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The self-consistent-phonon (SCP) formalisms have proved valuable in calculating the
anharmonic contributions to lattice-dynamic properties. Replacing the sum over frequen-
cies in the SCP formalism by appropriate functions of the average phonon frequencies

yields simple equations of state for solids. This method is called the self-consistent-

average-phonon (SCAP) formalism. With the use of empirical Lennard-Jones potentials
for neon, argon, krypton, and xenon, the specific heat, lattice parameter, bulk modulus,
thermal expansion coefficient, and pressure have been calculated over a range of volumes

and temperatures. The SCAP results are compared with the SCP, the improved self-

consistent-phonon (ISCP), and experiment for Ar. The ISCP and SCAP are then com-

pared with experiment for Ne, Kr, and Xe. With the use of an empirical Lindemann

constant at zero pressure, curves for the pressure along the melting line of solid Ar, Kr,
Xe, and Ne are calculated. The agreement between the SCAP results and experiment
over a wide temperature range varies from good (better than 10%%uo) to excellent (better
than l%%uo), and establishes the value of using the SCAP formalism to calculate the ther-

modynamic properties of solids having anharmonic interatomic forces.

I. INTRODUCTION

The self-consistent-phonon (SCP) formalism' has
proved valuable in calculating the anharmonic con-
tributions to the detailed lattice-dynamic properties
of solids (e.g., the phonon dispersion relations). It
is, however, a procedure which requires extensive
numerical calculations of the characteristic fre-
quencies for a given set of volume and temperature
conditions. Calculating properties such as the
equation of state and other thermodynamic func-
tions, the results are obtained in numerical form
after summing the contribution from each phonon
mode. This numerical procedure must be repeated
for each new set of conditions.

In calculations of the thermodynamic properties
many of the details of the phonon dispersion rela-
tions are averaged out in the'summation process.
This suggests that a self-consistent theory formu-

lated in terms of the average properties might be
useful with a considerable reduction in numerical
complexity. In this approach, the sums of the
various functions of the phonon frequencies are re-
placed by appropriate average functions of average
phonon frequencies. Welch, Dienes, and Paskin
have used a classical version of the self-consistent
cell model (SCCM) to obtain approximate analytic
forms of the equation of state ' for solids. The
SCCM has proved to be accurate at high tempera-
tures where the classical model should be valid.
With additional (non-self-consistent) quantum
modifications, it has been used over the entire tem-
perature range. Bemuse of the success of the
quantum-modified SCCM equation of state, it was
of interest to investigate the SCP formalism to see
if replacing the sums over phonon frequencies by
appropriate functions of the average phonon fre-
quency, would also yield accurate
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but simple equations of state for solids. We shall

refer to this method as the self-consistent-average-
phonon (SCAP) formalism. It has the advantage
over the SCCM of being a self-consistent quantum
calculation and is thus applicable at all tempera-
tures. It has the advantage over the SCP formal-
ism of being simple to use (and analyze) to calcu-
late the thermodynamic properties.

In an earlier paper (I) the equation of state and
related thermodynamic equations were developed
using the SCAP formalism. The SCAP and SCP
results for Ne and Ar were compared at a low and
high temperature. A Lennard-Jones potential was
used for the interatomic potential for near neigh-
bors and good agreement was found for the L. C.
N. Gruneisen parameter and the bulk modulus at
these temperatures. These results encouraged us to
test the SCAP formalism against the SCP formal-
ism and against experiment for Ne, Ar, Kr, and
Xe over the entire temperature range at zero pres-
sure. Using the Lindemann relationship between
the mean-square displacement and the near-
neighbor distance at melting, pressure versus
melting-temperature curves were generated for Ar,
Kr, Ne, and Xe and compared with experiment.

the right-hand side of Eq. (1) denote a thermal
average

(2)

where

g= —,PR(co )'i and P=(ksT)

In the SCAP formalism, the Helmholtz free energy
is given by

F= —ln(2 sinhg) — (co ) ' cothg
p 4

(4)

where g= —,Pfi(co ) '~ and the expression for S„ is
listed in the Appendix. The SCAP expressions for
pressure, bulk modulus, internal energy, and specif-
ic heat are obtained by taking appropriate deriva-
tives of this equation.

