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The concept of a continuity chord is defined for denoting all those Bloch states at dif-
ferent symmetry points in the Brillouin zone that by symmetry and continuity can, in
principle, belong to one band of a solid. The continuity chords for different bands are
derived on the basis of band representations of space groups. A specific example of the
diamond group O} is considered in detail and the continuity chords are calculated for all
the possible symmetry types of bands for this group.

I. INTRODUCTION

Irreducible representations of space groups serve
as a useful tool for labeling the Bloch states at dif-
ferent symmetry points K in the Brillouin zone.'
This symmetry labeling is so popular that it has
developed into a language among solid-state physi-
cists. It is hard today to dissociate the description
of bands in solids from the sets of letters I, L, X,
and so on, that are used for labeling of the different
symmetry points in the Brillouin zone. Each such
letter is assigned a subscript, like I'y,T',, that speci-
fies the particular representation at the given point.
This symmetry specification is local in K space in
that it assigns labels at different k points separate-
ly. Connections between symmetry labels at dif-
ferent points in the Brillouin zone are achieved by
compatibility? or connectivity relations® which are
based on both symmetry and continuity arguments.
However, because of its local character in k space
this symmetry labeling doesn’t specify a band glo-
bally, as one whole entity. In particular, the local
k-space specification of Bloch states does not
answer the important question of whether or not
some sets of states, say I';, L;, X; X, and so on,
can in principle, belong to one band in a solid.

In a recent paper? it was shown that global sym-
metry properties of a band can be defined by means
of band representations of space groups. Unlike
usual representations which are built on Bloch
functions and correspond to a single energy, band
representations are built on localized orbitals and
they correspond to a band of energies. A band
representation is labeled by a symmetry center q in
the Wigner-Seitz cell and by the representation in-
dex [ of the point group of G,, the symmetry group
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of the vector . The indices q and [/ together de-
fine a symmetry label for a band in a solid.

Band representations provide a symmetry con-
nection between extended functions (in particular,
Bloch functions) and localized orbitals (in particu-
lar, Wannier functions) for a given band. Such a
connection was first considered in a series of papers
on molecular orbital theory® and soon afterwards it
was extended to solids.>” Later this symmetry
connection was considered in a fundamental paper
by Des Cloizeaux® who has shown how to con-
struct symmetry adapted sets of Wannier functions
by forming linear combinations of eigenfunctions
with preassigned symmetry. A similar approach is
adopted in other papers’~!! where, as a rule, the
Wannier functions are defined as linear combina-
tions of Bloch functions. There is a difficulty that
arises in following this approach which was al-
ready mentioned above. This difficulty is connect-
ed with the local in k-space symmetry specification
of Bloch functions. The framework of such a local
specification is suited for Bloch functions which
correspond to a single energy but is not suited for
localized orbitals which correspond to a band of
energies.>”!? In the local k-space approach to the
problem there is no symmetry index for a band as
a whole entity. In Ref. 4 the process is inverted
and one first specifies the symmetry of the local-
ized orbitals via band representations of the space
group. These representations specify from the very
beginning symmetries of bands as whole entities.
Having the band representations one can find the
symmetries of the corresponding Bloch states at
different points in the Brillouin zone.

In this paper it is shown how to find all those
Bloch states I';, L;, X;X;, and so on, that can, in
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principle, belong to one particular band of a solid.
This is done by first finding the irreducible-band
representations of the space group which give the
symmetry types or the symmetry labels (q,/) for
the bands of the solid. The band representations
are then reduced at each point in the Brillouin
zone (at ', L, X, and so on) into the usual irredu-
cible representations of the space group. By doing
so we obtain the possible sets of states I';, L;,

X X;, and so on, that belong to a given band in a
solid and that are labeled by a band index (q,)). It
turns out that the labels q and [ carry the global
information about the symmetry of a band as a
whole in a solid. In particular, it can be shown
that this symmetry band label (q,/) defines a set of
local symmetries in k space of the Bloch states

[, Lj, XX, and so on, at different symmetry
points in the Brillouin zone. Such a set of sym-
metry points belonging to a symmetry type (q,]) of
a band will be called the continuity chord. This
term comes to point out that only some very par-
ticular symmetries in k space can appear for a
band with a given symmetry label (d,/). The con-
tinuity chord is closely related to compatibility?
and connectivity® relations in band theory which
are derived from symmetry and continuity argu-
ments. It will be shown in this paper that by hav-
ing a symmetry band label (q,/) it becomes possi-
ble to find the continuity chord of the band or to
list all the irreducible representations I';, L;, X; X,
and so on, at different points in the Brillouin zone
that are related to one another in a continuous for-
mation of a band. An explicit example is con-
sidered for the diamond-structure space group o).
The results for the sets of different symmetry
points or the continuity chords belonging to a band
with a given symmetry type are listed in Tables V
and VII.

