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A theoretical study of the vibrations of a substitutional impurity atom in a host lattice

has been performed. The Green's-function method is treated with the purpose of ena-

bling numerical calculations of impurity Green's functions. We consider specifically the

host materials silicon, germanium, and a-tin, where the phonon dispersion curves are well

described by Weber's adiabatic bond-charge model. The concepts of this model are ap-

plied to the impurity-host interactions. Numerical calculations are performed for the vi-

brational amplitudes of the isovalent "~Sn Mossbauer impurity in the hosts. Comparis-

on with the recent experiments of Peterseri et al. shows about 25%%uo force-constant weak-

enings for "Sn in silicon and germanium. Localized mode frequencies for C in silicon

and Si in germanium show only 4% force-constant changes.

I. INTRODUCTION

The theory of lattice dynamics for perfect crys-
talline materials has in the last two decades
reached a high degree of sophistication, through
the development of a number of phonon models
which describe many physical properties. In con-
sequence, progress has also been achieved on the
lattice dynamics of isolated impurities embedded in
host materials. The formalism of this problem is
well known, employing the Green's-function
method described by, e.g., Maradudin et al. ' Both
local changes of masses and force constants can be
taken into account in this framework. However,
the number of impurity vibration models in the
literature is not so large, and the models only rare-

ly reach the level of the best corresponding models
for the perfect lattice phonons. The reason for the
limited theoretical effort may be found in the fact
that the impurity vibrations represent very local-
ized and microscopic properties which are difficult
to measure. A widely applied experimental tech-
nique is Mossbauer spectroscopy, where both the
s-electron density at the impurity nucleus, as well
as its amplitude of thermal vibration can be deter-
mined. The latter quantity can be compared with
lattice-dynamics models, but this is not often per-
formed, since reliable and systematic Mossbauer
measurements are scarce. A review of measure-
ments on metal hosts was given by Grow et al.
Another technique is infrared or Raman determi-
nation of localized mode frequencies for light im-

purities. Impurity vibrations may also play a role
in the understanding of certain channeling and
STAX (standing-wave x rays) experiments.

The present paper concerns the theoretical de-

scription of the vibrations of substitutional impuri-

ties. Current models relevant for the interpretation
of Mossbauer data were reviewed by Grow et al.
and Petersen et al. , and a hierarchy of models

was found. (l) An impurity usually has a mass

different from that of the host lattice atoms, and
in this case the simple isotopic mass-defect
model ' predicts the gross features of the impurity
vibrations. Specifically, the impurity is predicted
to have, at high temperatures, the same vibrational

amplitude as the host atom that it replaces. By
Mossbauer experiments deviations from this simple
model are usually found, ' and methods are there-

fore needed to understand quantitatively the
changes of force constants around an impurity.

(2) Only one model gives an analytical descrip-
tion including the effects of force-constant varia-

tion, namely, the model of Mannheim and co-
workers. The model was recently reformulated by
Dederichs and Zeller, and extended to the dia-

mond structure. It yields a very simple relation
for the high-temperature ratio of the impurity-to-
host vibrational amplitudes. The only parameter is
the ratio of impurity-to-host force constants. It
was pointed out in Ref. 3, that the Mannheim
model for semiconductors is oversimplified, and
that the physical conclusions drawn from it are
ambiguous.
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(3) Therefore more sophisticated treatments
based on the concepts of the perfect lattice phonon
models should be considered for the impurity prob-
lem.

Phonon models for semiconductor crystals are
rather complex, often employing massless pseudo-
particles (shells, bond charges) to simulate the ion-

ion forces transmitted by the electron cloud.
The models involve a large number of parameters

( —10) whose physical interpretation is somewhat

doubtful, and the numerical effort is substan-

tial. ' ' Therefore, realistic models of impurity vi-

brations must necessarily be complicated. Models
have been constructed to describe U centers' and
localized modes' in semiconductors, but the only
calculation of vibrational amplitudes so far was

performed by Lehman and DeWames' for the
Fe Mossbauer impurity in aluminum. They in-

troduced the important concept of the impurity
dynamic response function, which is the impurity
equivalent of the phonon density of states.

In the present work the impurity vibration for-
malism is developed to the stage where it can be
implemented for numerical calculations, and the
necessary Green's functions are indicated. The
amplitude of thermal vibration is also treated. The
method is applied to the isovalent impurities in the
group-IV semiconductors silicon, germanium, and
a-tin, and in particular to the " Sn Mossbauer
impurity. A realistic model of the host lattice
phonons has to be selected, and its concepts ap-

plied to the impurity-host systems. The available

models are summarized in the "phonon atlas" of
Bilz and Kress. ' In this work the adiabatic
bond-charge model (BCM) of Weber' '" was

chosen. It gives a particularly accurate description
of the flat TA-phonon branches of the group-IV
semiconductors, using only four parameters. These
low-frequency phonons dominate the vibrational

amplitudes, which are of particular importance in

this work. It is also hoped that the BCM is more
physically realistic than, e.g., an 11-parameter shell

model. "
The paper is organized as follows: Section II de-

scribes Green's functions for models employing
massless pseudoparticles. A general framework for
calculation of the impurity dynamic response func-
tion is presented, and Sec. II is concluded with
comments on impurity vibrational amplitudes,
which are the quantities of interest in a Mossbauer
experiment. In Sec. III parameter correlations of
the BCM are investigated, and a reduction to only
three parameters is presented. Section IV com-

ments on the previously applied Mannheim im-

purity model, and in Sec. V a model of an impuri-

ty within the BCM picture is presented. Numeri-
cal results for " Sn in silicon and germanium are
shown. In the appendices the relevant Kramers-
Kronig relations are shown, and formulas for
correlation functions are given. Methods of nu-

merical calculations of Green's functions are dis-

cussed, and the analysis of parameter correlations
is described.

II. THEORY OF IMPURITY VIBRATIONS

A. Green's functions for massless pseudoparticles

Several phonon models for semiconductors em-

ploy massless pseudoparticles, e.g., the electronlike
shells of the shell model or the bond charges of the
bond-charge models. These particles express the
ion-ion interactions transmitted by the electron
cloud. The vibrational Hamiltonian is given
within the harmonic approximation by

p (Pic)H=
2M'„

+ —,g g $ p(Pic, E'ic')u (Pic)up(P'ic') .
aA PE'a'

When possible we use the notation of Maradudin
et al. and Eq. (1) is identical with their Eq.
(8.3.1). The massless pseudoparticle kinetic energy
is set to zero, whereas the potential-energy term is
retained, ' yielding the well-known pseudoparticle
zero-mass condition in the equations of motion for
fulfillment of the adiabatic approximation.

