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Anion-cation mirror symmetry in alkali halide ion dynamics
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In an earlier communication by Foldy and Witten, indications were given that "mirror"

pairs of alkali halide crystals in which the positive and negative ions of one are replaced,

respectively, in the other by the negative and positive ions having the iden. ical isoelec-

tronic structure and nearly the same mass (NaC1-KF, NaBr-RbF, NaI-CsF, and KBr-

RbC1) showed very similar crystal phonon properties. The present paper explores the de-

gree to which a more general mirror-symmetry principle, namely that the ion-dynamic

properties of mirror alkali halides in both the crystal and melt state are very similar, can

be verified by available data. For the crystalline state of the mirror pairs, the dispersion

curves along certain symmetry directions and the data available over an extended range of
temperatures on specific heats are directly compared, and the infrared reflection data on

the RbC1 and KBr pair are compared with each other and with that for the pair RbBr

and KC1 ~ In addition more than a score of other properties, ion-dynamic and electronic,

are analyzed for symmetry by a number of methods specifically developed to give an ob-

jective but quantitative measure of this symmetry. The conclusion reached is that indeed

ion-dynamic properties of both crystal and melt forms of the alkali halides show quite a

high degree of mirror symmetry which is broken in part by the mass differences of homo-

logous ions and in part by the interposition of electronic excitation effects (which do not

show this symmetry) into some of the ion-dynamic properties at the higher frequencies.

The results also lend credence to the extended symmetry hypothesis proposed by Foldy

and Witten to explain certain phonon near degeneracies found in the isobaric crystals but

not predicted by the space-group symmetry of these crystals. If mirror symmetry is es-

tablished it implies near equalities of various other properties of mirror pairs, e.g., viscosi-

ty, heat conductivity, thermal diffusivity, self-diffusion coefficients, and x-ray diffraction

patterns of melts all as functions of temperature, and corresponding applicable properties

of crystals.

I. INTRODUCTION

In a recent communication Foldy and Witten'
called attention to a pervasive pattern of near de-

generacies of Brillouin-zone (BZ) boundary pho-
nons in dispersion data on the isobaric alkali
halides: Nap, KC1, RbBr, and CsI. It was also in-

dicated there that this pattern could be understood
in terms of a weakly broken "extended" space-
group symmetry for these crystals, namely the
space-group symmetry of the lattice obtained by
regarding the positive and negative ions of these
crystals as identical. Thus the extended symmetry
of the NaC1 structure crystals is that of a simple
cubic lattice, while that of CsC1 structure crystals
is that of the body-centered cubic (bcc) lattice. In
turn, this symmetry could be understood as the re-

suit of a near invariance of the dynamical equa-
tions or the dynamical matrix under Euclidean
transformations which exchange anions and cations
in these isobaric crystals. It was further noted by
Segall that certain near degeneracies of modes not
on the BZ boundary could be similarly understood.
The evidence for extended symmetry and its possi-
ble applications will be presented in detail in
another paper.

In Ref. 1 it was also suggested that a natural
generalization of the hypothesis underlying extend-
ed symmetry could be formulated which relates
phonon properties of one (nonisobaric) alkali halide
crystal to those of another, its "mirror, " obtained
from it by replacing anions with their homologous
isobaric cations and cations with their homologous
isobaric anions, thus giving rise to the mirror
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pairs: NaC1-KF, NaBr-RbF, NaI-CsF, and
RbC1-KBr. Some experimental and other evidence
was quoted in support of the validity of this gen-
eralization, particularly for the pair RbC1-KBr.
Our principal concern in this paper will be an at-
tempt to study and assess the experimental evi-

dence for this "mirror" symmetry in alkali halide
crystals, its further extension to alkali halide melts
and possibly to mixtures. We shall also remark on
the practical and theoretical usefulness of the con™
clusions drawn.