II. IRREDUCIBLE-BAND REPRESENTATIONS
OF o,

Let G be a space group and let G, be the group
of the symmetry center  in the Wigner-Seitz cell.!
By definition* to G, all those elements (y | €) of G
belong for which

(y| €)=y +E=g+RI ), (M
where ﬁ;ﬂ ©) is a Bravais lattice vector. Equation
(1) can also be interpreted as a definition of a set of

Bravais lattice vectors. For a given symmetry
center q these vectors vary as a function of the

space-group elements (y | €). The different sym-
metry centers  and the corresponding sets of Bra-
vais lattice vectors R ,;” ) have been used in the
past in establishing symmetry connections between
Wannier and Bloch functions.**'®!> The signifi-
cance of ¢ and R ,;Vl ) in the construction of band
representations is discussed below.

As examples we list in Tables I and II symmetry
centers q with their symmetry groups G, for the
diamond space group 0,,7. Together with each
symmetry center q, its star is also listed. The
latter is defined in the following way.* In general,
the group G, is a subgroup of G. One can decom-
pose G with respect to G, as

G =G, +(ay|8,))Gy+ " +(ay |4)G, , ()

where (@, | @), . . ., (ay | @f) do not belong to G,
and they define the different cosets. Given the
decomposition (2) we can assign a star to each vec-
tor  which together with q contains the vectors

—

G P =(a,|8,)q, ..., qV"=(a,|3[)Tq .

In Table I we list the symmetry centers q, =(0,0,0)
and q,=(a/2,0,0) with the symmetry T, and
their stars. Information on the symmetry centers
in the Wigner-Seitz cell can be found in the Inter-
national Tables.'* For the centers §, and G, the
decomposition (2) takes on the form

O)=Ty+U |a/4a/4a/$T, , 3)

where T is the space group with the point sym-
metry Ty and (I | a /4,a /4,a /4) is the inversion
element I accompanied by a translation
(a/4,a/4,a /4). Equation (3) shows explicitly that
the group Oy is nonsymmorphic.’* By definition
the star of the vector q, contains also

qP=|a/4,a/4,a/4)4,
=(a/4,a/4,a/4) .

Similarly, the star of the center {, contains the
vector

qs2= I |a/4,a/4,a/4),
=(a/4,a/4,a/4) .

In Table II we list the same information for the

symmetry centers q.=(a/8,a/8,a/8) and

dqg=(a/8,a/8,3a/8) with the symmetry Ds,.
Equation (2) assumes the form

0/ =D33+(C% |a/4,a/4,a/4)D3;+C3Dy

+(C{¥|a/4,a/4,a/4)D3y , )
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where D34 denotes the space group with the point
symmetry D;; and C3, C3, and C;? are rotations
around the z axis by 7/2, 7, and 37 /2, corre-
spondingly. It should be pointed out that while for
the centers d, and q, and their star vectors the
symmetry group G, is T, and it is the same for all
of them, the situation is different for the symmetry
centers q. and 4. In this case the symmetry
group G, is denoted by the same symbol D3, but it
is related to different symmetry axes as can be seen
from Table II. Thus, for (?f and qd the symmetry
group is D7, while for q .’ and q ' it is D¥F
and so on. (xyz) and (xjz) denote the threefold ro-
tation axes. Details are given in Table II. The
star of . contains also the vectors

q¥=(Cj|a/4,a/4,a/4)4,
=(a/8,3a/8,3a/8) ,

qP=ciq.=(ass,a/8,a/8),

G ¥=(C{?|as/4,a/4,a/4)3,

=(3a/8,a/8,3a/8) .

