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Field dependence of the thermal conductivity of CoBr&.6H&O
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The thermal conductivity of CoBrz 6H20 has been measured in the temperature range
1.5 —30 K and in magnetic fields up to 90 kOe. The specific field dependence of the

data, especially with the field along the easy axis, indicates that the magnons do not con-

tribute to the heat transport, but mainly act as a scattering source for the phonons. The
data can be understood qualitatively by confronting them with calculated field-dependent

magnon spectra. The actual scattering mechanism seems to be governed by the two-

magnon —one-phonon process.

I. INTRODUCTION

Together with CoC12 6H20, CoBr2.6H20 has
been the subject of a large number of investiga-
tions' because for a long time these compounds
were considered to be good physical approxima-
tions of the two-dimensional JY model. The two-
dimensionality of CoBr2 6H20 is clearly visualized

by the crystallographic cleavage plane, the ab plane
(Fig. 1). The exchange interactions in this plane
are supposed to be much larger than the interac-
tions along the c direction. The dominant ex-

change interaction in the plane is J~. It has been
shown that Ji —J1 ——2.4 K and —0.7 K&Ji
& —0.4 K, reflecting the suggested LY behavior.
The resulting antiferromagnetic structure is depict-
ed in Fig. 2(a). In Fig. 2(b) we show the orienta-
tion of the three main magnetic axes, i.e., the easy
axis y, the intermediate axis P, which coincides

with the crystallographic b direction, and the hard
axis a. The experimentally observed phase di-

agrams of CoBr2 6H20 with the external field ap-
plied along the easy and intermediate direction are
reproduced in Fig. 3. The curves are a combina-
tion of the results of Refs. 1 and 3. The dotted
curve in Fig. 3 is the anticipated phase boundary
with the field applied along the hard direction,
where we used the experimental value g, =2.2.

Recently it was reported that the phase diagram
corresponding to the easy direction showed some
drastic changes when the crystals were partially
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FIG. 1. Part of the crystal structure of CoBr2 6H20.
Cobalt ions are black, bromine ions are shaded, and oxy-
gen is represented by open circles. Jl, J2, and J3 are the
exchange interactions in the ab plane.

FIG. 2. (a) Magnetically-ordered structure of
CoBr2.6H20. (b) Location of the easy axis y and the
hard axis cr in the ac plane. The intermediate axis P
coincides with b.
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already been reported in the literature, ' but these
results are restricted to a limited field and tern-

perature range (T&4 K, H& 13 kOe, H=50 kOe).
Especially the field dependence needs some extra
attention, because the spin-wave interpretation
given by Donaldson et al. is somewhat oversimpli-
fied. We shall first discuss the experimental
methods which we used to measure the thermal
conductivity at low temperatures (1.3 K & T & 40
K) and high magnetic fields (up to 90 kOe). Next,
we present our results and give a qualitative in-

terpretation, based on a spin-wave description of
the magnetic system and the assumption that rnag-
nons merely act as a scattering mechanism for
phonons. We shall conclude the paper with a dis-
cussion about the nature of the magnon-phonon
scattering processes that may be involved.

II. EXPERIMENTAL METHODS

2
t(K)

3

FIG. 3. Magnetic phase diagram of CoBrq 6HzO
with the external field applied along the three principal
directions.

deuterated. In a specimen containing 48% D20
the first-order spin-flop transition line did split up,
thus giving rise to a so-called "intermediate state"
between the antiferromagnetic and spin-flop region.
It is assumed that such an intermediate phase can
exist in the presence of a large magneto-elastic cou-

pling. Such a coupling, which is expected to be of
the same strength in CoBr2-6H20, may produce
large magnetic effects in the thermal conductivity.
Moreover, the magnitude of the critical fields,
displayed in Fig. 3, allows us to investigate the
field and temperature dependence of the thermal
conductivity in those regions of the phase diagram
where the most drastic changes in the magnetic
system occur. The reason why we have chosen
CoBrz-6H20 instead of CoC12-6H20 or the partial-

ly deuterated bromide compound is twofold. First,
the experimental setup requires crystals with at
least one dimension of about 1 crn, which is most
easily realized for CoBrz.6H20. Second, both
CoC12.6H20 and the partially deuterated bromide

compound reveal the quoted intermediate phases.
The excitation spectrum of these magnetic systems
is not know in detail„ in contrast to spin-flop sys-
terns such as CoBr2.6H20.

