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We present calculated results for several energy- and stress-dependent hole masses for
uniaxial (001), (111),and (110) stresses in Ge and Si: local and integrated density-of-
states masses and longitudinal and transverse optical-mass components for the valence

1 3
bands corresponding to

~
MJ

~

= —, and —,. These masses depend on energy E and stress

o through the form m (E,o.) =rn (E/o. ). The masses will be useful in the analysis of
experimental luminescence and plasma absorption line shapes, as well as in the
calculation of other properties of electron-hole liquids in stressed Ge and Si.

I. INTRODUCTION

Over the last several years there has been much
interest in the electron-hole liquid' (EHL) in
stressed Ge and Si. A primary motivation for this
interest is the fact that the band structure of Ge
(Si) simplifies considerably under infinite uniaxial
(111) ((001)) compression, thus making theories
more tractable. From the experimental point of
view, properties of the EHL for infinite stress must
of course be inferred from measurements at finite
stress. There is also considerable interest in the
variation of EHL properties with stress at
moderate stresses, where the band structure is more
complex than for either zero or infinite stress.

The experimental probe most widely used to
study electron-hole liquids is the characteristic
(near-infrared) luminescence emitted as electron-
hole pairs recombine. ' Another experimental
probe, less widely used, is the far-infrared plasma
absorption of the electrons and holes. ' In both
types of experiment a proper line-shape analysis re-
quires a description of the structure of the valence
bands. This is particularly true at intermediate
stresses, where the bands interact strongly. An ac-
curate description of the valence bands may be
conveniently obtained through the use of appropri-
ately defined masses. For example, the lumines-
cence line shape uses a density-of-states mass,
while the plasma absorption line shape uses a plas-
ma or optical mass. In stressed Ge or Si these
masses are functions of both energy E and stress 0.,
but the dependences are not separate: m (E,o).
=m (F./cr).

In this paper we present calculations of local and

integrated density-of-states masses as well as longi-
tudinal and transverse optical-mass components for
the valence bands of Ge and Si stressed along each
of the principal crystallographic directions (001),
(110),and (111). The local density-of-states
masses for (111)-stressed Ge have been published
previously and are repeated here for completeness.
Liu showed partial results for an energy-
dependent integrated density-of-states mass for two
values of (111) stress in Ge and (001) stress in
Si, apparently not recognizing the scaling relation.
Kirczenow and Singwi gave results for a quantity
related to an integrated density-of-states mass aver-
aged over both bands for (111)stress in Ge. One
motivation for presenting the masses explicitly is
to provide the necessary tools to experimentalists
for EHL line-shape analyses in uniaxially stressed
Ge and Si. In addition, the masses are used in the
calculation of other properties of electron-hole
liquids in stressed semiconductors. '

The calculation of the density-of-states and opti-
cal masses is outlined in Sec. II. Results are
presented in Sec. III for the three principal stress
directions in Ge and Si. One use of the masses for
the analysis of luminescence line shapes is illustrat-
ed in Sec. IV.

II. THEORY

We begin by summarizing the valence-band
structure near k =0 for strained Ge and Si, as cal-
culated using the k.p formalism by Pikus and
Bir. ' The valence-band dispersion is given by' "
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Here A, 8, and C are inverse-mass band parame-
ters, ' D =(3B +C )'~, b and d are deformation
potentials, the e;~ are strain components, 4=@~
+6yy +E'zz and c.p. indicates cyclic permutation of
the crystal coordinates x, y, and z. The two bands
are warped due to the mixing which arises from
the degeneracy at k =0 at zero stress. At infinite
stress the bands are completely decoupled and are
given by simple ellipsoids. However, as will be
seen below, the residual nonparabolicity remains
important at stresses much greater than those re-

quired to merely depopulate the upper band.
A comment is in order on the labeling of the

two bands. At zero stress the designations heavy
and light, determined by the relative curvature, are
conventional. Under compressive stresses the
light-hole band moves "through" the heavy-hole

band, ' ' resulting in strong mixing. For high
stresses it is more appropriate to label the bands by

1

the quantum number
~
MJ ~, where

~
MJ

~

= —, or
This labeling is exact (at 4 =0) for (001 ) and

(111)stresses. For (110) stress the
~

MJ
~

= —,

and —, states are in general mixed, but the designa-

tion is still approximately correct if the splitting
anisotropy parameter P, defined below, is not too
different from 1. This is the case for Ge and Si.
Here we shall label the masses with the most ap-
propriate quantum number

~

MJ
~

. Thus the lower
sign in Eq. (la) corresponds to

~

MJ
~

= —, (heavy

hole at zero stress). This band remains populated
at all stresses. The upper sign then corresponds to
the

~
MJ

~

= —, band (light hole at zero stress),
which becomes depopulated at high stress.