The star of q  is found in the same way and is
given in Table II. In Ref. 14, q,

=(5a/8,5a /8,5a /8). The symmetry center ¢  in
Table II is (a /8,a /8,3a/8) which differs from the
one in Ref. 14 by the Bravais lattice vector
(@a/2,a/2,a). We use here the fact that symmetry
centers that differ by a Bravais lattice vector are
equivalent.*

We turn now to the construction of the
irreducible-band representations of the space group
0, . For doing this we construct first the
irreducible-band representations DS P[(y | €),K] of
the subgroups G, of 0/ for different symmetry
centers. They are obtained according to the follow-
ing rule’:

(v]|¢)

D@D[(y]?),K]=explik - R "D P(y) , (5)

where D'/(y) are the irreducible representations of
the point theory of G, (which is obtained by sim-
ply taking all the pomt group elements of G,
without any translations) and R 1) are deﬁned
in Eq. (1). It should be pointed out that in its
form (5) the band representations are written in the
kq representation.'® Since K is a variable the
correspondence in (5) gives actually an infinite-
dimensional representation. Only in its k-

25
dependent form as a band representation, is (5) fin-
ite dimensional [it has then the dimensionality of

(1)(,},)]‘

For O, we have mentioned above the symmetry
centers 44, q4p, ¢, and Gg. The centers ¢, and
q, have the same symmetry group which is T.

In Table I we list the phase factors exp(i K- R") of
Eq. (5) correspondmg to the sets of the Bravaxs lat-
tice vectors R¥ = —q, +7q, and R} =—q, +74
and accordingly also for the stars of §, and q,.
Table II contains the phase factors of Eq. (5) for
the symmetry centers ¢. and ¢, and their stars.

Let us first consider in detail Eq. (5) for the
symmetry centers , and (,. Their symmetry
group is T4 and Eq. (5) gives four different
irreducible-band representations of this space group
for each irreducible representation D'"(y) of the
point group T;. Two band representations are ob-
tained from the star of §, and two from the star of
qp- The phases in Eq. (5) can be interpreted in the
following way. Let y be an element of the space
group around the origin of the crystal (it some-
times appears with a partial translation ¢) and
denote by y, the same element when related to the
origin at . Then [see Eq. (1)]

=(e| —qinte| +d)=(y| E—RIT). (6
We see therefore that the operation of the point-
group element y, around ¢ can be achieved by ap-
plying the same element around the origin (y| <)
and by accompanying it by a translation RIS,
Correspondmgly, the phase factor exp(i K- R/ (rl ey
in (5) can be interpreted as following from the
choice of the point group center at . We come
therefore to the conclusion that the rule (5) gives
the representations of G, with respect to the fixed
point-group center at . This shows that the sym-
metry center q can be used as a label (via the Bra-
vais lattice vectors R;Yl “))in specifying the band
representations of the group G,. As was already
mentioned, for the space group T; we have four
symmetry centers qg, >, s, and G 52 and by
choosing each of these centers as an origin for the
point-group elements we obtain four different
irreducible-band representations for each irreduci-
ble representation D'”(y) of the point group T;,.
The phases of Eq. (5) for these band representa-
tions are listed in Table I. Since T} is a sym-
morphic space group!® all the elements in Table I
are pure point-group elements.

Having the band representations of T; we can by
induction* '’ find the corresponding band represen-
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tations of the full space group O;. Let us denote
by Cs("”(l_{,a), s=1,...,m the basis for a band
representation of G, corresponding to the sym-
metry center q, and the irreducible representation /
of the point group of G,. Correspondingly we
denote

(rp,), —

%, g)=(a; | 3)CK, )

where (a; | ;) is an element in the decomposition
(2). With this notation the band representation of

G that is induced from the band representation
D" of G, can be written in the following form*:

m (r.,,[) —
(a|3)C " (K, d)=exp{ik-[—4 Y +(a| DGV} 3 DIy ICT (k, Q) , v)

where the following relation
(a]@)a; |d;)=(a; |d;)(yY|CE") (8)

was assumed. In (7) and (8) (a| @) is a general ele-
ment of the space group G, (a; | ;) and (a; | @)
are the elements of the cosets [Eq. (2)], and
(y'|¢") is an element of G,. It is convenient to
look at the matrix D (a | @) which represents the
element (x| @) in Eq. (7) as consisting of block ma-
trices of dimension m X m. In this form the only
nonvanishing block in column i of the matrix

D(a | @) is in the row j. Equation (7) induces band
representations of the space group G from the band
representations of its subgroup G,.