Our present judgment is that there exists sub-
stantial evidence for a significant correlation be-
tween the properties of these mirror pairs which is
particularly strong for the pair RbC1-KBr and that
this correlation can possibly be used effectively for
simplification in the theory of the phonon proper-
ties of these crystals. While the fact that CsC1 and
CsBr crystallize in the CsC1 structure precludes a
study of the correlation of their crystalline proper-
ties with their mirrors KI and RbI which crystal-
lize in the NaC1 structure, when we examine the
properties of the melts of these and the other alkali
halide salts, we continue to find substantial evi-

dence of this mirror-symmetry property. The
problem of formulating completely objective and
fairly quantitative appraisals of these symmetries is
not a trivial one, and to our knowledge has not
been addressed. In the course of this work we
have set up a few quantitative measures which are
of interest in themselves. We shall present enough
detail about the basis of our conclusions to allow

the reader to make his own judgment or to propose
or test alternative methods of analysis. The final
test of the usefulness of what symmetry exists lies
in its theoretical and practical usefulness; hence we
will make some "target" predictions to allow fu-
ture experiments to render the last judgment.

In view of some objections and misunderstand-

ings with respect to the thesis developed in Ref. 1,
it may be useful to discuss and thus hopefully clar-
ify some of the critical issues involved.

(a) The basis for understanding the near degen-

eracies in the isobaric alkali halides presented in
Ref. 1 is probably common knowledge for many
workers in the field of lattice vibrations —a similar
basis for understanding corresponding patterns of
near degeneracies has been previously recognized in
GaAs (Ref. 4) and in beta brass. What is surpris-

ing is that apparently this pattern of degeneracies
in the alkali halides was not recognized in the ex-

perimental dispersion relations for the alkali halide
crystals obtained from inelastic neutron scattering

data during the two decades since 1960, particular-
ly since the "rigid-ion" model of Kellerman (with
only nearest-neighbor short-range interactions)
predicts an exact extended symmetry of the type
postulated in Ref. 1 if only the ionic mass differ-
ences are neglected. We may conjecture that the
oversight was owing, at least in part, to the
discovery of the inadequacy of the rigid-ion model
in failing to explain not only the static dielectric
behavior of these crystals, but also the early disper-
sion relation data obtained from neutron scattering.
This failure could be attributed to the differences
in size, polarizability, and deformability of isobaric
anions and cations. The development of various
models ' which incorporate these last features into
the description of the response of the electronic
structure of these crystals to nuclear displacements,
such as the polarization dipole models, deforma-
tion dipole models, and a variety of shell models,
served to circumvent these problems. In these
models the extended symmetry is now broken by
potential-energy differences as well as mass differ-
ences. In consequence, the predicted splittings of
these degeneracies are frequently larger than those
observed. Nevertheless, even in models which do
not use measured dispersion relation data to fix
parameters in predicting dispersion curves, the out-
lines of the pattern of extended-symmetry degen-
eracies is quite clear even though the predicted
splittings may be somewhat exaggerated over those
observed. The natural conclusion to be drawn is
that this data does indeed suggest that either iso-
baric anions and cations in the condensed environ-
ments of isobaric alkali-halide crystals behave
more similarly than what one had come to expect,
or that a variety of large contributions to the de-

generacy splittings connive to cancel to a substan-
tial degree.

(b) While the evidence of near degeneracies in
isobaric alkali halide crystals speaks to the ques-
tion of the similarity of isobaric anions and cations
in the same crystal structure, evidence for mirror
symmetry would speak directly to the similarity of
the interactions between quite different but homo-
logous ions in mirror environments. While either
extended or mirror symmetry could be valid
without a corresponding validity of the other, the
two types are naturally complementary. They can
boih be encompassed in a single symmetry hy-
pothesis, namely that the ion dynamics of alkali
halide crystals (and melts) is approximately invari-