The pressure P is obtained by differentiating Eq.
(4) with respect to volume at constant temperature:

II. SELF-CONSISTENT-AVERAGE-
PHONON FORMALISM

P=- dF
av ~=

dSp (u z) dS,
6V ~R1 6 dR

R1

In the earlier paper (I), the detailed derivation
of the equation of state is presented. Only neces-
sary results are outlined here. The two fundamen-
tal self-consistency equations are Eqs. (1) and (2):

(vv )= (gV v(Ry+Vv)),
I

where (co ) is the average of the square of the fre-
quency, U (Rp~) is the interatomic potential between
atoms separated a distance Roi, the index l denotes
atoms neighboring a given origin atom (denoted
zero), u = ui —up is the relative displacement of
atoms l and 0 from their average equilibrium posi-
tions, and M is the atomic mass. The brackets on

(u'&'R
72 dR1

(5)

8PBg=——V
av ~'

or

where R
&

is the first-neighbor separation; explicit
expressions for the lattice-sum derivatives
R ~dS, /dR ~ are listed in the Appendix.

The isothermal bulk modulus Bz is obtained by
differentiating the pressure, Eq. (5), with respect to
volume:

~d Sp dSp (u2) zd Sg dS2
9VBT ———R1 2

—2R1
dR

+ R1 2
—2R1

dR1 12 jR 1 dR1

(u')' gdzS4 dS4 1 g(u )
R1

v

dS2 (u 2) dS4

d, 6 d
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where the lattice-sum derivatives R &d S„/dR
&

are listed in the Appendix. The derivative R ~a(u )/aR ~ ~ p
is essentially of order (u ) and is obtained from Eqs. (1) and (2) as follows. From Eq. (2) we find

a& '&

BR) p BR(

while differentiating Eq. (1) consistently with Eq. (8) yields

dS2 (u ) dS4 (u ) dS6

a(~2) ' dR ) 18 dR ) 108 dR )

aS, W(u')S,
1+

18M 108M

where A is a function essentially of order (u ):

1 3A'A= (u )+ (coth g —1)
2(~z) 2M

with g—:—,PA(a) )'
An average of the Gruneisen parameter ykx= —51ncok~/aln V

~ p is immediately obtained by combining
Eqs. (1) and (9):

1 aln(co'& 1 a(co')
2 aln V p 6(~2) aR,

(8)

(9)

(10)

1

6 (u') (u')'
Sg+ S4+ S6

dS2 (u ) dS4 (u ) dS6

~S, ~S,(u')
1+

18M 108M

This expression was obtained by combining expres-
sion for (co ) and R ~a(co ) /aR ~ ~ p which are
each correct to order (u ) (recognizing that A is
essentially of order (u )).

The internal energy per atom U and the
specific-heat capacity at constant volume are ob-
tained by differentiating the free energy with
respect to p,

U=F+P ar

where we have retained the term of order (u 2)
y'eld Cv to essentially order (u ) . Cv is found
by further differentiation:

1 BU"=-T'ap „
M &,

&

a(~')
T 4 ap

or, from Eqs. (1) and (4): M (,)
a(u')

ap V

(14)

U= —,'M(u')(co')+ + (u')
2 12

S4 2 2 S6 2 3+1&)+5 (), (13)
The derivatives of (co ) and (u ) with respect to
p are obtained from Eqs. (1) and (2):

a(co'&

v

(15)



1300 A. PASKIN et al.

and

B(co')

v 1—

3A)2 S4
(u ) (1—coth g)2

18 108

(u2) [g(l —coth g) —cothg]2M'(~')'"

(16)

where g = , (a)')—'~'fiP.

Finally, the linear coefficient of thermal expansion at zero pressure a is obtained by recognizing that the
zero-pressure near-neighbor distance is obtained by setting the pressure, Eq. (5), to zero and solving for R &.