The thermal conductivity of CoC12 6H20 has

The thermal conductivity is measured with a
standard steady-state heat-flow method. A known
heat-flow Q is applied to the crystal, and the re-
sulting temperature difference AT= T2 —T& is
measured. If L is the distance between the ther-
rnometers recording T& and T2 and A is the cross
section of the crystal, the thermal conductivity is
given by

The main experimental problem is the accurate
determination of small-temperature differences at
low temperatures. For that reason we shall only
give a brief description of the experimental ap-
paratus but consider the thermometry in more de-
tail.

The crystal (1) is clamped in a copper crystal
holder (4) which is attached to the upper flange
(10) of the sample assembly via a copper (5) and a
brass (9) bar (see Fig. 4). The evacuated copper
can (11) is immersed in a liquid He bath. The
sample is positioned at the center of a supercon-
ducting solenoid. A metal film resistor (2) is used
as a heater and attached to the top of the crystal
with some GE7031 varnish. A temperature-
control unit consisting of a carbon resistor (7} as a
sensor, and a rnanganine heater is used to control
the temperature of the crystal holder. The brass
bar (9) serves as a thermal resistance in order to
obtain temperatures above 4.2 K. A germanium
resistor (6) is attached to the copper bar (5} for
calibration purposes.
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field calibration data. In this temperature region
deviations exceed 2 mK. This implies that—
generally speaking —temperature differences can be
determined with an accuracy of 2 mK at the
lowest temperatures, which would require a tern-

perature difference between R] and R2 of at least
100 mK during the experiments in order to gain
the desired accuracy of a few percent. As this re-
quirement would severely limit the accessibility of
the low-temperature region, we have chosen a so-
called two-step measuring method. This method is
based on the fact that the error f ( T)= T„~,(R)

T pt of the interpolation formula describing the
behavior of a carbon thermometer varies very slow-

ly as a function of temperature [df ( T)IdT is of
the order of 10 —10 ]. Within a restricted
temperature region the error may therefore be re-

garded as an offset with a (maximum) temperature
dependence of 10 . In the two-step measuring
method the (local) value of this offset is implicitly
determined.

The temperature difference caused by a heat
flow Q is measured with two 100-0 Allen-Bra'dley

carbon resistors R
~

and R2 (3). Both are thermally
anchored to the crystal by means of copper wires.
The two resistors can be calibrated against the ger-
manium thermometer (Q= 0). The zero-field cali-
bration data are numerically fitted to the formula:

1/2

= g ~„[(1~)'"]".
n 0

(2)

The magnetoresistance of the carbon thermometers
was incorporated by fitting field-dependent calibra-
tion data to the formula:

FIG. 4. Sample assembly of the thermal-conductivity
measuring system. The orientation of the crystal with

respect to the external field can be varied by an alternate
connection of the crystal support (4) to the lower brass
bar (5).

(a). A heat flow Q is applied to the crystal and
the desired temperature is set with the aid of the
temperature control unit. After both temperature
readings have stabilized (typically within a few
minutes), R

&
and R2 are measured (R t and R 2,

respectively).
(b). Q is switched off and with the aid of the

temperature control unit R
&

is adjusted to its ini-
tial value R ]. The thermometer R2 now stabilizes
at a value of R2.

The temperature difference AT caused by the heat
flow Q can now be calculated directly:

~T=Tcdc(R2) Teak(R2) ~

or, more conveniently,

~Tea]caT= (R2 —R2),
dR2

where R2' is defined as

R (H) R(0)—
R (0)

AH
R,"=—,(R, +R', ) .