The strain components e,j in Eq. (1) are given by
Hensel and Feher' for stresses along the principal
crystallographic directions with the x, y, and z
crystal coordinates along (100) directions. Thus
Eqs. (lc) and (ld) may be simplified as follows:

E E =befool/(Cl 1
—C12)

2 2 (001) stress,kE«Z'

where the integration is performed over solid angle
on the k-space surface with energy E. If the band
is parabolic, E(k)=A /2md for a density-of-
states mass md, then Eq. (3) reduces to a well-

known simple form:

D (E)—
HR

(4a)

If the band is not parabolic, the nonparabolicity
can be taken into account by writing

D(E)=, md)„(E)E' (4b)

Thus, the nonparabolicity may be described via an
energy-dependent local density-of-states mass:

fi

4 2~E'"
This local density-of-states mass should be used for
calculations of any quantities involving the density
of states at finite temperature, ' such as the EHL
luminescence line shape (see Sec. IV). For exam-

ple, the number of carriers N is given by

(6)

(2c)

where hark& is the stress along the (klm ) crystallo-
graphic direction and the C& are stiffness con-
stants. ' Values for the inverse-mass band parame-
ters, deformation potentials, and stiffness constants
for Ge and Si are listed in Table I. Also given is
the energy splitting E»~ 2~~E«

~

——between the

~
MJ

~

= —, and —, bands at k =0 normalized by the

stress for each of the principal stress directions.
Note that compressional stresses are negative and
are expressed in kgf/mm, where 1 kgf =9.80665
newtons.

Consider next the density of states for a single
band of carriers:
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TABLE I. Values for parameters used in the calculation of hole masses.

Parameter

A

B
C
b

d

C

-E. ] «Ooi
h

I,
'
1/&111

E pl /+110

Unit

eV
eV

kgf/mm'
kgf/mm'
kgf/mm'

meV mm2/kgf
meV mm /kgf
meV mm /kgf

13.38
8.48

13.14
2.21
4.40

13360
4996
7016
0.528
0.362
0.410

Ref.

a,b
a,b
a,b
a,e
a,e
f
f
f
h

h

h

Si

4.28
0.75
4.85
1.36
3.09
17100
7093
8180
0.272
0.218
0.233

Ref.

c,e
c,e

'J. C. Hensel and K. Suzuki, Phys. Rev. B 9, 4219 (1974).
'Reference a gives values for y|, y2, and y3 where A = —y&, 8 = —2y2, and C'=12(y3 —y2).
The signs of A and B are changed here to make the hole band energies positive.
'J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).
J. C. Hensel's experimental value, quoted in P. Lawaetz, Phys. Rev. B 4, 3460 (1971).

'References a and c give values for D„and D„', where b = —2D„/3 and d = —2D„'/&3.
The signs are again changed here to make the energies E(k) positive.
M. E. Fine, J. Appl. Phys. 26, 862 (1965) for T =1.7 K.
H. J. McSkimin, J. Appl. Phys. 24, 988 (1953). The data were extrapolated to liquid heli-

um temperatures from 78 K by multiplying by 1.002, a factor obtained by comparison with

data for Ge in Ref. f.
"E,"yi ——2

i E„~,where E„is given by Eq. (2) for stresses along the principal crystallographic
directions.

where EF(T) is the Fermi energy at temperature T.
For T =0 such integrals simplify as the Fermi

function becomes a step function. In this case it is
convenient to introduce a second density-of-states
mass. For example, Eq. (6) becomes

2 V
N = [Ey(0)] i md;„t(Ep(0)),

3

where the integrated density-of-states mass is de-

fined by:

(E)= E——
( )u ' du~di t = ~dloc

Of course, for a parabolic band md;„, (E)
=md 1 (E)=const.

For calculations involving the dielectric func-

tion, optical or conductivity masses should be
used. ' These have been defined by Lax and Mav-
roides' as follows for a single band:

n 1 p BE BE Bk
k

m,, (E) 4 3g» ak, ak, aE

Here n =X/V is the number of carriers per unit
volume, i and j are crystal coordinates x, y, and z,
which are along (100) directions, and the integra-
tion is again performed over the k-space surface
with energy E. Transverse and longitudinal mass
components can be defined, with respect to the
stress direction, for stresses along the primary crys-
tallographic directions:

—1 —1
mol ——m~

m, , &
——m~ (001) stress,

—2 —1
Plog2 =Nay@

(10a)

motl ———,(m~ +myy ) mxy

—1 & —1 —1 —1 —1 —1 —1
mot2 6 [m~ +myy +2m' +4(m —myz mzg )]

(111)stress, (10b)
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mol ——,(mxt. +mII, ) —m„~

m, , i' ———,(m„„'+m~„')+m„~' (110) stress .
—1 —1

ot2 —m

(10c)

For the (001) and (111)directions m«i ——m«z, while for the (110) direction these transverse components
differ. An overall transverse mass is defined via

m, , = —,(m, , i +m, ,z ) .