The Green's-function method is introduced
when solving a problem which can be formulated
in terms of vibrational correlation functions, e.g.,
for neutron scattering or impurity vibrations. The
basic formalism was described by Zubarev, ' and
was applied to the special case of lattice vibrations

by Elliott and Taylor. A review is presented by
Elliott et al. The Green's-function equation of
motion is

(Mco P)G(co)=I— (2)

[cf. Eq. (2.4.42) of Ref. I). M is the diagonal ma-
trix of particle masses, iI) the force-constant matrix,
and G(co) the frequency-dependent Green's-func-
tion matrix. In the derivation of Eq. (2) the com-
mutators between the operators u~(Pic), p~(Pic),
and H were used. However, these do not make
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sense for massless particles, whose coordinates are
entirely determined by the ion coordinates. There-
fore, Eq. (2), which is usually taken as the starting
point of Green's-function calculations, cannot im-

mediately be applied to phonon models with mass-
less particles. One way to resolve the problem is to
realize that the massless particles give just another
representation of long-range pure ion-ion interac-
tions. This picture appears impractical, however.

Another formulation assigns a "realistic" mass
to the pseudoparticles (-m, ), and then the usual
formalism can be applied to the model. Obviously
the adiabatic approximation is violated, but only
slightly so, as we can see by a specific example.
We introduced a bond charge mass of 2m, into
Eq. (2) of Ref. 10 and calculated the phonon
dispersion curves for silicon along three symmetry
directions in k space. The phonon frequencies
coJ(k) were changed only &2&&10 relative to the
original calculations. The vibrational modes asso-
ciated with the bond charges had frequencies be-
tween 600 and 2000 THz, compared to the phonon
0—16 THz, indicating that the adiabatic condition
is still very well fulfilled. The phonon eigenvectors
suffered a relative change & 8&& 10 ' upon intro-
duction of a bond-charge mass. The method
described here is not optimal, however, since we
are only interested in the ionic vibration frequen-
cies but we nevertheless are forced to solve a signi-
ficantly larger eigenvalue problem.

Our method takes as the starting point the above
description, but explicitly takes the pseudoparticle
mass to the limit of zero. Thereby we are still
within the adiabatic approximation, even though
the formulation is in terms of electronic pseudo-
particles representing long-range ionic interactions.
We now evaluate the necessary formulas for the
Green's functions in this limit. We denote the ions
by subscript i and the bond charges by b. The
equations of motion (Ref. 10) become

2.=Ml ~l Cll ~l +Clb b

MbCO Qb =ClbQl +CbbQb
2

(3a)

(3b)

which formally apply to a general phonon model
employing electronic pseudoparticles. M are the
particle masses, C the mass-free dynamical matrix,
and u the eigenvectors related to the usual m-type
eigenvectors [Eq. (2.1.60) of Ref. 1] by

u; = w (i
l
kj) /QM~,

us=w(b
l
kj)&v'M$ .

The lattice Green's function solving Eq. (2) is

(4a)

(4b)

u ()~
l
kj)uI)(a. '

l
kj)6 ~(Pic, E')r';i@)=—g

co —co (k)j J
ik [x(lie)- x(i ']c')]

where j is a sum over both ion and bond-charge
eigenfrequencies. In the limit Mb~0 we find the
following to be true.

(a) u;(j =ion) is given by the usual formula Eq.
(Al) of Ref. 11.

(b) Since both w(i
l
k,j=ion, b) as well as

w(i
l
k,j=ion) must satisfy the closure condition

[Eq. (2.1.61) of Ref. 1], w(i
l
k,j=b) and

u;(j =b) are zero in this limit.
(c) As usual, us(j =ion)= Css'Cs—u;(j =ion)
(d) Since u;(j =b) is zero we find from Eq. (3b)

Cbb(k) w(b
l
"j=»
=Ms~,'=b(k)w(b

l
k,j=b) (6)

having multiplied by /Mb Thus the e. igenvalues
of Cbb are kj ——Mba' b and the orthonormal
eigenvectors are w(b

l
k,j=b).

If we restrict co to be of the order of a phonon
frequency (co « coJ s —+ ao ) we obtain for Eq. (5)
in the Mb ——0 limit

i( [x(/ic) —x(f'a')]u (a I kj)u'(a' I kj)
~p K, K ~Ct) e

co —coJ(k)
o Q p ~

u)~(IC
l
kJ )u)p(K

l
kJ )

~(pa), b~(l' '«'), s ~ kj =b j

The first term is the usual phonon Green's func-
tion, but in addition we find for the bond-
charge —bond-charge Green's function an extra
term which is seen to originate from the infinite-

frequency bond-charge degrees of freedom. This
term is a sum involving eigenvalues and eigenvec-
tors of the bond-charge dynamical matrix Cbb.
Doing the sum over j we find alternatively that the
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term can be written as

g [C
—1(1 )~ (p gr i) i k [ x (c'x)—x (8 x )1 (7p)

k

This result is in accord with the formulas of Page
and co-workers. ' They used the M,~,~~

——0 condi-
tion in solving the shell-model Green's function
directly from Eq. (2). We have proven that these
are limit formulas for Mb ~0. We have seen that
the extra term actually comes from the infinite
electronic frequencies coj b since the product
M~coj. ~ nevertheless is finite. Thus it apparently
represents a nonadiabatic contribution to the
Green's function, corresponding to a term in the
phonon density of states at co= op. This is, howev-

er, not a discrepancy, since our formulas reflect
only a more convenient representation of a long-
range-force model without pseudoparticles.

B. Substitutional impurity Green s function

The dynamics of a lattice containing a substitu-
tional impurity were described by Elliott and Tay-
lor using Green's functions. Given the perfect-
lattice Green's function G(co) and the mass and
force-constant perturbation matrix 5L(co) [Eq.
(8.3.7) of Ref. 1], the impure-lattice Green's func-
tion U(co) is given by Eq. (8.5.2) of Ref. 1

(I G.SL)U=—G .