ant to the replacement of all ions by their isobaric
homologues. The fact that of the sixteen alkali
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halides three crystallize in the CsCl structure rath-
er than the NaC1 structure limits a test of crystal
mirror symmetry to the four pairs listed earlier,
but it is also possible to explore the persistence of
the mirror symmetry into the region of the molten
state where this limitation does not apply, and pos-
sibly further into the domain of crystalline or mol-
ten salt mixtures. This carries one considerably
further than mirror symmetry in crystals alone,
since one now becomes concerned with the poten-
tial energy of configurations of ions which cannot
be regarded as describable within a harmonic ap-
proximation such as is employed in crystals. As
we shall see, there is indeed evidence that proper-
ties which depend on ionic dynamics in the molten
state also display a substantial degree of mirror
symmetry. We are, so far, unaware of any previ-
ous suggestion as to the possibility of, or an
analysis of, evidence for mirror symmetry in either
the crystals or melts with one exception. '

(c) As we shall see, evaluation of the precise de-

gree and the domain of validity of either extended
or mirror symmetry in alkali halides rests in large
measure on the availability of both additional data
and more accurate data. While we hope that what
we present will induce further experiments of the
necessary type, we are also well aware that this
must be contingent on our success in showing that
the concepts in question are practically helpful in
terms of providing a coherent picture of phonon-
related properties of these condensed materials.
We will show that extended symmetries can yield
more efficient parametrizations of properties of
isobaric alkali halides and suggest pathways to a
simpler theoretical description of such of their
properties which are approachable in an adiabatic
approximation for the response of the electronic
structures to nuclear motions. We believe that one
of the most important consequences of establishing
the reality of mirror symmetry lies in bolstering
the hypothesis underlying extended symmetry.

We now briefly summarize the contents of the
remainder of this paper. We first discuss the
dispersion curves for the four mirror crystal pairs
on the symmetry lines 5 and A. Originally we in-
tended to include the somewhat incomplete data on
the line X as well, but decided that since it only
confirmed what is already apparent on the lines 6
and A, these could be omitted. We follow with
discussions of specific-heat data for those of the al-
kali halides crystals where adequate information is
available. In addition we remark on some infrared
reflectance data for the mirror pair-RbC1 and KBr.

We follow with a discussion of particular ion-
dynamic properties of alkali halide crystals and
melts and present an analysis of the degree of sym-
metry of these properties for mirror pairs. Includ-
ed is a discussion of the logic behind the choice of
the particular measures of symmetries which were

employed, as well as attempts to assess the particu-
lar significance of the values obtained and the con-
sistency between different such measures.

We had also intended to follow with an analysis
of the Rosenstock sum rule" for the dispersion
data on the alkali halides since this serves as a
more sensitive measure of the importance and
similarity of next-nearest-neighbor interactions
which are crucial to having a clear understanding
of mirror symmetry as well as extended symmetry.
However, since the pattern of the sum rule values
was more complicated than expected, we have de-
cided to postpone this aspect of the problem to an
addendum to this paper.

II. EVIDENCE FOR MIRROR SYMMETRY

The first and perhaps most important properties
that we consider are the phonon dispersion rela-
tions. These are shown in Figs. 1 —4 for co(q)
along the (100) and (111) symmetry directions of
the fcc Brillouin zone. The "curves" are simply
straight line segments connecting data points ob-
tained from inelastic neutron scattering measure-
ments. Particularly striking is the agreement be-
tween the dispersion curves for the KBr-RbC1 pair
for all branches throughout the zone. While the
difference between the curves for the other mirror
pairs are larger than for the KBr-RbC1 pair, they
are still considerably smaller than the differences
between the curves for arbitrary pairs, so that
agreement must still be considered quite satisfacto-
ry. This is especially the case for the acoustic
branches. Clearly the most significant discrepan-
cies appear in the optic branches. Here two points
are relevant. The first is that part of the
discrepancies can be accounted for by the differ-
ences in the masses of homologous ions, in particu-
lar for the light-mass ions. For all the mirror
pairs involved aside from the RbC1-KBr pair, the
light ions are F and Na and these exhibit the larg-
est fractional mass difference (-19%%uo) between
homologous ions. The frequencies at I, I., and X
can be corrected for this mass difference by assign-
ing the average mass to both ions. One finds that
with this correction the discrepancies are reduced
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FIG. 2. Same as Fig. 1, but for the mirror pair
NaBr-RbF. Data from Refs. 16 and 17.