For the symmetry centers q, and 4, Eq. (7)
simplifies because the symmetry group of these
centers T, is an invariant subgroup of the full
space group O,. When G, is an invariant sub-
group of G, Eq. (8) for the elements (y | €) of G,
assumes the form

(y] eNa; |d;)=(a; |2y |C") . ©

Correspondingly, the induced-band representation
of Eq. (7) for the elements (y | ¢) of G, will be-
come*

D — .
(?’I_C')Cs(r' (" §)=exp(—ik -R{"1¢))

(r,) — _,
x 3 DYyl (K,q)
s'=1

(10)
where

R”"”—(y[ —»u a»(i). 11

For elements (a | @) of G that do not belong to G,,
the block matrix D(a | @) has only vanishing block
matrices on the diagonal. This follows directly
from Eq. (8) when written for an invariant sub-
group and the general expression (7) for the
induced-band representation.

Having Eq. (10) it becomes a simple matter to
find the band representations of Oy that are in-

s'=1

T
duced from the band representations of T;. Since
T, is a symmorphic group, € is a Bravais lattice
vector. For using Eq. (10) we need the multiplica-
tion table of Eq. (9) for the decomposition (3). If y
is an element of T (e is the unit element), then Iy
is an element of the second coset in the decomposi-
tion (3), and Eq. (9) assumes the form

ve=ey, yI=Iy,
(Iye=Iye, Iy =ey.

(12)

With the aid of Table I we can now construct the
band representations of 0,/ that are induced from
the symmetry centers q, and §,. As an example
let us find explicitly the matrices D'»"(C¥?) and
D'®P(C¥?. From Table I we find that for C¥” the
phase factor exp(i K - R”) assumes the followmg
values: It is 1 for the centers G, and q  °; it is 8y*
for q,, and 8*y for q, i?). By using Eq. (10) and
the multiplication table (12) we find that the only
nonzero block matrices are on the diagonal

al)(cxyZ) D(al(c§ﬂ)=D(1)(C§yz) ,
D (cyr)=8*yDV(CY?) , (13)
D(ZIE,I)(CJ;J?Z)ZSY*D(I)(ngZ) ,

where D;; denote block matrices. Similarly, one
can find the matrices for the other elements of 0,,
Let us now turn to the symmetry centers q, and
qg. For these centers the symmetry group G,
(which is D3y) is not an invariant subgroup of the
full space group Oy . Each of the centers has four
vectors in the star and in Table II we list the
phases expl(i K- R (7l ?)) that correspond to the
Bravais lattice vectors R (vI®) " By using Eq. (5)
we find the 1rreduc1b1e-band representations of the
space groups D, for the different centers . and
qgq and their stars. As was already mentioned be-
fore, the symmetry groups for different centers in
the same star are different (despite the fact that
they are denoted by the same symbol Ds,). Thus,
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for q, the symmetry group is D3;’ while for q . Pt

is D3, and so on (see Table II). Correspondingly,
each vector in the star defines, according to Eq.
(5), the band representations of its symmetry
group. Thus ¢, leads to six-irreducible-band
representations of D3 (six is the number of irredu-
cible representations of the point group Di4). They
are obtained from Eq. (5) by varying [ (I runs from
one to six over the six irreducible representations!’
of the point group D;,) for the fixed set of phases
explik - R [7'®)) corresponding to q..

Having the band representations of the sym-
metry groups of . and Gy (and their stars) we use
now the induction equation (7) for constructing the
corresponding band representations of O,. For us-
ing Eq. (7) we need the multiplication table (8) for
the decomposition (4). This information is con-
tained in Table III. In this table we list only the
point-group elements without their partial transla-
tions. Since the space groups D, in O, are non-
symmorphic'® some of the elements in Table III
contain partial translations. In fact D34 can be
decomposed into two cosets by

D3d=C3v+(I [a/4,a/4,a/4)C3u . (14)

Here C;, is a symmorphic group while all the ele-
ments of the second coset contain the partial