Since co is complex, so are 6, 5L, and U. Usually

5L is assumed to be very localized around the im-

purity so that the dimension of this equation is
quite small. Therefore, the long-range Coulomb
forces employed in most semiconductor phonon
models present a problem. This was solved by
Page and Dick' by introducing for each lattice
particle a new coordinate representing the electric
field. In this way 5L becomes localized around

the impurity.
For vibrational correlation functions a dynamic

response-function formulation was introduced by
Lehman and DeWames, ' which we shall develop
within the current Green's-function framework.
Separating the real and imaginary parts of Eq. (8)
using Eqs. (A7) and (A9) we arrive at

(I 65L)U—
'2

+ (M ' gM ' )5L(M' ' g'M' ' )=6

M '/2gM '/2)5L U

+(I 6.5L)(M —is~ M —ix2) (M —in Min)

(9b)

for co on the real axis. Here, g'(co) is the general-

ized density of states for the impure lattice, which

is connected to U(co) via the relations Eqs. (A7)
and (A10). The element of g'(co) referring to the
impurity is often called the impurity dynamic
response function. M' is the diagonal matrix of
the impure-lattice masses. From Eq. (9) g'(co) and

U(co) can be calculated provided we have G(co)
and g(co) from a phonon model, as well as a model

for 5L(co). Impurity correlation functions are
then calculated from Eq. (B2).

Localized and gap mode contributions can also
be treated. In an interval where g(co) =0 we see
from Eq. (9b) that g'(co)=0 unless det(I —6 5L }
=0 at some frequency cor, in which case g'(co)

may have a delta-function contribution. In Appen-
dix B the calculation of this term is presented.

With Eqs. (9) and (B6) we have specified a
method which can be implemented for numerical
calculations. A few technical aspects of the nu-

merical calculations are discussed in Appendix C.
Symmetry coordinates will also have to be intro-
duced for the matrices involved in order to speed

up the computations. For the models with mass-
less particles the mass matrices are usually ab-
sorbed into the g(co) and g'(co), similar to the for-
malism in Sec. IIA.

C. Impurity Debye temperatures

From the Mossbauer Debye-Wailer factor infor-
mation on the impurity vibrational amplitude can
be obtained. Theoretically, we see from Eq. (B2)
that (u' (00) ) is given in terms of the matrix ele-
ment g~(00,00;co) (the impurity dynamic response
function), where (00) refers to the impurity site.
At high temperatures we get by expanding coth(x)

(u' (00) }=, (M'( —2)+-ka& 1

12 k~T

1

720 ... "+2)+

(9a) The moments p, '(l(l), introduced by Grow er al. ,
2
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are defined by

p, '(Ã) =I co g'~(00, 00;ci))de .

jii, '(0) =1 due to Eq. (B3). Defining Debye tem-
peratures ' from the p, '(N) we have at high temperatures

N) —3

(u.'(00)') =2 3kB T

MOO ks8D( —2)

SD( —2)

6T
SD( —2)SD(+2)

60T
(13)

Only the leading term is needed whenever

T» —88( —2).
We may derive, as first noted by Lehman and

DeWames, ' p'( —2) from Eq. (A7)

iu, '( —2)= —MOOU (00,00;ca =0), (14)

and similarly for the perfect lattice. Now
5L(co=0}equals the force-constant-change matrix

hit) [Eq. (8.3.7}of Ref. I]. Therefore U(F0=0) by

Eq. (8} cannot depend on the impurity mass. In
terms of Debye temperatures this can be expressed
formally as

Moo
Sg)( —2) =SD( —2)

Moo

1/2

F(G;5 iti),

(15)

where SD( —2) is the host Debye temperature, and
F is an unknown function. The impurity OD( —2)
thus depends on the impurity mass only via the
square-root term in Eq. (15). Equation (15) implies
that different isotopes of the same ion have the
same vibrational amplitudes at high temperatures.
For the mass-defect model the function becomes
F(G;0)=1, and in the analytical Mannheim model
a simple expression for F is found when Eq. (14) is
utihzed.

The moment p'(+2) is given by a simple rela-

tion, see, e.g., Eq. (A3} of Ref. 3. In the case of
models with massless pseudoparticles it is unfor-
tunately inapplicable, since the high-frequency con-
tributions to p'(+2) are not considered in the
massless models, cf. Sec. II A. For the perfect lat-

tice, however, it is possible to derive an expression
for the high-frequency contributions to the (+2)
moment.

TABLE I. Silicon BCM parameters in (e '/V, ). Fit
using 86 phonons (Refs. 34 and 35). Errors in paren-

theses are standard deviations, and c,„denote the max-

imurn possible correlation coefficient between the

parameter and any linear combination of the remaining

parameters. —g divided by the number of degrees of

freedom indicates the quality of the fit. Further details

are given in Appendix D. The CERN computer library

program FUMILI (Ref. 33) was used.

4-parameter model

Value c „ 3-parameter model
Value c,„

1

34i i

jeff
PK

6.26(6)

0.489(4)
9.17(5)

0.48

0.85
0.89

6.16(4)

0.487(3)
9.15(4)

0.78

0.82
0.89

1

tin is discussed. The case of diamond is left aside,
since the Mossbauer results for this host crystal are
still ambiguous.

The BCM parameters were refitted weighting
the phonon data according to the experimental er-

rors, contrary to the original fits where special
weights were used. "' The four parameters

ff Px' and z le were used for fitting,
and we found that the best parameter sets deviated
from-Weber's" sets only by a few percent, except
for z !ewhich for a-tin was about 30% larger
(Tables I—III). The parameter standard deviations
are mostly of the order of one percent, except for
a-tin where relatively large experimental error bars
are present. The more-accurate silicon and ger-
manium data yield large —,X (see Appendix D),
thus displaying limitations of the BCM. Some of
the maximum possible parameter correlations are
uncomfortably close to unity, especially in ger-

III. PARAMETRIZATION OF THE ADIABATIC
BOND-CHARGE MODEL

In the following Weber's adiabatic bond-charge
model' "(BCM) for silicon, germanium, and a-

1

q 4i —BC

—,X'/N
6.03

4.11

z2/g 0.169(3) 0.87 0.173

6.16

4.17
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TABLE II. Germanium BCM parameters. Fit using
221 phonons (Refs. 36 and 37). l(: vectors inside the
1 BZ were not included.