X

FIG. 1. Phonon dispersion as measured by inelastic
neutron scattering along the reciprocal-lattice symmetry
axes A and 6 for the mirror pair NaCl-KF. Squares
represent measured points which are simply connected

by straight line segments to guide the eye. The labels on
the abscissa are symmetry points and symmetry lines in

the Bouckaert-Smoluchowski-Wigner notation. Ordinate
scale is in units of 10 ' rad/sec, and is identical in

Figs. 1 —4 so they may be directly compared. Data
from Refs. 14 and 15.

by about 30% at I" and by about 50% at the zone
boundaries, indicating a somewhat better symmetry
of the potential energy than the direct experimental
results suggest.

The second point relates to what we believe is
the principal origin of the residual discrepancies in
the optical modes. Briefly, in polar materials like
the ones of interest here, the optic modes are ac-
companied by long-range fields, the shielding of
which involves the electronic excitation spectra.
This is evident, for example, by the occurrence of
the high-frequency dielectric constant in the
Lyddane-Sachs-Teller' relation which concerns it-
self with the phonons at q =0. That is to say that
for the optic modes —and to some extent the LA
and TA modes near the zone boundaries —there is
not a complete separation of the vibrations from

the excited electronic states. And, as we will see
below, the electronic spectra do not exhibit the
mirror symmetry.

In Fig. 5 we show the specific heats for all alkali
halides for which data' in the relatively low tem-
perature range of 0 & T(50 K are available. To
avoid obscuring the essentials of the figure with
too many data points, we have restricted the limit-
ed data for KI, NaI, RbBr, and NaF to a single
temperature. These points, along with the more
extensive data for the other crystals, suffice to in-

dicate the approximate specific-heat values at other

Rb C1

FIG. 3. Same as Fig. 1, but for the mirror pair
KBr-RbC1. Data from Refs. 17 and 18.
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FIG. 4. Same as Fig. 1, but for the mirror pair NaI-
CsF. Data from Refs. 18 and 19.

temperatures. We note that only two mirror pairs,
RbC1 and KBr and NaC1 and KF, are included in
the data set. It is quite clear, however, that the
data for each of the mirror pairs lie much closer to
a common curve through that data than to curves
for the other compounds.

The final graphical presentation of data is Fig.
6, which shows the infrared reflectance spectra'
for RbBr, RbCl, KC1, and KBr. It is seen that
while the spectra for RbBr and KC1 are widely
separated from each other and the other two, the
spectra for the mirror pair RbC1 and KBr are re-

markably similar.
The data for the remaining properties that we

will consider consist of a single number for each
compound. For some of these, e.g. , BD(T=O) and
the melting temperature, there is strictly a single
number while the others in fact vary with external
parameters such as the temperature. These tem-

perature variations are small for our purposes and
are neglected. In Fig. 7, the data for one property
associated with crystalline materials, the static
dielectric constant, and for one melt property, the
melting temperature, are displayed in the forms of
4)&4 arrays. It is clear that these arrays exhibit
the mirror symmetry about their principal diago-
nals. However, this visual assessment is qualitative
and perhaps subjective. It is clearly desirable to
have more quantitative and objective measures of
the degree to which the symmetry is present in the
data. To our knowledge, no such measures are
available. We therefore have put much effort into

O.OI
I

to
I

50

FIG. 5. Low-temperature specific-heat data of alkali

halide crystals with NaC1 structure. Data from Ref. 13.

