phases
exp(ik R,'r ') corresponding to q, .

Having the band representations of the sym-
metry groups of q, and q» (and their stars) we use
now the induction equation (7) for constructing the
corresponding band representations of Oh. For us-

ing Eq. (7) we need the multiplication table (8) for
the decomposition (4). This information is con-
tained in Table III. In this table we list only the
point-group elements without their partial transla-
tions. Since the space groups D3d in OI, are non-
symmorphic' some of the elements in Table III
contain partial translations. In fact B3d can be
decomposed into two cosets by

D3» C3„+(I
~

a/4——,a/4, a/4)C3„. (14)

Here C3„ is a symmorphic group while all the ele-
ments of the second coset contain the partial

translation (a/4, a/4, a/4). From the point of view

of the whole space group O~ the information about
pure point-group elements and mixed ones (con-

taining partial translations) is given in the decom-
position (3). As was already mentioned T» is a
symmorphic group while the second coset in (3)
contains mixed elements. In Table III explicit
multiplication results are given for the elements of
D3f and the coset elements C4, C2, and Cq' [see
decomposition (4)]. Clearly with the information
in Table III, it is a simple matter to find the multi-
plication rule for any (a

~

a) because one can al-

ways find an (a;
~
a;) and an (y

~

c) such that
(a

I
a) =(a; ( a;)(y

~

c). Here (y )
c) is all elemelit

of D3»""' and (a;
~

a.) is one of the rotations around
the z axis, C4,C2,C4'. Since Table III contains the
information for the elements of D3~a' and (a;

I
a;),

the multiplication rule for any other (a
~

a) can be
easily found from it. With Tables II and III at
hand we can use Eq. (7) for finding the band
representations of O~ that are induced by the sym-
metry centers q, and qd. As an example let us
calculate explicitly the matrix D" '(CP') for the
element C3"'. This band representation is induced
from the symmetry center q, . From Table III it
follows that the oui~ nonvanishing block matrices

duction equation (7) and Tables II and III we find

TABLE III. Multiplication table for the decomposition of Oi, with respect to D3d. The
table contains the products of an element in the left-hand column with an element in the
upper row.

C4 Cz

C"~
3

C2xyz
3

Cgg

Cyz

Cxr

I
s"~

6

g 5XyZ
6

~Xy

~yZ

~Xz

Cz
Cz
C3z

4

EE
E Cxyz

E C2zyz

E C",y

E Cyz

EI
ES",~
E g5xyz

E ~xy

E o.~
Eo.
C4E
C2E
C4'E

C4E
C32 C2xyz

4 3

C C
C3z Cxy4 2
Cz Cxz

Cz Cxyz
2 3

C4 I
C3z g5xyz

4 6

C2 uy'
Xp

4 o
Cz
Cz S"~

2 6

CpE
C3z E
EE

Cz
Cz Cyz

C3z CXz
4 2

Cz Cxy

C3z Cxyz
4 3

Cz C2xyz

C2 I
C4 o.~
C3z gg

Cz ~xy
C3z gxyz

4 6
Cz g5xyz

4 6
C3z E

C4E

C3z E
Cz CXz

Cz Cxyz

Cz C2xyz
2 3

C3z Cyz

C3z I
C2cr

Cz gxyz

Cz o xy

Cz g5xyz
2 6

C4' o.~
EE
C4E

. C2E
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D (c, l)(cxyz) D(l)(Cxyz)

D (c,l)
(Cxyz ) D {l)(c2xyz)

D (c,I)
( Cxyz ) D (1)(Cyz )

D (c,I)
( Cxyz ) D ( l)

( Cxz )

where by D ' we have denoted the irreducible
representations of D3d. In a similar way one can
find the matrices D""and also D' '" for all the
elements of OI, . The induction method will give
an irreducible-band representation of OI, for each
star, e.g., q, or qd and each irreducible representa-
tion of the point group D3d. Since the latter has

six irreducible representations' Eq. (7) will give

12-irreducible-band representations of O~, six for
each symmetry center q, and q~.

So far we have considered the symmetry centers

q„qb, q„and q~ in the Wigner-Seitz cell and

have pointed out how to find the irreducible-band

representations of OI, that are induced from these

centers. Many other symmetry centers exist for

the diamond space group. '" However, as can be

checked, symmetry groups Gq of these additional

centers are subgroups of one of the above con-

sidered groups Td or D3d. One can also show that

the set of the Bravais lattice vectors [Eq. (1)]'for
the subgroups Gq of any additional centers coin-

cides on this subgroup with the corresponding set

for a center of Td or D3d As was proven in Ref. 4
such symmetry centers will not lead to new