4-parameter model
Value c,„

3-parameter model
Value c,„

1

, 0l tjeff

P»

z /e
1

3 4i —BC

2X' /N

6.34(2)

0.340(2)
9.00(5)

0.215(4)

7.40

31.2

0.98

0.75
0.93

0.98

6.495(5)

0.336(2)
9.28(3)

0.188

6.495

31.2

0.64

0.67
0.79

manium and a-tin. This indicates that the fits are
overdetermined. In order to investigate this prob-
lem in detail the —,X function (Appendix D) was

contour plotted in the parameter space for a-tin.
Qualitatively the

2 X function is well behaved, in

that it shows elliptical contours, indicating a sim-

ple quadratic behavior. The contours also give an
indication of the uncertainty in the parameter
determination. Strong correlations are present,
especially for z /e vs —,il),"'; (Fig. 1) and P», since

narrow valleys cross the parameter planes. Howev-

er, parameter correlations are in general displayed
only indirectly in such contour plots, and a more
detailed investigation is warranted in order to
understand the correlations underlying Tables
I—III. In Appendix D further details are given.
We are thus led to conclude that the physical
meaning of the parameter trends observed in Ref.
11 is somewhat unclear. Especially z /e is strong-
ly coupled to the other parameters, and moreover

the values of z are increasing towards n-tin, con-
trary to intuitive expectation. From this doubt is
also cast on the physical contents of parameter
trends observed in other semiconductor phonon
models, where often as many as 10—15 parameters
are involved.

In order to reduce the correlations the BCM
parametrization was simplified by proposing (ad
hoc) that the ion-bond charge parameter —,P,"Bc
should equal the ion-ion parameter —,P,' ';, since
the two parameters describe a similar kind of in-
teraction, and furthermore are seen to be of rough-
ly the same magnitude. Thus the BCM is reduced
to a three-parameter model. The new parameter
sets are given in Tables I—III, and show only
minor changes compared to the four-parameter
BCM. It is noteworthy that —,7 has almost exact-
ly the earlier values. The most important result is
that the correlation coefficients are now greatly re-
duced (see also Appendix D). They are, however,
still significant, so that trends in the parameters
can only be interpreted with caution. It should be
mentioned that these results hardly affect the pho-
non dispersion curves at all, and that calculations
using the four parameters therefore are completely
valid.

0.3

TABLE III. a-tin BCM parameters. Fit using 62
phonons (Ref. 18).

0.2

4-parameter model
Value c,„

3-parameter model
Value c,„

7.3(2)

0.22(2)
6.4(3)

z /E 0.23(3)

0.97

0.78
0.95

0.98

7.38(4)

0.22(1)
6.5(1)

0.22

0.58

0.61
0.74

01S

1/3 0';

3 4i —BC

—X /N 1.13

7.38
FIG. 1. —P function divided by (62—4) for the 4-

parameter a-tin BCM. The inner contour has the value
1.5; the remaining contours represent steps of 0.5. The
best-fit point is indicated.
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IV. MANNHEIM'S IMPURITY MODEL 9~3
( 3 4i —| jeff) (16)

The analytical model of Mannheim and co-
workers assumes central forces between only
nearest neighbors. The model was rederived by
Dederichs and Zeller for fcc, bcc, and sc struc-
tures, and in Ref. 3 it has been extended to the dia-
mond structure. The derivation in Ref. 3 does not
cover zinc-blende structure, as it has been stated,
but the important Eq. (26) of Ref. 3 can be shown

to hold for this case also. A lattice with nearest-
neighbor central forces is unstable, except for fcc.
Therefore Mannheim's model should be applied
only with caution. For the diamond structure a
model was investigated employing central and non-
central forces, but even in this case the analytical
solution in terms of only the phonon density of
states is impossible. This means that for further
progress numerically based impurity models are
necessary.

aa =a( ,
'

y,' 'r —)+,-aP»—

~&=~( 3
4l' ) ~ ~P»

(17a)

256 z'(z +z')
2

(17b)

The impurity z' /e is also found from Eq. (16) us-

ing the impurity parameters. If the host ions have
a charge 2z and the impurity charge is 2z', the
bond charge shared between two such ions is
—(z+z')/2 due to charge neutrality, since the im-

purity system is assumed to be uncharged. The
following changes are obtained in tensor force con-

stants for the impurity, its first-neighbor host ions,

and the bond-charge pseudoparticles in between:

V. BOND-CHARGE MODEL OF
IMPURITY VIBRATIONS

bIJ= , b p»+2v 2 ——z'(z+z')'
4

(17c)

In a previous paper, current models applicable
to the vibrations of substitutional impurities in

semiconductors were described. As an extension of
this work a model is presented where the impurity
vibrates under influence of the same kind of forces
as in Weber's adiabatic bond-charge model. ' '"
Specifically, a change in the impurity-host ion-ion

coupling 3 P,"';, the impurity's bond-bending force

P» and the impurity-bond charge effective cou-

pling A,rr, relative to the values of the host lattice
is permitted. These are the three parameters which

completely characterize the model of the vibrations
in the perfect lattice.

The relations between the three parameters and
the Born —von Karman tensor force constants are
given by Eqs. (25)—(32) of Ref. 13. The change in

lang-range Coulomb forces around the impurity is
approximated by a short-range potential change
within the nearest-neighbor sphere. This seems to
be a fairly good approximation in view of the cal-
culation of the germanium phonon dispersion with
Coulomb forces beyond nearest neighbors turned
off (Fig. 7 of Ref. 11). The general method of
Page and co-workers' is significantly more com-
plex, and furthermore, the problem of relaxation
due to Coulomb force changes is not solved. The
short-range Coulomb force-constant changes are
easily calculated and added to the change in tensor
force constants. The value of z /e is given by

bv= —,bP»+6v 2 —z2(z+z')
4

(17d)

]65= —,b P», (17e)

, EP» —4v 2—z2
(17fl

ha'= b, ( —,P,"';), (17g)

4P'=&( —,((,"';)+ (z'z —z')/e,
3 3

(17h)

TABLE IV. Normalized basis vectors for the impurity
vibrational mode.

e] ——e„(000)
] ~ 1 ] 1 ~ 1 1 ] —+ 1 1 ] ~ ] I 1

e =—[e (
———)+e ( ———}+e (

———)+e~( ———)]2 2 2 2 ~ 2 2 2 2 2 2

I ~ 1 1 1 ~ l 1 1 ~ 1 ] ] ~ 1 ] 1e3= [e ( ———)+e ( ———)+e ( ———) —e ( ———)2 2 2 2 2 2 & 2 2 2 . 2 2 2

1 ] ] ~ ] 1 1 ~ 1 1 1 ~ ] 1 l—e ( ———) —e ( ———) —e ( ———)+e ( ———)]2 2 2 ~ 2 2 2 & 2 2 2 ~ 2 2 2

e4 ———[e,(111)+e (1T1)+e (111)+e„(111)]

e5 —— [e~(111)+e,(111)+e~( 1 11)—e,(1 11)
2~2

—e„(111)—e,(11T)—e~(111)+e,(111)]
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TABLE V. Perfect lattice Green s function in the impurity vibration subspace. The matrix is symmetric.