IOO

~O0

I-

O
UJ

U
LIJ

RbBr
KSr

—RbCI
- —KCI

0
60 IOO l40 I 80

I

220

VI14VE NUM8ER ( pre )

FIG. 6. Infrared reflectivity spectra of RbBr, KBr,
RbCl, and KCl. Data from first paper in Ref. 10.

developing some quantitative measures for the
symmetry which we believe provide objective
discrimination. We briefly describe the important
considerations in the choice of these.

Ideally, one would like to have a measure of the
symmetry of an array which is invariant to all
transformations on the array which transform any
exactly symmetric array into an exactly symmetric
array. It does not seem to be possible to find such
a measure except trivial ones, so we must be satis-
fied with less. It is reasonable, however, to require
that the measure should be invariant with respect
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to the units in which a quantity is measured. This
will be achieved if the measure is unchanged by
multiplication of all elements of an array by any
fixed (real) number, and this requirement is ful-
filled by having a measure which is homogeneous
and of degree zero in the array entries. This is
true of all our symmetry measures. Since the addi-
tion of the same large number to all the elements
of an array makes an array "appear" to be more
symmetric, it is desirable to have at least one meas-
ure which is invariant under this operation as well.
The measure which we call FM (figure of merit)
has this property and the same is true of the slope
of the orthogonal regression line and the standard
deviation ratio displayed among the regression line
measures in the tables described below.

On the other hand, one can reasonably argue
that the zero of the scale is in fact relevant for vir-

tually all these properties, and at least one measure
should recognize this. The measure we designate
as FMSA does have this property. It also has the
property that it is invariant under real orthogonal
transformations of the matrix of the array as is
also the measure FM (see below). The ratio of the
c.m. coordinates among the linear regression mea-
sures is another measure which is sensitive to the
zero of the scale of the observed property. We can
summarize the various symmetry measures we
have employed as follows. They fall into two gen-

eral categories which we call norm schemes and re-

gression schemes.
In the norm schemes the array of available ex-

perimental data for a property (with or without
some modifications to be described) is converted
into a matrix according to the following rules:
whenever an experimental value of a property is

F Cl Br I
Na 4.73 5.43 5.78 6.62

K 5.11 4.49 4.52 4.66

Rb 5.99 4.53 4.51 4. 55

Cs 7.27 XX XX XX

7.27 5.99 5.11 4. 73

XX 4.53 4.49 5.43

XX 4.51 4.52 4.55

XX 4.55 4.66 6.62

4.73 5.43 5.78 6.62

7.27 XX XX XX

5.11 4.49 4.52 4.66

5.99 4.53 4.51 4.55

5.99 5.11 7.27 4.73

4.53 4 ' 49 XX 5 ' 43

4.51 4.52 XX 5.78

4.55 4.66 XX 6.62

ORIGINAL ARRAY ROTATED ARRAY PERMUTED ARRAY ROT. PERM. ARRAY

4. 73 5.43 5.78 6.62

5. 11 4.49 4. 52 0.00

5.99 4.53 4. 51 0.00

7.27 0.00 0.00 0.00

7.27 0.00 0.00 0.00

0.00 4.53 4.49 5.43

0.00 4.51 4.52 4. 55

0.00 4.55 4. 66 6.62

4. 73 5.43 5.78 6.62

7.27 0.00 0.00 0.00

5.11 0.00 4.52 4.66

5.99 0.00 4.51 4.55

5.99 5.11 7.27 4 ~ 73

4.53 4.49 0.00 5.43

4.51 0.00 0.00 0.00

4. 55 4.66 0.00 6.62

ASSOCIATED MATRICES

(a) STATIC CRYSTAL DIELECTRIC CONSTANT ARRAYS AND MATRICES

F Cl Br I
Na 1265 1074 1023 933

K 1129 1045 1013 958

Rb 1048 988 953 913

Cs 955 918 909 894

(b) ARRAY FOR MELTING POINTS OF ALKALI HALIDES

FIG. 7. Relation of arrays and matrices for alkali halide properties used in the preparation of the symmetry mea-
sures of Tables I—III. The upper left array of (a) represents the values of the static dielectric constants of the alkali
halide crystals with NaC1 structure. The symbol XX indicates the value is not available (in this case, since CsC1, CsBr,
and CsI crystallize in the CsC1 structure). Next to this array on the right is the same array rotated, which is followed
in turn by an array formed from the original by one of 24 permutations of the rows, and an array formed by the same
permutation followed by rotation. Directly below these four arrays are the associated matrices, formed as described in