25

translation (a /4,a /4,a /4). From the point of view
of the whole space group O the information about
pure point-group elements and mixed ones (con-
taining partial translations) is given in the decom-
position (3). As was already mentioned T is a
symmorphic group while the second coset in (3)
contains mixed elements. In Table III explicit
multiplication results are given for the elements of
D¥7 and the coset elements C3, C3, and C;” [see
decomposition (4)]. Clearly with the information
in Table III, it is a simple matter to find the multi-
plication rule for any (a | @) because one can al-
ways find an (e; | ;) and an (y | ¢) such that
(a|d)=(a; | d;)(y|€). Here (y|73)is an element
of D347 and (a; | @;) is one of the rotations around
the z axis, C5,C%,C;° Since Table III contains the
information for the elements of D3 and (; | 4;),
the multiplication rule for any other (a | @) can be
easily found from it. With Tables II and III at
hand we can use Eq. (7) for finding the band
representations of O, that are induced by the sym-
metry centers . and 4. As an example let us
calculate explicitly the matrix D'“"(C¥? for the
element C¥?. This band representation is induced
from the symmetry center .. From Table III it
follows that the oan' nonvamshmg block matrices
are D97, DSV, D;$P, and D{$”. By using the in-
duction equation (7) and Tab]es II and III we find

TABLE III. Multiplication table for the decomposition of O] with respect to D;;. The
table contains the products of an element in the left-hand column with an element in the

upper row.
E Ci C3 cy

E EE C:E C:E CY¥E
c;f E C2’3‘”‘ CcF c§_*yz CiC¥ cic¥
c” EC?” CiC¥ cEce C; cy*
cy EC? cEcy cicy cicy
c¥ EC¥® CiC¥ CcyEcy: cicyr
c¥ ECY C3 Cy” cic” cy¥c¥
I EI CiI CiI C¥I
Sz ES¥” CcE s Cio” Cio™
SV ES® g% Ciog* Ci8Y”
o Eo® ciov Cio™ fo
oz Ec¥ g% Ciz 8y C3 897"
o Eo™ C; 8" Ci s Cifo”

i CiE 2E CY¥E EE

P C322E C¥E EE CiE
C; CY¥E EE C:E CiE
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D" (cy)=D"(Ccy"),
Dig,l)(cgc}’l)___l)(l)(c%x}'z) )

(15)
D(C I)(nyz 1)(C.Vz

D" (cy))=D"(CT),

where by D'” we have denoted the irreducible
representations of D3;. In a similar way one can
find the matrices D‘®” and also D'%? for all the
elements of O;. The induction method will give
an irreducible-band representation of 0, for each
star, e.g., 4. or 44 and each irreducible representa-
tion of the point group D34. Since the latter has
six irreducible representations'’ Eq. (7) w1ll give
12-irreducible-band representatlons of 0;, , six for
each symmetry center q. and qg.

So far we have considered the symmetry centers
4> db> der and Gy in the Wigner-Seitz cell and
have pointed out how to find the irreducible-band
representations of 0/ that are induced from these
centers. Many other symmetry centers exist for
the diamond space group.'* However, as can be
checked, symmetry groups G, of these additional
centers are subgroups of one of the above con-
sidered groups T or D34. One can also show that
the set of the Bravais lattice vectors [Eq. (1)] for
the subgroups G, of any additional centers coin-
cides on this subgroup with the corresponding set
for a center of T; or D3;. As was proven in Ref. 4
such symmetry centers will not lead to new
irreducible-band representations of 0,. An exam-
ple of such a symmetry center is g, =(xxx) which
has Cj, as its symmetry group. 4 The latter is a
subgroup of both T, and D;4. One can also check
that, for example, the Bravais lattice vectors corre-
sponding to the symmetry centers q, and g, coin-

cide, RY ®'=R"1® for (y| ) belonging to Cj,.
The results of Ref. 4 show that the irreducible-
band representations of 0, that are induced from
the symmetry center g, are all contained among
those induced from the center ¢,. If one is in-
terested in irreducible-band representations only
then the symmetry center q, can be left out as
long as G, was considered. We come, therefore, to
a conclusion that for the construction of all dif-
ferent irreducible-band representations of o) it is
sufficient to consider the symmetry centers d,, dp,
G., and G4. The latter by using Eq. (5) and the in-
duction equation (7) lead to all the irreducible-band
representations of o;.