61
2G2

2v'ZG,

2610
2&2611

(64+G6+268)
&2(G, +6, )

(G2+ 612+2G14)
v 2(G3+G13+Gi5+G)6)

( G4+ G5 —66—2G7 —G9)
v'Z(G, —G„+G„—6„)

( 62+63 612+613 615 616)
( G1+2G17+ G20)

&26,9 ( 61+261s —619—G2p )

Here, e.g., Aa =a; z
—a],„,. The first derivatives

of the potentials P;; and (t; ac [cf. Eqs. (23) and
(24) of Ref. 13] are unchanged in the present ap-
proximation. If the true long-range Coulomb
forces were changed, the first derivative of the
Coulomb energy would cause a relaxation around
the impurity.

The force-constant changes are limited to within
the first neighbors of the impurity, and the dimen-

sion of Eq. (8) becomes 27. This is reduced to 5 if
the symmetry coordinates given in Table IV are
used. These are analogous to the F2-mode coordi-
nates of the zinc-blende structure given by Lud-
wig. In this subspace both the perfect-lattice
Green's functions G(ai) and g(co) and the first
column of the impurity Green's functions U(co)
and g'(co) are given as in Table V. The matrix

5L(co) is similar, but contains a few modifications
(Table VI). The labeling of the matrix elements is
defined in Table VII.

The numerical calculations are performed as fol-
lows. The impurity force constants are set equal to
three different scale factors times the host lattice

3 P,"';,Px, and A,rr. From Eq. (12), Ref. 13, and

Eq. (8.3.7) of Ref. 1, 5L(co) can be constructed.
The impurity mass is also known. G(ro) and g(co)
are calculated as described in Appendix C. In the
present calculations 609 k vectors were used,
corresponding to 20480 microtetrahedra, in the ir-
reducible first Brillouin zone (1 BZ). From Eqs.
(9) and (B6) the impurity density of states g'(co) is
calculated, and the impurity dynamic response
function g' (000,000;co) is found. This procedure
may be performed for any combination of the

three force-constant scale factors. In particular,
the mass-defect result can be calculated and com-
pared with the analytical result [Eq. (20) of Ref.
3]. The Kramers-Kronig relations [Eqs. (A7) and

(A10)] may be used to check the Green's functions
and density of states functions.

VI. RESULTS AND DISCUSSION

Calculations were performed for the isoelectronic" Sn impurity in silicon and germanium. " Sn in
a-tin was treated adequately in Ref. 3, since "9Sn
is not an impurity in this case. For completeness,
however, results for an isovalent impurity in o.-tin
are also presented. The remaining two cases are
relatively heavy impurities whose dynamic response
functions will have dominant contributions at low
frequencies (a resonance mode) compared to host
lattice frequencies (Fig. 2). Localized modes will
not be present for realistic force-constant changes.
The "analytic" behavior of the model is investigat-
ed by discussing the consequences of decreasing in-
dividually the three impurity force constants to-
wards zero. The force-constant changes were ap-
proximated, as described above, to extend to first-
nearest neighbors only.

A change in the impurity-bond charge coupling

ff had only a small effect, in contrast to the per-
fect lattice where the phonon frequency AT~(&) is
roughly proportional" to A,ff. For the impurity,
however, setting A,ff ——0 only decreased the Debye
temperature SD( —2) by about 5% (Fig. 3). The
reason is that the bond-bending forces and the
host-lattice Coulomb forces are still sufficient to

TABLE VI. Force-constant-change matrix 5 L in the impurity vibration subspace. Equation (8.3.9) of Ref. 1 was
utihzed. 6L is symmetric.

6L1
26L2

2v'Z6L,
26L 1p

2~ 25L(i

—6L,
—v'Z6L,

0
0

f5Lg+5L3+2(5L6+—5L7+5Ls+5L9)]
0
0

—6L10
—v 25Lii —(6L1p+6L11)
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TABLE VII. Definition of matrix elements in Tables V and VI.

61——6 (000,000;co)
1 1 1

62 ——6 ( ———,000;{o)2 ~ 2 2 2'
I 1 16 =6 ( ———000'{o)3 — xy 222
1 1 1 1 1 1

4 ~ 2 2 2s2 2 2~
1 1 1 I 1 16 —6 ( ———~——'co)
2 2 2 2 2 2~
1 1 1 1 1 1

G6 ——G~(» .. . , 2, )

1 1 1 1 1 1

2 2 2'2 2 2'
1 1 1 1 1 1

G —G ( ——————~)8 S' 2 2 2~2 2 2'
1 1 1 1 1 1.6 —6 ( ——————co)
2 2 2~2 2 2s

610=g ( 1 1 1 000' co )

611——G„y(111,000;co)

14= yy(

6,7 =6 (111,111;{o)

618 gyz( 1 1 1 1 1 1 co)

6, =6 (111,111;co)

62{) gyp( 1 1 1 1 1T co)

3.0
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tent

1.0-
0.5—

00

C

1.5—a
tll
LIJ

1.0—
Vl

U
O

0.5-I-
til
X
LIJ
cl 0

0

2 4
I

c

I /

I

8 10 126
I

I

14

(b)

16

1 2 3 4 5 6 7 8 9 10

(c)

1.5—

05-

0
1 2 3 4 5 6 7

FREQUENCY (TH2)

FIG. 2. Impurity dynamic response function for
"9Sn in (a) silicon, (b) germanium, and (c) a-tin. Force-
constant ratios are 1.0 (A, mass-defect case), 0.8 (B), 0.6
(C), and 0.4 (D). Dotted curves are the phonon density
of states.

stabilize the impurity and its bond charges. Also,
Eq. ($) shows that the matrix 5I determines the

impurity vibrations, and since Adf numerically is

very small, the force-constant part of 51. differs
only very little from the zero matrix.

Changing the bond-bending potential Px of the
impurity also resulted in moderate deviations in

impurity Debye temperature. Setting the impurity

Px ——0 decreased the 8D( —2) by about 10%. For
the perfect lattice case, a BCM for silicon was cal-
culated setting pir ——0, and the TA and LA fre-
quencies were lowered by 50'%land 20%, respec-
tively. The optical phonons showed minor
changes. The Coulomb potentials in both cases
stabilize the bond angles sufficiently to prevent a
structural transition of the impurity or the crys-
tal."