The above components are combined to give the optical mass for band
~
MJ ~:

—1 & —1 —1
m0 ~M

~

=
3 (2m0t +m0I ) .

The overall hole optical mass m, I, is obtained from the individual band optical masses, as follows:

(12)

(13)

where g [hl
~

n
~

hr
~

=n.

Finally, note that for infinite stress the valence bands become ellipsoidal and thus can be completely
characterized by longitudinal and transverse components. For the valence-band dispersion given by Eq. (1),
the mass components reduce to the following simple forms'3:

mllmo ——(A+B)-'
,

. infinite (001) stress,
mt i /m o =mt'/m p (A —B/——2)

(14a)

Dmllmo= A+
3

D
m, 1/mo ——m, 2/mo =

2&3

. infinite (111)stress,—1

(14b)

W3
ml lmo = A +Br)i/2+ Dr)z

2

infinite (110) stress,v3
m, i/mp ——A +Brl, /2 Drl~—

.1&
2

mt'/m o ——(A Br)i)——1

(14c)

1/2
1

1+3P 1+3P

where mo is the free-electron mass,

1/2

m.„/m, =a——1

mdh imp (mt 1 t2ml ) imp
1/3

~ infinite stress,

(15)

and

d(CII —Cip) E„/o for (111)
2i/3bC44 E«/tr for (001)

with the transverse and longitudinal components
given by Eq. (14).

III. RESULTS
is the splitting anisotropy parameter. The optical
mass [from Eqs. (11) and (12)] and density-of-
states mass are

It can easily be seen from Eqs. (1) and (2) that
the valence-band dispersion scales with stress, sug-
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FIG. 2. Local and integrated density-of-states masses for the valence bands corresponding to
~
Mq

~

= —and —in

stressed Si as a function of reduced energy E'= —E/o. The 2's have been suppressed. The arrows indicate zero-stress
values. (a) (001), (b) (110),and (c) (111)stress.

infinite-stress values agree with those obtained
from Eq. (15), as they should.

Longitudinal and transverse components of the
1 3

~
Mz

~

= —, and —, optical masses were also calcu-

lated, using Eqs. (9) and (10). Results for (001),
(110),and (111)stresses are shown in Fi~. 3 for
Ge and in Fig. 4 for Si. For the

~
MJ

~

= —, band

the transverse optical masses are always larger than
the longitudinal optical mass, while the reverse is

3
true for the

~
Mq

~

= —, band. The mass anisotro-

pies, represented by the ratios m», /m, tt and

m03)/m03g are greater for the ( 1 10) and ( 1 1 1 )
directions than for (001). The

~
Mq

~

= —, mass

anisotropy for (110) and (111)undergoes a re-
markable change for E' just greater than
—E,"„&/o. This would be very interesting to ob-
serve experimentally. Note, however, that the ra-

pid change occurs when this band has relatively
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FIG. 3. Transverse and longitudinal components of optical masses for the

~

MJ = —and —valence bands in

stressed Ge as a function of reduced energy F.'= —E/o. . The 2's have been suppressed. The total optical mass is also

shown. The arrows indicate zero-stress values for the heavy and light masses. (a) (001), (b) (110),and (c) (111)
stress.

low population. The longitudinal and transverse
components become equal at zero stress, as a
consequence of the cubic symmetry of the lattice.
These zero-stress values indicated by arrows in the
figures are m,HH =0.2754mp m LH =0.04210mp
for Ge and m,HH ——0 4195mo moLH=0. 1497mp
for Si. The calculated infinite-stress values agree
with those obtained from Eq. (14), as they should.

The total optical masses m,~, or m,z„averaged
over longitudinal and transverse components as

well as
~

MJ
~

values according to Eqs. (11)—(13),
are also shown in Figs. 3 and 4. It is notable that

m,„, is not a monotonic function of E' but has a
maximum for E'-0.5 in Ge and E'-0.3 in Si,
slightly greater than —E,"z&/o. . Since the mass m, &

is monotonic, the maximum in m, ~, occurs as
the

~

MJ
~

= —, contribution becomes more impor-

tant. The values obtained for zero stress are
m pt 0 2244m p for Ge and m,z, ——0.3356m p for
Si.
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FIG. 4. Transverse and longitudinal components of optical masses for the
~
MJ

~

= —, and —, valence bands in

stressed Si as a function of reduced energy E'= —E/o. The 2's have been suppressed. The total optical mass is also
shown. The arrows indicate zero-stress values for the heavy and light masses. (a) (001), (b) (110),and (c) (111)
stress.