III. CONTINUITY CHORDS OF BANDS

Having the irreducible-band representations of a
space group one can answer the question about the
symmetries of a band at different points in the
Brillouin zone. This is what we call the continuity
chord of a band and it is given by a set I';, L;,

X X), and so on, of irreducible representations for
symmetry groups Gy at dxfferent points K in the
Brillouin zone. By definition'® all those elements
(B| b) of the space group G belong to G for which

Bk=k+K, (16)

where K is a vector of the reciprocal lattice. For
finding the continuity chord of a band we shall use
the fact that any band representation of G when
considered for a fixed k becomes a representation
of Gi. This can be shown in the following way.
Let DT [(a | 1),k] be a band representation of
G. Then by d_gﬁnltlon the matrix correspcnding to
(a2| t 2)((11 | t 1) is

DTN[(ay | Ty | £1),K]1=D T (ay| T2),KID TV [(ay ] t),a5 k], 17)

where in the last matrix a;’ 'K appears, showing
that k is a variable. For the elements of G; Eq.
(17) will assume the usual form of a multiplication
rule for a representation. This follows from Eq.
(16) for the elements of Gy and the fact that the
band-representation matrices D[( | ) k] are
periodic in K with the periodicity of the reciprocal
lattice vectors. It therefore follows that each band
representation of a space group G when considered
for a fixed k becomes a representation of Gy. The
latter is in general reducible. In order to find the

-

continuity chord of a band we start with an
irreducible-band representation (g,/) of the space
group [Eq. (7)] and for each k we find the
representation D' of Gy that is given by the same
equation (7). Having found D'® we reduce it and
this gives us the set of the irreducible representa-
tions of Gy, at the point K in the Brillouin zone.
By going through with this process over all the
symmetry points in the Brillouin zone we find
what we call the continuity chord of the band (q,)).
As an example we consider the group o,. We
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start with the symmetry centers q, and q,. Their
symmetry group is T4. The point group T; has
five irreducible representations which we denote by
I=1,2,...,5,as in Ref. 17. Correspondingly we
have ten-irreducible-band representations (q,,/) and
(qp,)). Let us consider in detail the symmetry
point K =(0,27/a,0) (point X) in the Brillouin zone.
Its symmetry group is G, =D%,. In Table IV we
list the characters of the representations of G, that
are obtained from the band representations (q,,/)
and (q,,)) at K=(0,21/a,0) (point X). These char-
acters are denoted by X' and X'®?, correspond-
ingly. They are obtained from Eq. (10) by using
Table I and the multiplication table given in Eq.
(12). In particular, from Eq. (12) it follows that
the characters X'®” and X'®? vanish for the ele-
ments of Dy, that do not belong to T;. By reduc-
ing the representations given in Table IV we find
the irreducible representation of G, that they con-
tain. In Table IV we also list the irreducible
representations of G, X, X,, X3, X4 (see Ref. 17).
The reduction leads to the following results:

yla—yh_y,

x@d—yb2_x,

x@d—y®d_x, 1 x,, (18)
Y@ —ybH_x L X, 4 X,,

Y@ =Y =X, + X+ X, .

By carrying out the same process for all the sym-
metry points in the Brillouin zone!” we find the

continuity chords of the bands (q,,/) and (qj,).
The results are given in Table V. As is seen from
this table the centers d, and , lead to the same
representations at all the symmetry points in the
Brillouin zone with the only exception of the point
W. At this point the representation /=3 of the
point group Ty leads to the same representations
(W, + W,) for both centers q, and q,. For all
the other representations of T, (/I=1, 2, 4, 5) the
centers G, and {, give different representations at
the symmetry point W. All the symbols in Table
V are according to Ref. 17.

For the centers §, and q, the symmetry group
is D34. This point group has six irreducible repre-
sentations which we denote by I=1,2,..., 6 as in
Ref. 17. Having this in mind we expect 12-
irreducible-band representations which are labeled
by (d.,)) and (q4,)). As an example, let us consider
the symmetry point k =(7/a,7/a,7/a) (point L) in
the Brillouin zone."” Its symmetry G, =D§Y?. In
Table VI we list the characters of the representa-
tions of G/, that are obtained from the band repre-
sentations (q,,/) and (G, at k= (7/a,7/a,7/a)
(point L). They are denoted by X‘“” and x‘®?,
correspondingly. In obtaining these characters we
use Eq. (7), Table II, and the multiplication table,
Table III. In order to find the continuity chords
for each band we reduce the representations X'
and X'*? into the irreducible constituents of the
group G, . The latter are also listed in Table VI
under L, L,, . .., Lg. The reduction of X'¢” and
XD at the point L leads to the following
results:

TABLE IV. Character table for the group Dy, of the symmetry point X. The symbols in the upper line have the
same meaning as in Table 1. The upper part of the table are the characters of the representations that are obtained from
the band representations (a,/) and (b,)). The lower part are the characters of the irreducible representations for the sym-

metry point X (see Ref. 17).