The impurity-host ion-ion central potential
—,II),"';(=—,P' ac) significantly affected the imPu-

rity vibrations when being changed. At an impu-
rity-to-host force-constant ratio between 0 and 0.6,
its frequency becomes imaginary. For the perfect
lattice a change in —,P,"'; mainly modifies the opti-

cal phonons, and only at —,pI"'; =0 does the lattice

become unstable.
Simultaneous decrease of all impurity forces di-

minishes the 8&( —2) slightly faster than with a
decrease of —,pI"';, indicating that the ion-ion and

ion —bond-charge central force is the most impor-
tant parameter governing the impurity vibrations.
The impurity becomes unstable when the force
constant ratio is lowered to between 0.3 and 0.6,
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the instability first being reached in n-tin.
The moderate decreases in 8D( —2) when A,rr

and P» are changed are not surprising, as argued
above, but so is the impurity s instability at first
sight when —,P,"'; is decreased to some finite value.
This may result from the short-range approxima-
tion of the change in Coulomb forces, which had
to be assumed for computational simplicity. This
is illustrated by the following example: A BCM
for germanium with Coulomb forces beyond the
nearest-neighbor atoms turned off was calculated,
yielding phonon dispersion quite similar to the full
BCM." Impurity calculations within this model
along the lines of Sec. V do not contain any ap-
proximations, and it was indeed found that only

0 I I I I I i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IMPURITY/HOST FORCE CONSTANT RATIO

FIG. 3. Debye temperatures for " Sn in (a) silicon,
(b) germanium, and (c) a-tin for force-constant ratios
from 0—1. The changes are in all potentials ( ),

1

; ( ———), Px (—"—), and A,ff( —~ ——.). The

Mossbauer data are shown (~), as are P» and —,P,";for

the a-tin lattice, converted into host-lattice units.

when all impurity forces were decreased to zero
did the impurity become unstable. This is the in-
tuitively expected model behavior, representing a
vacancy defect. On the other hand, it is well
known that the effective forces for TA modes
represent close cancellations of strong covalent and
Coulomb forces, and changing impurity charges
may thus very well introduce instabilities that
would not occur in the simplified models with
short-range forces only.

A physical description of the situation close to
impurity instability can be indicated by the scatter-
ing of lattice phonons off the impurity [Eq.
(8.3.72) of Ref. 1]. It is easy to show that the scat-
tered wave w is given by

w=U 5L uo,

where uo is the incoming phonon wave. Consider-
ing long-wavelength acoustical phonons (co=0), it
can be shown within our model that 5L uo is close
to zero, but finite for k+0 (I ). From Eq. (9) it is
seen that both the real and imaginary parts of U
become almost infinite if det(I —G 5L)=0 for
co =0, and as a result arbitrarily large scattered
waves are generated. This means that the long-
wavelength acoustical phonons are scattered with
almost infinite strength by the impurity, thus lead-

ing to its instability if a resonance mode occurs at
N 0.

Turning to the interpretation of Mossbauer ex-
periments, 8D( —2) for " Sn was calculated as
function of the impurity-to-host force-constant ra-
tio. In Fig. 3 8D( —2) is shown versus the ratios
of the impurity force constants to the host-lattice
values. Simultaneous scaling of all three parame-
ters is also shown. It should be noted that the
force-constant changes for other isovalent impuri-
ties than " Sn can be found by scaling the ordi-
nates of Fig. 3 by an appropriate mass ratio [cf.
Eq. (15)].

The experimental values of 8D( —2) for " Sn in
silicon and germanium taken from Ref. 3 are indi-
cated, yielding the actual force-constant weakening
at the impurity (Table VIII). It is interesting to
compare the impurity's force constants with the
values from the a-tin perfect lattice (Table III),
converted to the host-lattice units (Table VIII).
Linear interpolation of impurity forces from the
host values down to the n-tin values showed that
the impurity 8D( —2) are reproduced by some in-
termediate force-constant values. These are quite
near to the u-tin values, as might be expected from
Fig. 3. It therefore appears that the " Sn impurity
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TABLE VIII. Force constants of " Sn and u-tin rel-
ative to silicon and germanium.

VII. CONCLUSION

Host
P(" Sn-host)

P(host)

i))(a —tin)
/(host)

I

3 it'i i — jeff

Silicon
Germanium

0.74(2)
0.73(2)

0.71
0.76

0.27 0.42
0.44 0.47

to some extent retains its a-tin character when it is
embedded substitutionally in silicon and germani-
um. This interpretation does not accord with the
picture ' that the Sn impurity has an electronic
structure which resembles that of the host materi-
al. On the other hand, vibrational and electronic
properties are not immediately connected, and the
difference is not a contradiction.

When scaling down all impurity parameters by
the same factor, which we believe is the most real-
istic procedure for interpretation of experiments,
the impurity SD( —2) decreases. Force-constant
weakenings of about 25% are concluded in both
silicon and germanium (Table VIII). The moderate
force-constant weakenings accord with an intuitive

picture, where the a-tin force constants should

represent lower bounds, and some intermediate
values should be more probable.

In contrast, Mannheim's model for the same sys-
tems showed force constant weakening far below
the a-tin values (Table VI of Ref. 3). It is thus
found that the Mannheim model force-constant ra-
tios do not carry the physical significance that the
model assigns to them.

Experimental results for localized mode frequen-
cies (cf. Sec. II B) are available for the isovalent
impurities C in Si and Si in Ge. Using the adia-
batic bond-charge model together with the simple
mass-defect model yields the frequencies 616
cm ' (' C), 598 cm ' (' C), and 582 cm ' (' C) in

Si, and 382 cm '
( Si) in Ge. The experimentally

determined frequencies s differ slightly from these
predictions. With the present impurity model, us-

ing Eq. (B4), the experimental values were fitted
when scaling all the impurity potentials by the fac-
tors 0.96 (C in Si) and 1.04 (Si in Ge). These
force-constant changes are much smaller than
those for Sn in Si and Ge, suggesting differences in

the impurity-host interactions of a Sn impurity
compared with C or Si impurities.

It was shown that Green's functions for phonon
models with massless pseudoparticles can be calcu-
lated by the usual methods, taking into account an
extra constant term in the Green's function. The
correct Kramers-Kronig relations for phonon
Green's functions are shown in Appendix A. Ex-
pressions convenient for actual calculations of
Green's functions were presented.