The coefficients A and 8 were found to vary ap-
proximately linear with temperature. These inter-
polation formulas described the data of each indi-
vidual thermometer in the successive temperature
ranges 1.2 & T&4.5 K and 4.5 & T& 9 K with an
accuracy of about 1 mK at zero field and about
twice this value at the highest fields. At higher
temperatures we used cubic splines to fit the zero-

The value of A, , which can be evaluated from Eq.
(1), is attributed to the average temperature T"
corresponding to R 2".

The essence of the two-step measuring method is
the reduction of the error due to fitting procedures.
An absolute error of 2 mK in AT is replaced by a
relative error equal to df (T)Id T in

(dT„~,/dR2)z, „. As can be seen in Eq. (5) the ul-
2
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III. RESULTS

Measurements of the thermal conductivity of
CoBrz.6H20 were performed with the heat flow Q
in the b direction. The dimensions of the crystals
in the other crystallographic directions were too
small to carry out experiments. In Fig. 5 we plot-
ted the thermal conductivity A, as a function of
temperature for two distinct cases, namely for zero
external field and with a field of 90 kOe parallel to
the preferred direction of spin alignment y. At the
lowest temperatures (T(2.5 K) the high-field data
represent the lattice thermal conductivity, since in

that temperature and field range magnons can

C:()Bc2.6H20
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FIG. 5. Temperature dependence of the thermal con-
ductivity of CoBr~ 6H20 at external fields of 0 and 90
kOe.

40

timate error in hT is a combination of the "cali-
bration" error in (dT„~,/dRz)z, „and the experi-"2
mental error in R2 —R2. This experimental inac-
curacy can be minimized by modifying the ther-
mometer resistance bridge in such a way that—
instead of R& and R2—the values of R~ and
R ~

—R2 are measured. In this way the effect of
small temperature variations of the sample assem-

bly as a whole on the determination of hT can be
eliminated or suppressed and the full advantages of
the two-step measuring method can be exploited.
In general, temperature differences b, T as small as

0.1 mK could be determined with a relative error
of about 1%, the experimental resolution being
limited by electrical noise.

hardly be excited, as. we shall see later on. The
limiting low-temperature behavior of the high-field
curve can give some information about the dimen-
sionality of the lattice system. In Fig. 5 we find A,

(90 kOe) T— for T(2.5 K. One might be
tempted to ascribe two-dimensional characteristics
to the lattice system. The lattice specific heat,
however, is proportional to T below 11 K, and
hence we expect this three-dimensional behavior in
A,(90 kOe) at temperatures below 1.5 K, indicating
the influence of various scattering processes on A, .

The zero-field curve shows the usual maximum
in the thermal conductivity at about 9 K with a
magnitude of about 1 W/cm K. The distinct kink
in the zero-field data at about 3 K is also observed
in CoClz 6HzO (Refs. 7 and 8) and must be attri-
buted to magnon-phonon scattering, as will become
apparent later on. Owing to this kink the limiting
low-temperature behavior is not yet displayed at
1.5 K. From the fact that A, (90 kOe) )A, (0) we
can state immediately that the magnons have a
negative inAuence on the thermal transport, as was
already suggested by the kink mentioned above.

It should be noted here that the absolute magni-
tude of the thermal conductivity depends very
much on the quality of the crystals and its history.
In general, we observed that a thermal cycle (4.2
K~ room temperature ~ 4.2 K) as well as a
magnetic cycle (0 kOe ~90 kOe~0 kOe) more or
less deteriorates the crystal and causes a reduction
of A,.

The magnetic field dependence of A, at a con-
stant temperature was examined in more detail,
with the external field along the three principal
magnetic axes. The results are shown in Figs. 6, 7,
and 8 for the easy, intermediate, and hard direction
of spin alignment, respectively. The phase transi-
tions indicated in Fig. 3 are clearly visible, espe-
cially when the field is applied parallel to the easy
axis. There is a drastic decrease of A, at the spin-
flop critical field (-8 kOe), and at the moment
that the paramagnetic phase is reached, k starts to
increase monotonically. We observed an increase
of A, by a factor of 6 in the paramagnetic state (see

Fig. 6), but this value is very sensitive to the cry-
stal quality, as can be seen by comparison with
Fig. 7. Another interesting feature is the max-
imum of A, in the spin-Aop phase. This
phenomenon is also observed with H parallel to the
intermediate axis. The relatively smaller field
dependence with H parallel to the hard axis can
partly be explained by the smaller g value in that
direction, and partly by the number of thermal and
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FIG. 7. Field dependence of A, in CoBrz-6H20 with

the external field applied in the intermediate direction.