G, =DJ, E s o o ¥z Cc¥ Other elements
XY@ =ybD 2 2 2 2 0 0
X(a,Z)ZX(b,Z) 2 2 -2 -2 0 0
XY =y .3 4 4 0 0 0 0 0
Yo =y b4 6 _2 2 2 0 0
Y@ = y6:5 6 _2 -2 -2 0 0
X 2 2 2 2 0 0
X, 2 2 -2 -2 0 0 0
X; 2 -2 0 0 2 -2
Xa 2 —2 0 0 -2 2.
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TABLE VI. Character table for the group D34 of the symmetry point L. The symbols in the upper line have the
same meaning as in Tables I and II. The upper part of the table is the characters of the representations that are ob-
tained from the band representations (c,/) and (d,)). The lower part is the characters of the irreducible representation

for the symmetry point L (see Ref. 17).

G,=Dy? E cyc I S8V Foivia il cyEcyey
ol =ylds 4 1 2 1 2 0
X2 =y @) 4 1 -2 1 -2 0
x'©d) = y!d6 8 -1 —4 —1 0 0
yed) — pld D 4 1 2 —1 2 0
xeS =y 4 1 2 —1 -2 0
X0 = y@3) 8 | 4 1 0 0
L, 1 1 1 1 1 1
L, 1 1 1 1 -1 -1
Ly 2 —1 2 —1 0
L, 1 1 —1 —1 1 -1
Ls 1 1 —1 -1 ~1 1
L 2 —1 -2 1 0 0

X(C’l)zx(d’4):L1 +Ls+Lg,
X("’Z):X(d’S)‘:Lg +L5 +L6

X(c’3)=X(d’6)=L1+L4+L5+2L6, 19

X(c,4)=x(d,1)=L1+L3+L4
X(C’S):X(d’2)=L2+L3+L5,

X(C’G):-X(d’3):L1 +L2+2L3+L6 .

This process can be carried out for all the sym-
metry points in the Brillouin zone. The results are
summed up in Table VII. The symmetry centers
q. and qy lead to the same representations at all
the points in the Brillouin zone with the only ex-
ception at point L at which they are different. In
Table VII this is shown by listing the representa-
tions for ¢, in the upper line and for q, in the
lower line. For all the other symmetry points in
the Brillouin zone they are identical.

In summing up this section let us point out that
Tables V and VII contain the continuity chords for
all the irreducible-band representations of the space
group O, that are induced from the symmetry
centers G4, qp, qc, and 4. There is no need to
consider other symmetry centers of O} in the
Wigner-Seitz cell because, as was already men-
tioned in the preceding section, they don’t lead to
additional irreducible-band representations of O .
Tables V abd VII give, therefore, all the continuity

chords for all the possible symmetry types of bands
for the diamond structure Oy.

IV. DISCUSSION

We introduced the concept of a continuity chord
for defining all those Bloch states at different sym-
metry points in a Brillouin zone that can possibly
belong to a band with a given symmetry type. In
finding continuity chords we used band representa-
tions which are fully defined by the symmetry
group of the solid. It might therefore appear that
continuity chords can be established from symme-
try arguments only. This is, however, not so be-
cause band representations are given by E-depen-
dent matrices D[(y | _c'),_l,(; [see Eq. (5)] containing
the phases exp(i k-RfI’" C_»). The latter are con-
tinuous and periodic in k. Band representations
have, therefore, a built-in continuity in K by their
definition. This continuity also appears in the con-
cepts of equivalency and reducibility of band repre-
sentations.* Since continuity chords are found by
using band representations they depend both on
their symmetry and their continuity. In this sense
the continuity chords are closely related to the
compatibility? or connectivity® relations of bands
which are also defined by symmetry and continuity
arguments. However, in establishing compatibility
relations the only symmetry tool at hand is the
reduction of representations at neighboring points
in the Brillouin zone. In simple situations this
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gives a connection between Bloch states at different
symmetry points but, in general, there is no way to
connect all the symmetry points by compatibility
arguments. Band representations specify bands as
whole entities and this is the reason that they en-
able one to establish continuity chords for bands in
solids.