The number of parameters in Weber's adiabatic
bond-charge model was reduced to 3. Difficulties
were experienced in assigning direct physical mean-

ing to the phonon model parameters. The parame-
ters of the BCM do not show unambiguous trends,
especially because significant parameter correla-
tions are found using the available phonon disper-
sion data for silicon, germanium, and a-tin. Con-
sidering also that the fits obtained are not "per-
fect," perhaps different or extra interactions should
be introduced in order to improve the BCM de-

scription of the group-IV semiconductors. Anhar-
monic contributions to the experimental phonon
frequencies could also play a role.

A model was presented changing the BCM
forces around a substitutional impurity. The
changes were approximated to extend to first-
nearest neighbors only, neglecting the change in
long-range Coulomb forces. Comparison with ex-

perimental impurity Debye temperatures eD( —2)
showed, by the mass-defect model, the existence,
within the harmonic approximation, of force-
constant weakening around a " Sn substitutional
impurity in silicon and germanium. Within our
impurity bond-charge model the experimental

SD( —2) are fitted if the impurity potentials are
scaled by the factors 0.74(2) in silicon and 0.73(2)
in germanium. These values lie between the host
and the a-tin force constants, being closer to the
a-tin values. Localized mode frequencies for iso-
valent C in Si and Si in Ge showed only 4%
force-constant changes, suggesting differences in
the impurity-host interactions compared to the Sn
impurity.

The force-constant change was also quantified in
Ref. 3 by means of Mannheim's model, whereby a
decrease of about a factor 0.5 compared to the
host-lattice force constants was concluded. How-

ever, in our opinion a rigorous interpretation of re-

sults obtained from Mannheim's model for sem-

iconductors gives qualitatively as well as quantita-
tively misleading conclusions.
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We believe that the isoelectronic " Sn substitu-
tional impurity in silicon, germanium, and a-tin is
now quite well understood from the complementa-

ry electronic structure and lattice-dynamical view-

points. The systems treated here must be con-
sidered the simplest possible impurity-semicon-
ductor combinations. Whether nonisovalent im-

purities in the same hosts or impurities in the polar
semiconductors can also yield simple pictures is
still an open question.
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m 1m' (co')
ReGg(ai) =—H f dto'

00 CO —CO

(Al)

ReG„(~')
ImG&(t0)= ——H f dto'

00 CO —CO

(A2)

ReGg (oi) =ReG„(—ai),

ImG&(co)= —1m'( —co) .

From these relations we may write

(A3)

(A4)

in the limit where co and co' approach the real axis
from below. 9' f denotes a Cauchy principal-
value integral. For finite systems 1m'�(co') is a
sum of 5 functions, which have to be smoothed
over sufficiently small intervals hen in order for
Eqs. (Al) and (A2) to have any meaning. The
corresponding relations for Git (ai) have just the op-

posite signs.
For phonon systems one can prove the symmetry

properties

APPENDIX A: KRAMERS-KRONIG RELATIONS

2'' 1m' (co')
ReG„(o~)=—H dro'—

p 2 &2
(A5)

The relations between the real and imaginary
parts of a Green's function are in part of the litera-
ture inconsistent. This work refers to the basic
work of Zubarev. '

An arbitrary Green's function G(z) is analytic in
the complex frequency plane (z =co+iy) except for
a branch cut on the real axis. For physical sys-
tems without damping the branch cut consists of a
set of discrete poles in G(z) at the normal-mode
frequencies of the system. In the upper z half-
plane G (z) is called the retarded Green's function
Gii(z), and in the lower z half-plane it is called the
aduanced Green's function Gz(z). The real and
imaginary parts of G„(co) are connected by Eq.
(3.31) of Ref. 21:

ReGg (co')
1m'�(co)= — H f de'

CO —CO

(A6)

In the phonon literature the real part of the ad-
vanced Green's functions is usually defined as

G(co) =G p(PK, Z 'K';co)

co gzp(PK, 8 K;iO )
de

+Mr„Mr „o co —co'2

(A7)

where g~p(Pic, E'K';to) is a smooth generalized
density of states functio-n -[cf. Eqs. (2.4.44) and
(8.5.5) of Ref. I]. For example, for the perfect lat-
tice we have

g(ro)=g~p(Pic, Z'K';co)= —gw~(K
~

kj)wp(K'
~

kj)*e'"'("' "' "' "')5(ci)—cot(k)) .
kj

From Eqs. (A5), (A6), and (A7) we obtain the result

g p(PK, P K;N)
ImG p(tK, P'K';ai)

Me,Mr „
G p(Pic, Z'K';to')

dN
7T —CO

(A8)

(A9)

(Alo)

where the advanced Green's function is understood. The equations (A7) and (A10) we shall call the
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Kramers-Kronig relations, since they couple G(co) and g(co). They apply to any collection of harmonically
coupled particles. We note that, for instance, the relations (2.24) —(2.26) of Ref. 7 are inconsistent. ~

APPENDIX 8: CORRELATION FUNCTIONS AND LOCALIZED MODES

We start from the fluctuation-dissipation theorem [Eq. (3.28) of Ref. 21] for the thermal average of two
operators A(t) and B(t'=0):

%o/k~ T

(A(t)8(0)) = lim f dco ~ k
e ' '[G(co+ie) G—(co ie)—],

e—+0+ 2%
(Bl)

where G(z) is the Green's function of the operators and T is the ensemble temperature. The factor 2ir is in
accord with the standard phonon formulas of, e.g., Elliott et al. The square bracket equals
—2i[ImG& (co)], so the integral is only over the finite interval between + and —the maximum lattice fre-

quency. Using Eq. (A9) we may write, e.g., the equal-time displacement correlation functions

( II~(PK)Q p(P Ic ) ) = f —g~p(cic, P ic;co) coth( , fico/kg T—)dco
2 Mc„Mc „

(B2)

(B3)

which corresponds to Eq. (8.6.4a) of Ref. 1. From
Eq. (8.6.4c) of Ref. 1 g(co) satisfies the normaliza-

tion condition

d gco~p(ZIPcIc;co)=5~p5pp~5„„~ .
0 X5(co—coL, ) . (B6)

i 1 /2 ~1/2
—],

g'(co)=2coM' d, M'~ det(I —G 5 L)
N

The particles are assumed to have nonzero masses,
and the result applies to any harmonic system, in-

cluding the substitutional impurity system.
The properties of an impurity localized vibra-

tional mode at the frequency coL is found via Eq.
(4):

g(co)=0, (I G 5L)U=—G.,

U=b, ldet(I G 5L) (B5)

with the well-known algorithm for calculating A.
The delta-function contribution to ImUq (co) from
the localized mode is calculated as follows: Suffi-
ciently close to + or —cuL, ,
U~(z)=C(z —coL ) ', C being a constant. U„(z)
thus has a pole of order 1/z at coL, giving

Im lim U„(z)=Cirl2coL5(z —coL ) .