the text. The array of (b) is the array representing the melting temperatures in K of these sixteen alkali halides. Its as-
sociated matrix is identical to the array itself.
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not available either because it has not or cannot be
measured (instances of the latter are properties of
CsC1 and CsBr in the NaC1 structure), it is
represented by zero and so also is the value for its
mirror. Thus the arrays in Fig. 7(a) are converted
into the matrices below them. For each such ma-
trix the norm is always defined as the square root
of the sum of the square of the values of all its ele-
ments.

One can calculate from a matrix its symmetric
and antisymmetric parts and form the norms of
these separately (say, Nz and N~) and consider the
ratio Ns/Nz as a measure of the symmetry. This
is in general a large number in the range from fifty
to several hundred for the properties of interest. It
is much larger than if we dealt with a random ar-
ray, and from that point of view it would indicate
excellent symmetry. However, the entries in gen-
eral in the array are far from random and hence
one must ask about how large a value should be
considered good evidence for substantial symme-
try? As a measure of this we take (Nz/Nq )/
(Nq/N~ ), where the denominator is the average of
the ratio of the symmetric to antisymmetric norms
of arrays formed from the original array by the 24
distinct permutations of the rows of the array (or
equivalently, its columns}. It is this number which
is designated by FMSA (figure of merit from sym-
metric and antisymmetric norms).

FMSA is clearly invariant to unit changes but
not to the zero point of the scale. To obtain a
measure invariant to the latter we take the ratio
where FM is equal to (Nq )/Nq, where Nz is the
antisymmetric norm of the array, and (Nz ) is
again an average of the norms of the antisym-
metric matrices formed from the original array by
the same 24 permutations of its rows.

A relatively large range of FM values will be en-
countered below in our survey of relevant data.
The question that naturally arises is what does a
particular FM value of say, 1.0 or 3.0 mean'? To
give some answer to this question we have deter-
mined the distribution of FM values corresponding
to random arrays of numbers uniformly and in-
dependently distributed over some range (say 0 to
1.0). ' The peak of this distribution occurs for an
FM.=0.8, and the probability for finding an FM of
2.5 or larger is less than 0.02.

The second group of measures which are em-

ployed are based on an analysis of regression. If a
value of a property of an alkali halide is plotted as
the abscissa and the value of the same property of
its "mirror" as ordinate of a point on a Cartesian

coordinate system, then for exact symmetry the
resultant points for the set of alkali halides will lie
on a 45' line through the origin. One can find the
straight-line orthogonal regression for the actual
points by the condition that the sum of squares of
the orthogonal distances from these points to the
line is a minimum. Such a line will pass through
the center of mass (c.m. ) of the points. Thus the
c.m. should also be on the 45' line so that one
measure of symmetry would simply be the c.m. ra-
tio defined as the ordinate divided by the abscissa
of the center of mass. This again is a measure
which, while independent of unit size, does depend
on the origin of the scale of measurement. The
slope of the regression line, however, is indepen-
dent of this origin as well as the scale unit. Fur-
thermore the closeness of fit of the points to the
regression line is another suitable measure of sym-
metry which can be specified by the ratio of the
standard deviation of the points from a line
orthogonal to the regression line through the center
of mass to the standard deviation from the regres-
sion line. (The square of this ratio is simply the
ratio of the principal moments of inertia of the
points about their c.m.} Note, however, that a
large value of this ratio is only a positive indica-
tion of symmetry if the regression line slope is
close to 45'.