Thus differentiating Eq. (5) with respect to temperature yields

JR'
R) dT

1 p g(u ) dS2 (u ) dS& (u2) dS6

6 T BP dR, 6 dR, 72 dR,

X
dSo d So dS4 d S4 (u ) dS6 d S6 (u )
dR] JR dR ) dR 6 dR& dR 72

g(u ) dS2 (u ) dS4

6 BR,
p dR, 6 dR,

Ri + Rj (17)

where B(u ) /BR
& ~ ~ and 8(u ) /BP

~ v are ob-
tained from Eqs. (8), (9), (15), and (16), and (u 2),
(co ), as well as the various lattice coefficients, are
evaluated at the appropriate zero-pressure volume.

In numerical calculations, three modifications of
the SCAP formalism were used: SCAP(1) in
which terms to order (u ) were retained in the
self-consistencv and thermodvnamic eauations:
SCAP(2) where terms to order (u ) were kept in
all equations; and SCAP(3) where terms to order
( u ) were retained in the self-consistency equa-
tions and terms to order (u ) in the thermo-
dynamic equations. The "hybrid" treatment was
found successful in the SCCM calculations and
was found to give the best agreement in the present
calculations.
rare-gas solids have been found to be well
described by the Lennard-Jones potential, and

III. NUMERICAL RESULTS

In order to compare theory with experiment, an

appropriate interatomic potential is needed. The

rare-gas solids have been found to be well
described by the Lennard-Jones potential, and
further, this form has been commonly used in
theoretical formalisms. Thus, the Lennard-Jones
potential may be used to compare formalisms as
well as to compare with rare-gas solid data. While
there are many other potentials which may be used
for more detailed comparisons with rare-gas solids
they do not seem justified at this time in the
present comparisons. The potential has been used
in the form

12 ' 6
Rp Rp—2
R R

(18)

where e and Rp are parameters to be determined
by an empirical fit. The potential was here extend-
ed to second neighbors and thus e and Rp will
differ somewhat from either the near-neighbor or
infinite-neighbor treatments. Rp was chosen to
match the experimental lattice parameter at T=0
K as is commonly done. e was chosen so that the
classical energy was equal to the experimental
binding energy. This choice of e was found to also
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TABLE I. Values of e and Ro used in the Lennard-Jones potential. The Lindemann
parameter L =(u~)'~'/R&.

Ne Xe

t.' (10 ' ergs)
Rp (Al
I.
a (kbar)

67.735
3.0536
0.091
1.2

212.007
3.7410
0.081
2.11

290.632
3.9994
0.081
2.5

409.149
4.3553
0.081
3.0

give a good rnatch to the low-temperature bulk
modulus. The use of this e in the SCAP formal-
isms because of zero-point energy contributions
gave energy at T=O K somewhat different from
the observed binding energies. Thus e might be
thought of as a parameter chosen to match the
bulk modulus, although the procedure was more
circuitous, as indicated.

It should be noted that in the SCAP(2) and
SCAP(3) formalisms, terms to order (u ) were
retained in both the numerator and denominator in
the various expressions involving (u ). The ther-
modynamic properties I', P, BT, o;, Cz, Cz, U, and

y were calculated for the SCAP formalisms on the
CDC-7600 computer. An iterative algorithm was

used which obtained (u ) and (co ) self-
consistently to one part in 10000 and then inserted
into the appropriate thermodynamic equations. A
complete set of this data over a wide range of
volumes and temperature required several minutes
of computing time.

In Table I, a list is given of the empirical
parameters used in subsequent calculations. The
values of Ro are chosen to fit the T =0 K lattice
parameter and the value of e is chosen to fit the
classical binding energy at T =0 K. In Figs. 1—4,
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FIG. 1. The zero-pressure isothermal bulk modulus
in kbar as a function of temperature for Ar. The SCP,
ISCP, SCAP(1), SCAP(2), and SCAP(3) theoretical
curves are shown.