irreducible-band representations of O~. An exam-

ple of such a symmetry center is q, =(xxx) which

has C3„as its symmetry group. '" The latter is a

subgroup of both Td and D3d. One can also check

that, for example, the Bravais lattice vectors corre-

sponding to the symmetry centers q, and q, coin-

cide, R,(r{ )=R,'r{ ' for (y~ c) belonging to C2„.
The results of Ref. 4 show that the irreducible-

band representations of OI, that are induced from

the symmetry center- q, are all contained among

those induced from the center q, . Ef one is in-

terested in irreducible-band representations only

then the symmetry center q, can be left out as

long as q, was considered. Ne come, therefore, to
a conclusion that for the construction of all dif-

ferent irreducible-band representations of OI, it is

sufficient to consider the symmetry centers q„qb,
q„and qd. The latter by using Eq. (5) and the in-

duction equation (7) lead to all the irreducible-band

representations of O~ .

Pk=k+K, (16)

where K is a vector of the reciprocal lattice. For
finding the continuity chord of a band we shall use

the fact that any band representation of G when

considered for a fixed k becomes a representation

of Gk. This can be shown in the following way.
Let D'"'" [(a

~

t ), k] be a band representation of
G. Then by definition the matrix corresponding to
(a2~ t 2)(ai

~

t )) is

III. CONTINUITY CHORDS OF BANDS

Having the irreducible-band representations of a
space group one can answer the question about the
symmetries of a band at different points in the
Brillouin zone. This is what we call the continuity
chord of a band and it is given by a set I;, I.z,
XkXl, and so on, of irreducible representations for
symmetry groups Gk at. different points k in the
Brillouin zone. By definition' all those elements

(P
~

b) of the space group G belong to Gk for which

D'q'"[(a2
~

t 2)(ai (
t )),k]=D"'"[(a2

~

t 2), k]D"'"[«)
(

t i) a2 k] (17)

where in the last matrix u2 'k appears, showing

that k is a variable. For the elements of Gk Eq.
(17) will assume the usual form of a multiplication

rule for a representation. This follows from Eq.
(16) for the elements of Gk and the fact that the
band-representation matrices D[(a

~

t ),k] are
periodic in k with the periodicity of the reciprocal
lattice vectors. It therefore follows that each band

representation of a space group G when considered

for a fixed k becomes a representation of Gk. The
latter is in general reducible. In order to find the

continuity chord of a band we start with an
irreducible-band representation (q, l) of the space

group [Eq. (7)] and for each k we find the
representation D' ' of Gk that is given by the same

equation (7). Having found D' ' we reduce it and

this gives us the set of the irreducible representa-

tions of Gk at the point k in the'Brillouin zone.

By going through with this process over all the

symmetry points in the Brillouin zone we find

what we call the continuity chord of the band (q, I).
As an example we consider the group OI, . We
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start with the symmetry centers q, and qb. Their
symmetry group is T~. The point group T~ has
five irreducible representations which we denote by
l=1, 2, . . . , 5, as in Ref. 17. Correspondingly we
have ten-irreducible-band representations (q„l) and

(qb, l). Let us consider in detail the symmetry
point k =(0,2a/a, O) (point X) in the Brillouin zone.
Its symmetry group is G„=@~&~.In Table IV we
list the characters of the representations of 6'„ that
are obtained from the band representations (q„l)
and (qb, l) at k=(0,2~/a, O) (point X). These char-
acters are denoted by 7""and 7' '", correspond-
ingly. They are obtained from Eq. (10) by using
Table I and the multiplication table given in Eq.
(12). In particular, from Eq. (12) it follows that
the characters g" ' and 7' ' ' vanish for the ele-
ments of D41, that do not belong to T~. By reduc-
ing the representations given in Table IV we find
the irreducible representation of 6 that they con-
tain. In Table IV we also list the irreducible
representations of G„, X~, X2, X3, X4 (see Ref. 17).
The reduction leads to the following results:

y(a, ]) y(b, ])

y(a, 2) y(b, 2)
2 9

y" '=y'b' '=X]+X +X,
y" "=X'b"=X,+X,+X, .

By carrying out the same process for all the sym-
metry points in the Brillouin zone' we find the

continuity chords of the bands (q„l) and (qbl,) .
The results are given in Table V. As is seen from
this table the centers q, and qb lead to the same
representations at all the symmetry points in the
Brillouin zone with the only exception of the point
8'. At this point the representation l=3 of the
point group T~ leads to the same representations
(W~ + 8'2) for both centers q, and qs. For all
the other representations of T~ (I= 1, 2, 4, 5) the
centers q, and qb give different representations at
the symmetry point O'. All the symbols in Table
V are according to Ref. 17.