The result of our survey and evaluation of data
of relevant properties in the crystalline and melt
phases are given in Tables I and II, respectively.
The tables, which are nearly self-explanatory are
divided roughly into two parts: one giving the
measures derived from the norms, the other de-
rived from the regression analysis. The fourth
column gives the probability (as a percentage) of
finding a random array with an FM equal to or
greater than that determined from the data for the
given property (i.e., the number listed in the third
column). The latter halves of the two major parts
of each table give the same measures as the preced-
ing half, but for arrays obtained by rotating the
original array by 90' (this is equivalent to calculat-
ing the same measures with respect to the minor
diagonal). As noted below these provide values to
which the measures for the original array can be
compared.

A few comments about the tabulated properties
are in order. The first is that while all of the list-
ed properties are different, they are not all in-
dependent. The properties for which the inter-
dependencies are most significant are the elastic
constants, densities, and the sound velocities. The
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sound velocities, of course, are given by simple and
well-known functions of the elastic constants and
the density. The principal concern here is which
sets of quantities should be taken as most signifi-
cant. The Debye temperature at T=O K is also
somewhat related to the same quantities since it
can be expressed as the sum of integrals over the
solid angle of the inverse third power of the veloci-
ties. The second point is that most of the listed
properties of the melt, e.g., the expansivity and
conductivity, involve terms in the interaction
beyond the harmonic approximation. Although
one is perhaps most interested in the harmonic
term for the crystal, those leading to the dynamical
matrix, it is also of interest to consider the possible
existence of the symmetry in properties involving
anharmonic terms. Note that the values given for
the T, for which 8& is a minimum, are computed
and not observed values.

In regard to the values found for the measures,
several points should be noted. For perfectly sym-
metric arrays the FMSA, and FM, and standard
deviation ratio would be infinite while the slope
would be 45' and the c.m. coordinate ratio unity.
An example of a data array which clearly exhibits
a very high degree of symmetry is provided by the
molecular weights, the first entry in Table I. (The
molecular weights of members of a pair differ by
less than 1.5%, while molecular weights range
from 42 to 260.) A perusal of the tables will show

the reader that the quality of the various measures
are generally rather consistent. This is certainly
the case with the FMSA and FM whose trends
parallel each other to a fairly high degree, as these
measures vary over a range roughly from 2.0 to 20.
This consistency of these quite different measures

is, of course, gratifying. Some idea of the signifi-
cance of the FM value is afforded by the probabili-

ty that it is exceeded for random arrays (the fourth
column) which for most properties is below l%%uo

and has a maximum value of 3.1%. The signifi-
cance of even these values may also be questioned
since they involve the comparison of totally ran-
dom arrays with actual data arrays which have
some "built in" trends as a result of the fact that
the rows and columns of the array are ordered by
the ordering of alkalis and halides in the Periodic
Table. A completely independent means of assess-

ing the significance of the measures is provided by
examining the same measures for the rotated ar-
rays. It is seen that the quality of the Ineasures of
the symmetry drop substantially and, in fact, gen-

erally approach the peak of the probability density

for the random arrays. The only measures which
do not always show unfavorable values are the
c.m.-coordinates and standard deviation ratios.
But even in those cases, the slopes of regression
lines deviate so markedly from the ideal value that
these results of the regression line test cannot be
considered favorable.