Tables V and VII contain the continuity chords
for all the irreducible-band representations of the
diamond space group O,. Thus, in the first
column of Table V the continuity chords are listed
for the band representations (a,1) and (b,1). These
are two-dimensional band representations that are
built on an s orbital of the group T, corresponding
to the symmetry centers q, =(0,0,0) 4, =(a/2,0,0)
in the Wigner-Seitz cell. The continuity chords for
the symmetry types (a,1) and (b,1) differ only at
the point W in the Brillouin zone. At all other
points they coincide. As another example, consider
the fourth column of Table V. Here the continuity
chords are listed for a p orbital of T, again,
around the symmetry centers §, and q,. They
correspond to six-dimensional band representations.
These chords also differ only at the point W in the
Brillouin zone. If columns one and four of Table
V are combined one obtains continuity chords that
belong to reducible-band representations. Thus,
one can combine (a,1) and (a,4) to obtain an eight-
dimensional band representation that is built on s
and p orbitals for T around q,. This band
representation is clearly reducible. Similarly, one
can build three other eight-dimensional reducible-
band representations by combining columns one
and four of Table V. All of them will be built on s
and p orbitals of T;. Such s and p orbitals are
often assumed to be possible candidates for band-
structure calculations in diamondlike cry-
stals.®121819 In such calculations one starts with
bases built on s-p localized orbitals and it is expect-
ed that they will lead to a separation of the valence
and conduction bands each containing four
branches. It is of interest to discuss this approach
from the point of view of band representations and
the continuity chords of Table V. From this table
it follows that the s-p orbitals (columns 1 and 4)
lead together to an eight-dimensional band repre-
sentation. As was already mentioned this is a
reducible band representation. It reduces, as one
can show, into the following irreducible band rep-
resentations: either a two- and a six-dimensional
one for the center a, or two four-dimensional ones
for the center c. The latter possibility corresponds
to the valence and conduction bands in the

25

diamond-type crystals, and as it follows from Ref.
19 the s-p orbitals lead to a satisfactory band-
structure calculation. In fact, it follows from
Table V that the only way to build irreducible
four-dimensional band representations out of the
symmetry centers 4, and q, is using the orbitals
(a,3) or (b,3) of T; (column 3 of Table V).

An alternative way of building irreducible four-
dimensional band representations is by using the
centers 4. and |, of Table VII. They are obtained
by using orbitals that correspond to the irreducible
representations with /=1, 2, 4, 5 of the point
groups D3, (columns 1, 2, 4, and 5 in Table VII).
In particular (c,1) or (d,1) correspond to the full
symmetric representation of D4 around the centers
q. and ¢, respectively. Similarly (c,4) or (d,4)
give the antisymmetric (in which the inversion ele-
ment is represented by — 1) representation of D;,.
The possibility of using such orbitals in calcula-
tions of the diamond-type band structures was first
considered by Hall.® From Table VII it follows
that these orbitals will lead to four-branch conduc-
tion for valence bands. This only means that from
the point of view of symmetry the band representa-
tions (¢,1), (d,1), (c,4), and (d,4) are suitable candi-
dates for band-structure calculations of the
diamond-type crystals. This possibility was criti-
cized in Ref. 18, however, as was pointed out in
Ref. 12 it should not be excluded on general
grounds.

An interesting general conclusion that follows
from Tables V and VII about the clustering of dif-
ferent Bloch states at a given symmetry point in
the Brillouin zone. As is seen from these tables,
the smallest number of states that form a band is
two. These are the band representations (a,1), (b,1),
(a,2), and (b,2). At the T point only two possible
clusterings with two branches in a band are al-
lowed: I')I'; and I',T's. For example, T'; and T,
or I'y and I', and so on, never come together in an
irreducible set of states. Similar clusterings appear
at other points. Of particular interest is the point
X in the Brillouin zone. Here, as is well known
from representation theory of space groups,' there
is sticking together of bands, and all the represen-
tations at this point are two-dimensional (see Table
1V). However, as is seen from Tables V and ViI
only the states X; and X, can appear in a separate
band. Neither X; nor X, can appear in an irredu-
cible band of dimension two. The smallest dimen-
sionality bands in which X3 or X, can appear are
of dimension four. It is of interest to point out
that the band-representation arguments lead to
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very-well defined clusters of Bloch states of the
symmetry point X. Thus, for the p orbitals around
g or qp, column four of Table V shows that the
only possible clustering is X;X3X,4. This is in
agreement with the results quoted in Ref. 8.
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