FIG. 2. The zero-pressure volume expansivity in
10 deg ' as a function of temperature for Ar. The
SCP, ISCP, SCAP{1), SCAP{2), and SCAP(3) theoretical
curves are shown.
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FIG. 3. The zero-pressure specific heat Cq in units
of k~ as a function of temperature for Ar. The SCP,
ISCP, SCAP(1), SCAP(2), and SCAP(3) theoretical
curves are shown.
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FIG. 4. A comparison of zero-pressure nearest-
neighbor-distance data for Ar with theory. The experi-
mental data are from Ref. 8.

the various self-consistent formalisms are com-
pared for Ar. That is in each treatment, e and

Ro have been chosen to fit Ar, and therefore com-
parisons between the various formalisms can be
made. The SCP (Ref. 5) and ISCP (Refs. 6 and 7)
treatments are for interatomic potentials extending
to all neighbors, and the various SCAP treatments
restrict the interactions to first and second neigh-
bors. While this changes the values of e and Ro,
the results are not significantly affected by these
differences.

If ISCP, as it will subsequently be seen is the
better fit to experiment at the highest temperature,
is used as the "standard" curve to be fit by other
calculations, it is clear in Figs. 1 —3 for Ar that
SCAP(3) is the best fit of the SCP and SCAP(l)
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and SCAP(2) formalisms. In the subsequent com-
parisons of theory and experiment, the SCAP(3)
and ISCP calculations will mainly be given. It
might further be noted that from low to medium
temperatures the SCP and SCAP formalisms give
about the same results whereas the ISCP deviates
from these treatments in the medium-temperature
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FIG. 6. A comparison of zero-pressure volume-

expansivity data for Ar with theory. The experimental
data are from Ref. 8.
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FIG. 5. A comparison of zero-pressure isothermal
bulk-modulus data for Ar with theory. The experimen-
tal data are from Ref. 8.
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FIG. 7. A comparison of zero-pressure specific heat
C& data for Ar with theory. The experimental data are
from Ref. 9.

FIG. 9. The pressure along the melting curve for Ar.
The pressure plus 2.11 kbar is plotted versus the melting
temperature. The experimental data are from Refs. 11
and 12.

range. Thus, the ISCP high-temperature results
are obtained at the cost of some low-to-medium
temperature adjustments. There are possible com-
plications in the analysis of the high-temperature
results arising from vacancy formation. These ef-
fects will be discussed in more detail in the discus-
sion of Kr.

In Figs. 4—9 for Ar, the experimental near-
neighbor distance is in excellent agreement with
SCAP(3) and in notably poor agreement with ei-
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FIG. 8. A comparison of zero-pressure specific heat
Cp data for Ar with theory. The experimental data are
from Ref. 10.

ther ISCP or SCP calculations while the bulk
modulus is in agreement with SCAP(3) in the low-

and medium-temperature range but about 15% off
near the melting point. Conversely, the ISCP is
about 10%%uo off in the medium-temperature region
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FIG. 10. A comparison of the zero-pressure nearest-
neighbor distance for Kr with theory. The experimental
data are from Ref. 13.
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FIG. 13. A comparison of the zero-pressure specific
heat Cv for Kr with theory. The experimental data are
from Refs. 9 and 13.
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FIG. 11. A comparison of the zero-pressure isother-
mal bulk modulus for Kr with theory. The experimen-
tal data are from Ref. 14.

but in agreement at the melting point. Similar re-

gimes of applicability occur for the volume expan-
sivity. In the case of the specific heat, the ISCP
results are in better agreement with experiment
over the entire temperature range. Thus, it is clear
that none of the formulations is in better agree-
ment with experiment than the others for all ther-
mal properties over the entire temperature range.
It would appear that all of the formalisms exam-
ined here are approximations to the true equation
of state. Thus, the choice of any formalism must
be guided by the temperature range that is desired,
as well as the particular property of interest.

Similar comparisons are made for Kr in Figs.
10—15. Again, as seen in Fig. 10, the lattice
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FIG. 12. A comparison of the zero-pressure volume
expansivity for Kr with theory. The experimental data
are from Ref. 13.

FIG. 14. A comparison of the zero-pressure specific
heat Cp for Kr with theory. The experimental data are
from Ref. 9.
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FIG. 17. A comparison of the zero-pressure isother-
mal bulk modulus for Xe with theory. The experimen-
tal data are from Ref. 16.