To provide still another "test,"we analyzed a
number of properties which we had no reason to
expect would show mirror symmetry in the same
manner as those listed in Tables I and. II. The re-

sults of that analysis are given in Table III. Ex-
cept for the first entry in the table, the entropy
change at melting, all the properties relate to the
electronic excitation spectra of the solids or the
atoms. The results show that the quality of all

measures of those properties is distinctly poorer
than of those in the preceding tables. Another

point worth noting is that the quality of the sym-

metry measures is not particularly poorer for the
rotated arrays than those for unrotated arrays, con-

trary to the behavior in Tables I and II.
Before drawing any conclusions from the infor-

mation presented in the figures and tables, it would

be reasonable to indicate how this data has been

selected since this clearly can bias the results. The
principal criterion was, of course, the availability
of sufficiently extensive data about an alkali halide

property to make the analysis by the methods
described feasible. We did attempt to track down

data on those properties which we felt were clearly
relevant in establishing or refuting our thesis on

the symmetry we were investigating. Certain com-

pilations listed in the references to the tables were

particularly helpful. In some instances, there exist-

ed two or more sets of data which were clearly so
closely related that use of all of it would be redun-

dant. Here we used the form of the data which we
felt was most relevant (such as interionic spacing
rather than molar volumes for melts). As noted

earlier, we have sometimes included data which are
not independent, e.g., sound velocities, elastic con-

stants, and densities.
There are some inadvertant omissions. This in-

cludes particularly the data on Born-model repul-

sive interactions as determined from ultrasonic
data by Smith and Cain which appears to sup-

port our symmetry thesis, as do some results of
Roberts and Smith on the Born model of sodium
and potassium halides, while some work of Smith
and Cain on temperature derivatives of elastic
constants appears either hostile or ambivalent to
our thesis. The results of Fumi and Tosi on
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crystal ionic radii also lend support to our thesis.
The work quoted in Ref. 10 contains information
which also tends to support mirror symmetry in
certain mixed crystals.

It is likely that we may have missed much more
relevant information, favorable and unfavorable,
through ignorance of its availability, and we would
welcome the publication of it by others who may
have access to such knowledge so as to assist in
understanding the validity and the limits of this
symmetry.

III. CONCLUSIONS

It is our belief that the clear conclusion can be
reached from the data summarized and analyzed in
the preceding section that mirror symmetry is
indeed manifested to a fairly high degree in the
ground electronic states of alkali halides, both as
crystals and melts, and that this lends support to
the hypothesis of extended symmetry of the isobar-
ic crystals. If this is indeed the case, we may draw
a number of conclusions which (if not already sup-

ported or refuted by data of which we are not
aware) could be used to further test this symmetry
hypothesis. We indicate some of these here:

(1) Close similarities of the infrared reflectance
properties of the melts of mirror alkali halides, as
well as of their crystals, is to be expected as func-
tions of both frequency and temperature.

(2) In the case of mirror melts, if the electrical
conductivity and dielectric constant should become
complex and a function of frequency up to the mi-
crowave region, we would expect their behavior to
be similar as functions of frequency as well as of
temperature.

(3) Such transport properties as viscosity, heat
conductivity, thermal diffusivity, and self-diffusion
would be expected to be similar as functions of
temperature in mirror melts, as well as in mirror
crystals where applicable.

(4) X-ray diffraction data on the melts of mirror
alkali halides should show strong similarities with

respect to both radial structure and intensity of the
diffraction rings at corresponding temperatures and
x-ray wavelengths. The ionic radial distribution
functions obtained by neutron diffraction should
also be similar.

(5) We would expect the same mirror symmetry
to hold for melts formed from mixtures of alkali
halides and homologous melts formed from their
mirrors, as well as for crystalline alloys and their
mirror alloys. There already exists evidence for
the latter in Ref. 10 with respect to infrared reflec-
tivity and in some further work on infrared ab-
sorption.

(6) On a lighter note, we may expect that at
some future time it may be possible to study furth-
er mirror pairs including the francium halides and
alkali astitides, and find them also exhibiting mir-
ror symmetry in their properties.

If in fact our thesis is accepted as correct, it
poses an interesting theoretical question as to how
to justify mirror symmetry and extended symmetry
from first principles. In Ref. 1, the existence of a
second set of near degeneracies at the point I for
a11 alkali halides with NaC1 structure was pointed
out, and a possible dynamical reason for their oc-
currence suggested, but further understanding is
also clearly needed here.
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