Assuming the zero of det(I —G 5 L) to be of &&rat

order we obtain the localized mode contribution to
the impurity density of states

det(I —G 5 L)=0
The standard solution of linear equations may then
be expressed as

APPENDIX C: NUMERICAL METHODS
FOR GREEN'S FUNCTIONS

The generalized density of states Eq. (A8) is cal-
culated numerically by integration over the Bril-
louin zone. Such methods were reviewed by
Gilat, but the inclusion of weight factors in front
of the delta function have not received much atten-
tion in the literature. Recently MacDonald et al. '

presented a hybrid tetrahedron scheme which inter-

polates linearly both eigenfrequencies and weight
factors within the microtetrahedra. Quadratic in-

terpolation enables a subdivision of the micro-
tetrahedra. The interpolant function is continuous
between adjacent tetrahedra. This is not a property
of many of the available schemes. We found by
numerical tests that their expressions for densities
of states lead to inaccurate results when only few
or no constant-frequency planes intersect the given
microtetrahedron. However, their formulas for the
number of states gave very accurate results when

the contributions were divided into separate bins so
as to yield the density of states. The "+" in their

Eq. (2.7d) is a misprint and should be a "—."
This method seems to us to be one of the most ac-
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curate and generally applicable schemes available
at present for Brillouin-zone sums.

The sum in Eq. (A8) must be reduced to a sum
over the irreducible part of the Brillouin zone by
means of symmetry, e.g., by Eq. (3.3.6b) of Ref. l.
This equation can be reformulated for the w-type
eigenvectors [Eq. (2.1.59) of Ref. 1] as

w (» ~Ski)=QS pwp(Fo(», S ')
~
kj) . (Cl)

P
A trivial phase factor may multiply the right-hand
side. The function Fo is defined by Eq. (3.2.12) of
Ref. 1. Eigenvectors at —k are given by Eq.
(2.1.57) of Ref. 1, and if we consider only opera-
tions which do not contain the inversion we obtain

g p(d&, ~'&';)= —P'QQS pSp„2Re[wp(Fo(ir S ')
~

kj)wv(Fo(aS' )
~

kj)*
CK

)&exptiSk. [x(/ic) —x(P'a')] J]5(co—ro (k)) . (C2)

The sum g' is over the irreducible part of the Brillouin zone.
Principal value integrals, Eqs. (A7) and (A10) present a numerical problem. Instead of the sometimes ap-

plied method of going a finite step into the complex frequency plane, we have developed a procedure exact
up to second order in the integrand.

It is readily proven that in an interval [a;b] where f(x') is approximated by an (at most) quadratic inter-
polant f(x')=a+Px'+yx' we have

H f 2,z
f(x')dx'= f(x) ln +Pin +y(a b)—

X —X 2X x —b x+a x+6 (C3)

for any xQ+ or —a, + or b. When t—he inter-
polant f(x') is continuous in two subsequent inter-
vals, it may be seen that (C3) is also valid at their
common endpoint, since the divergent terms can-
cel. The numerical accuracy can be checked by the
Kramers-Kronig relations. The high-frequency ex-

pansion of G(co), Eq. (2.61) of Ref. 7, may be use-
ful for doing the infinite integral Eq. (A10).

Numerical diagonalization of Hermitian ma-
trices has by now been well investigated. Howev-

er, old algorithms that are both slow and inaccu-
rate are still widely applied. For example, we

TABLE IX. Elements of the covariance matrix corresponding to the fits in Tables I—III. We have numbered the
parameters 1=—,P,";,2=3,ir, 3=P», 4=z'/e.

Number of Data
Number of parameters

86
4

Silicon
86
3

221
Germanium

221
3

62
4

a-tin
62
3

0'1

CT2

CT3

0'4

C12

C13

C14

C23

C24

C34

0.0557
0.0036
0.0452
0.0027

0.1687
—0.2604
—0.0867
—0.5043
—0.2981
—0.5298

0.0449
0.0034
0.0428

—0.0058
—0.5831

—0.6622

0.0197
0.0018
O.045O
0.0034

—0.3319
0.6803

—0.9611
—0.6943

0.4059
—0.8024

0.0047
0.0016
0.0283

0.2824
—0.6198

—0.6556

0.1880
0.0144
0.2974
0.0312

—0.5154
0.8086

—0.9621
0.7358
0.5722
0.8979

0.0439
0.0116
0.1360

0.2220
—0.5477

—0.6014
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found that certain Jacobi methods were unreliable,
and in the present work we used a version of the
considerably better Householder's method. Avail-
able subroutine packages are discussed by Parlett.

APPENDIX D: DETERMINATION
OF PARAMETERS

Parameter determination for a model is often
performed by minimizing the —,X function (least-

squares sum)

1 2 2g (yi, mode1 3i,expt) ~ ~yi

where Ay; is the experimental error, using a given
set of data. A large variety of computer programs
exist for this purpose, generally being based on
similar ideas. The better programs (e.g., FUMILI
which is available from CERN ) provide also the
so-called covariance-matrix of the fit.

For an optimum parameter set 8=(8i, . . . , 8N)
the covariance matrix cov(8) has the symmetric
elements (c;Jo;oj ) tr; is th. e ith parameter stan-
dard deviation, and c;1 is the correlation coefficient
between the parameters 8; and 8i (c;;=1). The

1
matrix cov(8) is related to the —,X function as fol-
lows: The quadratic expansion of —,X (8) around 8

is given by

—,X'(8)= —,X'(8)

+ —, g (8; —8;)[cov(8) '],J(81—8J)

(D2)

where 0 are the parameter variables. This expan-
sion may or may not be a good approximation to
the actual —,X function, a point which always
must be investigated. It is seen from Eq. (D2) that
the correlation coefficients c,j. only influence the
—,X function through the inverse of cov(8), and

hence contour plots in general yield only very in-
direct information on parameter correlations.

For the BCM parameter fits of Sec. III we
found the quadratic expansion to be very good (to
within a few percent), when going as far as 25%
away from the optimum points. Hence Tables
I—III together with cov(8) contain all the infor-
mation necessary to make a complete series of con-
tour plots of —,g (8). In Table IX we give the
standard deviations and correlation coefficients
entering cov(8).
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