2.0 cess. In the lattice system these excitations are
described as phonons; in the magnetic system we

can define magnons. This magnon concept is only
valid at low temperature (T(T~). At higher tem-

peratures the magnetic excitations are more com-
plex and the magnon concept gradually becomes

I
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FIG. 6. Field dependence of A, in CoBr2.6H20 with
the field applied in the easy direction, at various tem-

peratures. The results of A, H are scaled with respect to
the zero-field value A,Q. 1.0 =

magnetic cycles to which the crystal has been sub-

jected.

IV. INTERPRETATION

%e assume that only two kinds of excitations in
CoSr2.6H20 play a role in the heat-transport pro-

.5
80
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20 40 60
H (kQe)

FIG. 8. Field dependence of A, in CoBr2 6H20 with
the external field applied in the hard direction.
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inapt. The phonon system is field independent, so
we have to consider the magnon' system in order to
interpret the field dependence of our results. We
follow the linear spin-wave approach as applied by
Iwashita et al. to get expressions for the field-
dependent magnon dispersion relations. We shall
start with the simplified Hamiltonian:

=—2 g (JfS;"SJ"+J")S~Sf+JtS,'SJ')
(~j&

—g @AH (gS;+QSJ).

In this expression a (=x,y, x) denotes the direction
of the external field and i,j refers to the sublat-
tices. We have taken a two-dimensional model
with only nearest-neighbor interactions. The
parameters Ji describe the diagonal exchange in-

teractions in the ab plane (see Fig. 1). For the nu-

merical values of J ~
and g we insert

J) ———2.28 K, g"=4.8,

J", = —2. 19 K, g~=4. 8,

J) ———0.66 K, g'=2. 2,

These values have been somewhat adapted in com-
parison with Ref. 1 in order to get a fair agree-
ment with the reported critical fields and the ob-
served zero-field antiferromagnetic resonance.

Expressions for the field-dependent dispersion
relations with the external field parallel to the easy
axis (in our case x =y) are given in Ref. 9 for the
three successive phases. If the field is parallel to
the intermediate axis appropriate expressions can
be obtained by interchanging J

&
and J~& in the ex-

pressions for the spin-flop phase. Finally, with the
field parallel to the hard axis, the parameters
should be changed cyclically (Jf~J~&, Jf—+Jt,
J& ~Jt). In this latter case the value g=2.2 is
substituted.

The results of our calculations for the field in
the easy direction are shown in Fig. 9. There is a

12—

]p-
26-

24

22

20

10

I l

05 10
2

' (c) '

18

16

0 0.5 1.0
H= Hq~ =7.86kOe

I I (d) 12

10

0 0.5 1-0
2

H= H,'f =7.86kOe

kb b]2
1 I l

0 05 1.0 K
2

H =30kOe

0 0.5 1.0 1.5 2.0 2.5 3.0m'

1:H=H~=H&=55. &kOe

2:H-90k(3e

FIG. 9. Spin-wave dispersion of CoBr2 6H20 in the b direction, calculated as a function of the external field along
the preferred direction. The arrows indicate the shift of the branches when the field is raised. In the antiferromagnetic
state the branches shift from the situation of (a) (0 kOe) to (b) (HsF). After a discontinuous jump we reach the spin-
flop phase [ic), H'sF]. Going from HsF to Hp (the paramagnetic transition field) the two branches gradually change po-
sition (d). In the paramagnetic phase the dispersion can be described by only one branch. Raising the field from HJ
results in a uniform increase of the energies (e).
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discontinuity of the magnon dispersion relation at
the spin-flop critical field [Figs. 9(b) and 9(c)].
Furthermore, we note the crossing of the two
branches just above 30 kOe and the continuous in-