For the centers q, and q~ the symmetry group
is D3~. This point group has six irreducible repre-
sentations which we denote by l = 1, 2, . . . , 6 as in
Ref. 17. Having this in mind we expect 12-
irreducible-band representations which are labeled
by (q„l) and (qq, l). As an example, let us consider
the symmetry point k =(vr/a, vr/a, rrla) (point L) in
the Brillouin zone. ' Its symmetry GL ——D3J'. In
Table VI we list the characters of the representa-
tions of GL that are obtained from the band repre-
sentations (q„l) and (qz, l) at k = (m/a, ~/a, m. /a)
(point L). They are denoted by X""and X'

correspondingly. In obtaining these characters we
use Eq. (7), Table II, and the multiplication table,
Table III. In order to find the continuity chords
for each band we reduce the representations g" '

and 7'"' ' into the irreducible constituents of the
group GL. The latter are also listed in Table VI
under L &, L2, . . . , L6. The reduction of X""and
7' ' ' at the point I. leads to the following
results:

TABLE IV. Character table for the group D4q of the symmetry point X. The symbols in the upper line have the
same meaning as in Table I. The upper part of the table are the characters of the representations that are obtained from
the band representations (a, l) and (b, l). The lower part are the characters of the irreducible representations for the sym-
metry point X (see Ref. 17).

G =&4a cxz Other elements

X""=X(b"
~(a,2) y(b, 2)

y(~, 3) y(b, 3)

y(a, 4) y(b, 4)

y(a, 5) y(b, 5)

X)
X2
X3
X4

2
2
4

—2
—2

2
2

—2
—2

2
—2

0
2

—2

2
—2

0
0

2
—2

0
2

2
—2

0
0

0
0
2

—2

0
0

—2
2
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TABLE VI. Character table for the group D3d of the symmetry point L. The symbols in the upper line have the

same meaning as in Tables I and II. The upper part of the table is the characters of the representations that are ob-

tained from the band representations (c, l) and (d, l). The lower part is the characters of the irreducible representation

for the symmetry point L {see Ref. 17).

G D (gzl C&~C2xgc'
3

gxpzg 5xJtz
6 6 s~js~y CxzCzgCSP

2 2 2

y(c, 1 ) y(d, 4)

y(c, 2) ~(d, 5)

y(c, 3) g(d, 6)

y(c,4) y(d, 1 )

y(c, 5) y(d, 2)

y(c, 6) y(d, 3)

Ll
L2
L3
L4
L5
L6

4
8

4
4
8

1

1

2
1

I
2

1

—1

1

1

—1

1

1

—1

1

1

—1

—2
—2

4
2
2

1

1

2
—1

—2

)

1

—1

—1

—1

1

1

1

—1

—1

—1

1

2
—2

0
2

—2
0
1

—1

0
1

—1

0

0
0
0
0
0
0
1

—1

0
—1

1

0

y(c, i ) y(d, 4)

y(c, 2) y(d, 5)

y(c', 3) y(d, 6}

y(, 4) y(d, & )

X" '=X' ' '=L2+L3+L5,

g" '=7' ' '=L
i +L2+2L3+L6 .

(19)

This process can be carried out for all the sym-

metry points in the Brillouin zone. The results are
summed up in Table VII. The symmetry centers

q, and qd lead to the same representations at all

the points in the Brillouin zone with the only ex-

ception at point L at which they are different. In
Table VII this is shown by listing the representa-
tions for q, in the upper line and for qd in the
lower line. For all the other symmetry points in

the Bril1ouin zone they are identical.
In summing up this section let us point out that

Tables V and VII contain the continuity chords for
all the irreducible-band representations of the space
group OI, that are induced from the symmetry
centers q„qb, q„and qd. There is no need to
consider other symmetry centers of Oh in the
VA'gner-Seitz cell because, as was already men-
tioned in the preceding section, they don't lead to
additional irreducible-band representations of OI, .
Tables V abd VII give, therefore, all the continuity

chords for all the possible symmetry types of bands
for the diamond structure OI, .

IV. DISCUSSION

VVe introduced the concept of a continuity chord
for defining all those Bloch states at diferent sym-
rnetry points in a Brillouin zone that can possibly
belong to a band with a given symmetry type. In
finding continuity chords we used band representa-
tions which are fully defined by the symmetry
group of the solid. It might therefore appear that
continuity chords can be established from symme-
try arguments only. This &s, however, not so be-
cause band representations are given by k-depen-
dent matrices D[(y

~
c),kI [see Eq. (5)] containing

the phases exp(ik R~r~ ' ). The latter are con-
tinuous and periodic in k. . Band representations
have, therefore, a built-in, continuity in k by their
definition. This continuity also appears in the con-

cepts of equivalency and reducibility of band repre-
sentations. Since continuity chords are found by
using band representations they depend both on
their symmetry and their continuity. In this sense
the continuity chords are closely related to the
compatibility or connectivity relations of bands
which are also defined by symmetry and continuity
arguments. However, in establishing compatibility
relations the only symmetry tool at hand is the
reduction of representations at neighboring points
in the Brillouin zone. In simple situations this
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gives a connection between Bloch states at different
symmetry points but, in general, there is no way to
connect all the symmetry points by compatibility
arguments. Band representations specify bands as
whole entities and this is the reason that they en-

able one to establish continuity chords for bands in
solids.