FIG. 15. A comparison of the pressure along the
melting curve for Kr with theory. The pressure plus 2.5
kbar is plotted verus the melting temperature. The ex-
perimental data are from Ref. 15.
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FIG. 16. A comparison of the zero-pressure nearest-
neighbor distance for Xe with theory. The experimental
data are from Ref. 16.
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FIG. 18. A comparison of the zero-pressure specific
heat C~ for Xe with theory. The experimental data are
from Refs. 16 and 17.

parameter is better described by the SCAP(3)
formalism, whereas for the bulk modulus the ISCP
does better in the vicinity of the melting point
whi1e SCAP(3) does better at medium tempera-
tures. Similar behavior is found for the volume
expansivity. While there are only small differences
between SCAP(3) and the ISCP results for Cv, the
Cz ISCP results are in better agreement in the
medium-to-high temperature regions.

In the region near melting, from 80 to 110 K, a
comparison of the volume expansivity obtained by
bulk measurements and x-ray lattice-parameter
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FIG. 19. A comparison of the zero-pressure heat C~
for Xe with theory. The experimental data are from
Refs. 16 and 17.

measurements' yields direct evidence for vacancy
formation. Thus, for Kr (and most likely for all

the rare-gas solids by corresponding states argu-
ments), ' all measurements in the high-temperature
regime are on nonperfect lattices with vacancies
present. While data such as the expansivity data
based on x-ray data of Fig. 12 have the explicit
volume effects of vacancies subtracted, it it not ob-
vious how to treat implicit anharmonic effects aris-

ing from the vacancies. ' Thus, the deviations of
experiment above 80 K may arise from a failure of
the SCAP formalism to treat accurately the anhar-
monicity of a perfect lattice or it may also arise
from the anharmonic contributions arising from
the defects and their effects on the lattice modes.
As this is outside the scope of the present paper, '

the deviations of the SCAP from thermodynamic
data near the melting point must be treated with
some reservations.

The same general characteristics are again ob-
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served in Figs. 16—21 for Xe. Neon has been

saved for last as it is a rare-gas solid that, in gen-

eral, has been found to be described more poorly

by the self-consistent phonon treatments than the
the other (less quantum) rare-gas solids, as seen in
Figs. 22 —26. Further, as good bulk modulus data
do not exist, e is not well defined for the potential
used in the SCAP formalism and thus comparison
with experiment has more uncertainty. In Fig. 22
the near-neighbor distance is compared with the
SCAP results. This is the poorest match to experi-
ment of all of the rare-gas solids. The SCP results
are included; clearly they have not been matched to
the low-temperature data. If they had been, the re-
sults would not differ much from the SCAP re-
sults and would likewise not match the rather large
change in near-neighbor distance at high tempera-
tures. The bulk modulus data are not very com-
plete and hence comparisons cannot be made over
most of the temperature range. The specific-heat
calculations of Cv and Cz are in poor agreement
with experiment over most of the temperature
range while the calculated volume expansivity
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FIG. 20. A comparison of the zero-pressure volume
expansivity for Xe with theory. The experimental data
are from Ref. 16.
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FIG. 21. The pressure along the melting curve for
Xe. The pressure plus 3 kbar is plotted versus the melt-
ing temperature.
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FIG. 22. A comparison of the zero-pressure nearest-
neighbor distance for Ne with theory. The experimental
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FIG. 25. A comparison of the zero-pressure specific
heat Cp for Ne with theory. The experimental data are
from Ref. 17.

seems systematically shifted from experiment in a
similar way. Clearly Ne is not as accurately
described by the self-consistent phonon treatments
as are Ar, Kr, and Xe. While this is not surpris-
ing, it does indicate that the SCAP treatments do
not provide an accurate description of the "very
quantum" solids with light masses, such as Ne and
He.

The pressure along the melting line is a useful
relationship for testing the equation of state. Ex-
cellent results were obtained in Figs. 9, 15, and 27
by assuming that the root-mean-square displace-
ment divided by the near-neighbor distance (the
Lindemann constant) is a constant, independent of
pressure at the melting point. The appropriate
value is chosen for each element from the zero-
pressure value at the known melting temperature
and used for extrapolation to all pressures. It was
found that a Lindemann parameter of L =0.081
matches all the rare-gas solids (except Ne for
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FIG. 26. A comparison of the zero-pressure volume

expansivity for Ne with theory. The experimental data
are from Ref. 15.