crease of all mode energies in the paramagnetic
state. Since the field dependence of the two
branches is rather well reflected by the behavior of
the two k=0 modes, we show the complete field
dependences of these energy gaps in Fig. 10. In-

spection of this figure shows that with an external
field of 90 kOe applied along the easy direction the
lowest-lying magnon mode has an energy of about
14 K. This implies that there will be hardly any
magnons at temperatures T« 14 K and the ther-
mal transport will be governed by phonons. From
Fig. 5 we estimate that, crudely speaking, below
2.5 K a field of 90 kOe can remove the effect of
magnons on the thermal conductivity. As already
mentioned above, this effect is negative; the mag-
nons act effectively as a scattering mechanism for
the phonons. This fact has been observed before in
low-dimensional antiferromagnetic Heisenberg sys-
tems' "and may possibly be regarded as a general
tendency in such compounds, although the experi-
mental evidence is rather restricted.

24

20

~ 16
CL

We shall now give a qualitative explanation of
the observed field dependence of k. This explana-
tion is not based on any specific scattering process
but was developed after confronting the experimen-
tal data with the field dependence of the energy

gaps. In the discussion we shall return to this
point. The basic assumption of the qualitative in-

terpretation is a direct relation between the density
of magnons and the scattering caused by them. In
that case a low-lying branch produces more
scattering than a higher one and a rising branch re-

sults in an increase of A, , while a lowering branch
does the opposite. With the aid of these rules of
thumb and Fig. 10 the experimental results of Figs.
6—8 can be qualitatively understood. The
behavior observed at the spin-flop transition and in

the paramagnetic state is reproduced very well.
The maximum of A, in the spin-flop phase (which
is also observed with the field applied in the inter-
mediate direction) coincides with the crossing of
the two branches at -33 kOe (see Fig. 10).

In the derivation of the spin-wave spectra no re-
normalization of the magnon energies has been ap-
plied and therefore our interpretation is strictly
only valid at T=O. The magnon concept itself
remains useful throughout the ordered phase, al-

though the critical fields change according to the
phase diagram (Fig. 3), which is clearly observed in
our measurements. Above the ordering tempera-
ture the magnon character of the excitations disap-
pears due to the decreasing correlation lengths.
From the experiments we see that this results in a
smoothening of the A,-vs-H curves. The increase of
A, at high fields is still present.

The interpretation of the experimental data
given above does not rely on any detailed
knowledge of the actual scattering mechanism in-

volved. Despite this simplification the qualitative
interpretation is very satisfactory, especially at the
lowest temperatures.

V. DISCUSSION

20 60

H(kae)
80

FIG. 10. Field dependence of the two k=0 excita-
tions in CoBr2.6H20 (the "energy gyps").

In this section we shall discuss possible processes
of magnon-phonon scattering. In the reported
temperature range the phonon system can be re-
garded as fully harmonic, so the most likely pro-
cesses are those involving only one phonon. The
most important processes of this kind are the one-
phonon —one-magnon resonant interaction and the
one-phonon —two-magnon scattering.

The resonant interaction has the largest effect in
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FIG. 11. Calculated field dependence of A. in
CoBr2 6H20 in the case of resonant magnon-phonon in-
teraction. The interaction energy (Ref. 12) amounts to
Dk =DV {kbb/2) with D=2 K.

the region where the phonon and magnon disper-
sion relations intersect. Because of the much
larger phonon velocities this intersection occurs at
very small wave numbers. The result is a repulsion
of the dispersion branches and the generation of
magneto-elastic modes. If we restrict ourselves to
the phonons, this repulsion in fact creates gaps in
the dispersion branches around the energies of the
two k=O magnon modes. We performed some nu-

merical calculations on the effect of the resonant
interaction on the thermal conductivity, using the
same method as Laurence et al. ' and assuming
that heat is only transported by phonons. Typical
results are plotted in Fig. 11. Variation of the in-

teraction parameter, the phonon velocity, or the
temperature has a minor effect on the characteris-
tics displayed in this figure. The increase of A, in
the paramagnetic phase and the maximum in the
spin-flop (SF) phase are reproduced correctly. At
the critical fields, however, the resonant interaction
yields a behavior which essentially differs from the
experiments. In contrast to the results plotted in
Figs. 6—8 the calculations show distinct peaks in