Tables V and VII contain the continuity chords

for all the irreducible-band representations of the

diamond space group O~. Thus, in the first

column of Table V the continuity chords are listed

for the band representations (a, 1) and (b, 1). These

are two-dimensional band representations that are

built on an s orbital of the group Td corresponding

to the symmetry centers q, = (0,0,0) q s ——(a /2, 0,0)

in the Wigner-Seitz cell. The continuity chords for

the symmetry types (a, 1) and (b, l) differ only at
the point 8'in the Brillouin zone. At all other

points they coincide. As another example, consider

the fourth column of Table V. Here the continuity

chords are listed for a p orbital of Td, again,
around the symmetry centers q, and qb. They
correspond to six-dimensional band representations.

These chords also differ only at the point 8' in the

Brillouin zone. If columns one and four of Table
V are combined one obtains continuity chords that
belong to reducible-band representations. Thus,
one can combine (a, l) and (a,4) to obtain an eight-

dimensional band representation that is built on s

and p orbitals for Td around q, . This band

representation is clearly reducible. Similarly, one

can build three other eight-dimensional reducible-

band representations by combining columns one

and four of Table V. All of them will be built on s

and p orbitals of Td. Such s and p orbitals are

often assumed to be possible candidates for band-

structure calculations in diamondlike cry-
stals. ' ' ' In such calculations one starts with

bases built on s-p localized orbitals and it is expect-

ed that they will lead to a separation of the valence

and conduction bands each containing four

branches. It is of interest to discuss this approach
from the point of view of band representations and

the continuity chords of Table V. From this table

it follows that the s-p orbitals (columns 1 and 4)

lead together to an eight-dimensional band repre-

sentation. As was already mentioned this is a
reducible band representation. It reduces, as one

can show, into the following irreducible band rep-

resentations: either a two- and a six-dimensional

one for the center a, or two four-dimensional ones

for the center c. The latter possibility corresponds

to the va1ence and conduction bands in the

diamond-type crystals, and as it follows from Ref.
19 the s-p orbitals lead to a satisfactory band-

structure calculation. In fact, it follows from
Table V that the only way to build irreducible
four-dimensional band representations out of the
symmetry centers q, and qb is using the orbitals

(a,3) or (b,3) of Td (column 3 of Table V).
An alternative way of building irreducible four-

dimensional band representations is by using the
centers q, and qd of Table VII. They are obtained

by using orbitals that correspond to the irreducible

representations with l=1, 2, 4, 5 of the point
groups D3d (columns 1, 2, 4, and 5 in Table VII}.
In particular (c,l) or (d, l) correspond to the full

symmetric representation of D3d around the centers

q, and qd, respectively. Similarly (c,4) or (d,4)
give the antisymmetric (in which the inversion ele-

ment is represented by —1) representation of D3d.
The possibility of using such orbitals in calcula-
tions of the diamond-type band structures was first
considered by Hall. From Table VII it follows

that these orbitals will lead to four-branch conduc-
tion for valence bands. This only means that from

the point of view of symmetry the band representa-
tions (c,l), (d, 1), (c,4},and (d,4) are suitable candi-

dates for band-structure calculations of the
diamond-type crystals. This possibility was criti-
cized in Ref. 18, however, as was pointed out in

Ref. 12 it should not be excluded on general

grounds.
An interesting general conclusion that follows

from Tables V and VII about the clustering of dif-

ferent Bloch states at a given symmetry point in

the Brillouin zone. As is seen from these tables,
the smallest number of states that form a band is
two. These are the band representations (a, l), (b, l),
(a,2), and (b,2). At the I point only two possible

clusterings with two branches in a band are al-

lowed: I II 7 and I qI 6. For example, I i and I q

or I
&

and I 6, and so on, never come together in an
irreducible set of states. Similar clusterings appear
at other points. Of particular interest is the point
X in the Brillouin zone. Here, as is well known

from representation theory of space groups, ' there
is sticking together of bands, and all the represen-

tations at this point are two-dimensional (see Table
IV). However, as is seen from Tables V and VII
only the states Xi and Xq can appear in a separate
band. Neither X3 nor X4 can appear in an irredu-

cible band of dimension two. The smallest dimen-

sionality bands in which X3 or X4 can appear are
of dimension four. It is of interest to point out
that the band-representation arguments lead to .
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very-well defined clusters of Bloch states of the
symmetry point X. Thus, for the p orbitals around

q, or qb, column four of Table V shows that the
only possible clustering is X&X3X4. This is in
agreement with the results quoted in Ref. 8.
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