FIG. 27. The pressure along the melting curve for
Ne. The pressure plus 1.2 kbar is plotted versus the
melting temperature. The experimental data are from
Ref. 15.

which I. =0.091) (Figs. 9 and 15). In the cases of
Ar and Kr, the theoretical curve is in excellent
agreement with experiment. For Ne, Fig. 27, the
agreement is not as good at the highest tempera-
tures, as it is for Ar and Kr. A curve for Xe is
also given, even though data do not exist at
present. It is also of interest to see how well the
Simon equation describes experiment' and theory.
The Simon equation may be written

(P +a) =a ( T/Tp)', (19)

where a and c are adjustable parameters and To is
the temperature. of the triple point. To compare
with the Simon equation, our results have been
plotted in the form of (8+a) vs T, where a was

chosen to have the data give an approximate linear
dependence on the melting temperature on a log
plot. It can be seen that using the values of a in
the table, approximate linearity is observed over
the range of pressure data that is now available.
At higher pressures deviations from linearity are
predicted by the SCAP calculations.

In the case of Kr, an overall better fit is ob-
tained between theory and experiment using
a =2.5 kbar rather than a =1.6, as suggested by
Crawford and Daniels. While the choice of a does
not affect the high-pressure data, it does shift the
low-pressure data considerably. It would be of.in-
terest both to extend the pressure range as well as
have pressure data taken for Xe. It is always a
more convincing demonstration of the power of a

theory to make predictions that are subsequently
confirmed by experiments. On the basis of the Kr
and Ar results, experiment should confirm the
theoretical curve in Fig. 21.

IV. CONCLUSIONS

It is apparent that for all but the more quantum-
like solids, the self-consistent average phonon for-
malism is an accurate means of calculating the
anharmonic properties of solids in the low-to-
rnediurn temperature range. While it is a reason-
able approximation even up to the melting point,
there is no question that the improved self-
consistent phonon approximation is necessary to
obtain accurate results in the temperature range
near the melting point (with some sacrifice at
lower temperatures). If an analytic formalism is
desired near the melting temperature, the self-
consistent cell model also does an excellent job.
The formalisms which one chooses for average
thermal properties is at the moment a matter of
which temperature range is of interest, as well as
which formalism proves convenient to the user.
Having worked with the SCAP and SCCM formal-
isms, we find them easy to apply to new solids.
Others familiar with the SCP and ISCP formal-
isms, having established the computational
machinery, may find these simpler to use. The
purpose of these calculations was to demonstrate
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the relative accuracy of the SCAF formalisms, and
this is clearly seen in the extensive curves for the
rare-gas solids. It is hoped that this procedure will

be further tested for other solids for which pair po-
tentials exist, much as we have applied the self-
consistent cell model to copper and iron. The
SCCM and SCAF formalisms seem to be particu-
larly useful for obtaining the pressure along the
melting curve.

Note added in proof. The recent data of P. R.
Granfors, A. T. Macrander, and R. O. Simmons
[Phys. Rev B2.4, 4953 (1981)]on crystalline xenon
for the compressibility and thermal expansion re-
move some of the high-temperature discrepancies
between SCAP(3) and experiment. The data now
lie between ISCP and SCAP(3) at the highest tem-
peratures.
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APPENDIX EXPLICIT EXPRESSIONS FOR
LATTICE SUMS OF DERIVATIVES OF

THE INTERATOMIC POTENTIAL
WHICH APPEAR IN THE SCAP EQUATIONS

In the following expressions the sums are over
neighbors, labeled l, to a given origin atom. The
derivatives of the potential are with respect to its
argument and are evaluated at the mean inter-
neighbor spacing.

For n =0,2,4, 6:

d"U d'"-"S„—:g(V )"~ v(RI)=g
I dR" R dR(" 1)

I

(A 1)

dSn d "+ v d U n d" U+n'dR -- dR"" d' Rd -",
(A2)

2d S„~d'"+ 'U d'"+ "U

dR (yg +P) dR (g + ] )
1

2
d"v 2n d" "v

(A3)
dRn R dR( —1)
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