RHINO at both Hsp and H~. This fact leads us to
the conclusion that resonant magnon —phonon in-

teraction cannot be the only process involved.
Most likely the two-magnon —one-phonon scatter-

ing plays an important role. The effect of this

process on A, depends very much on the details of
the spin-wave spectrum. Field-dependent thermal
conductivities, governed by this three-boson pro-
cess, have been calculated by Ono' and Dixon'
for the compounds GdVO4 and MnC12 4H20,
respectively. Although the spin-wave spectra of
these rather isotropic three-dimensional antifer-
romagnetic Heisenberg systems are quite different
from our system, some results seem to be rather
general. Especially, the decrease of A. at the spin-
flop critical field and the increase in the paramag-
netic phase are reproduced. Whether the two-
magnon —one-phonon process also reveals the oth-
er observed features of A, vs H can only be con-
firmed by a detailed numerical computation, which
has not yet been performed. Additional indications
about the possible importance of the two-
magnon —one-phonon process can be gathered
from the temperature dependence of the zero-field
data. Dixon and co-workers' ' ' observed a slight
kink in the A,-vs-T curve at about 0.8 K, which
they attributed to this process. In our case, where
we observed some additional scattering around 2.5
K, an analogous plausible explanation can be
given. The small k magnons of the lower branch
[Fig. 9(a)], which are very numerous, can be scat-
tered by a phonon into a magnon of the upper
branch. The phonon involved has an energy of
about 9 K. If we assume that the largest contribu-
tion to A, results from phonons with an energy of
3.8 kT {the maximum of the three-dimensional De-
bije weight function), it is obvious that at 2.5 K
the heat transport by phonons will be very much
suppressed.

As stated above, all the observed characteristics
of A,(H) and A,(T) can be understood in terms of
the two-magnon —one-phonon scattering process.
This, however, does not exclude other possible
scattering processes. Actually, Rives and Bhatia,
who observed a quite similar temperature depen-
dence of the zero-field conductivity in
CoC12 6H20, attributed this behavior to a
magneto-elastic mode contribution at temperatures
below 1 K in addition to critical phonon scattering
above T~. One should note, however, that
resonant interaction alone cannot account for the
observed field dependence. Moreover, critical fluc-
tuations are expected to diverge at Tz. The
smooth behavior of A,o(T) around T~ therefore
seems to suggest other dominating effects. On the
other hand, it has been shown that magnons can
exist to some extent above T~ in low-dimensional
compounds. That is why the two-magnon —one-
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phonon scattering possibly can be used to explain
the enhanced scattering observed below as well as
above Tz. These arguments are also applicable to
the results of MnC12 4HzO. ' ' ' The fact that in
this case no magnetic effect has been observed in
A,(T) above Ttt may reflect the true three-
dimensional character of this compound.

The scattering activity of the magnons in

MnC12 4HzO appears to be much smaller than in
Coar2 6H20, as can be deduced from the respec-
tive high-field data. This may be caused by the re-
latively large magnon-phonon coupling in the title
compound, which was already anticipated in the
Introduction. Crystal-field effects in the Co +

compound, which are not present in Mn + sys-
tems, probably are connected with this
phenomenon.

In conclusion, we can say that the two-

magnon —one-phonon scattering process very likely
may explain most of the observed characteristics.
Detailed calculations according to Dixon'"" may
confirm this conjecture. Although the qualitative
explanation given in the preceding section does not
reveal the nature of the scattering process„ it ap-
pears to be very useful to obtain some insight in
the field-dependent behavior of the thermal con-
ductivity of spin-flop systems, even with low
dimensionality.
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