The curves of Figs. 1 —4 can easily be fitted
with analytic formulas to facilitate further calcula-
tions. ' Tables of values for all the mass com-
ponents may be obtained from the author. It may
be anticipated from the figures that it is important

to include the energy dependences of the masses at
stresses beyond the stress at which the

~
MJ

~

= —,

band becomes depopulated. An example is given
in the next section.
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IV. DISCUSSION

As an illustration of one use of the energy- and stress-dependent masses defined in Sec. II, consider the
luminescence line shape for the electron-hole liquid in stressed Ge or Si. For an allowed indirect transition
with an energy-independent matrix element, the luminescence intensity as a function of photon energy hv is
given by the joint density of occupied electron and hole states. For a single conduction band and valence
band 19,20

I(hv)=I0 I dE, J dEhD, (E, )Dh(Eh)(1+e ' F
)
—'(1+e " F' ') "

)
—l

X5(hv E, —Eh+—lruu h
—EBB),

(17a)

where

where E, lhl and EF""' are the electron (hole) energy and Fermi energy, EBB is the bottom of the band within

the EHL, %co„z is the energy of the phonon emitted to conserve momentum in the indirect transition, and
the densities of states are given by Eqs. (4a) and (4b) for electrons and holes.

In stressed Ge or Si the valence bands are split by an energy E,"z~ and the conduction bands are split by an

energy E,'„~, with v& electron valleys below the other v2 electron valleys. The contributions must be added
for transitions between each pair of bands. The integral over E, can be performed immediately. Thus

hv'

I(EBB lroph+hv ) —IO J0 (~el+ e2)(~hl+~h3)dEh ~

(17b)

0, hv' —E„&E,',
R

3/2 e [h v' —EI —Ep( T))/kfe

v2m~e (hv' —E»l Eh) (1+e— )—1, hv' Eh & E,'pl—

E Eh(T) /kT3 2(/E )E~l/2(1+e( h F 1
)
—l

(17c)

(17d)

h
Eh &EsPi

Rh3=
3/2 h )/2 [Ep —EF(T)]/kTh

me3 (Eh )(Eh —E,pl) (1+e ), Eh &Eepl .
(17e)

Here h v'= h v —E~z+Loz~, md, is the density-of-
states electron mass, the local density-of-states hole
masses are used, Eh ———Eh/o. , and some constants
have been absorbed into Ip.

The importance of including the nonparabolicity
of the hole bands in the luminescence line shape is
illustrated in Fig. 5. The solid curve is a line
shape calculated for T = 1.4 K and o=55 k—gf/
mm along (001) in Si (vl ——2, v2 ——4, md,
=0.3216m0). The electron-hole pair density was
chosen to be n =5.53&(10' cm, corresponding
to electron and hole Fermi energies E~——4.81 meV
and Ez ——8.50 meV. The resulting full-width-at-
half-maximum linewidth was AE =6.8 meV, The
energy-dependent density-of-states mass from Fig.
2(a) was used in the calculation. Note that
—EF/o =0.155 meV mm /kgf, which is well
below the value —E,"pl /o =0.272 meVmm /kgf
for this stress direction (see Table I). Thus the

I

stress is well above the critical stress required to
depopulate the

~
MJ

~

= —, band.
In the absence of information about the energy

dependence of the hole density-of-states mass it
would seem reasonable to fit an experimental spec-
trum for such a high stress to a spectrum calculat-
ed using the infinite-stress mass. The dashed curve
in Fig. 5 was calculated in that way, with the den-
sity adjusted to give the same linewidth AE =6.8
meV. In this case EF——3.74 meV, E~ ——8.15 meV,
and the density n =3. 97)&1 '0cm '. With the in-
correct use of the infinite-stress hole mass, the den-
sity is underestimated in this example by nearly 3,
even though the stress is high enough to depopu-
late the

~
MJ

~

= —, band. If the infinite-stress
mass is used to fit a spectrum for a lower stress,
the deduced density will have a larger error.

It is clear from this example that it is necessary
to use the energy-dependent hole masses to analyze



25 ENERGY- AND STRESS-DEPENDENT HOLE MASSES IN. . . 1125

Chz
LIJ

z
LLI
C3
Z
LLI

V
(h
UJ
Z
X

luminescence line shapes. In addition to the (possi-
bly large) errors in deduced densities, the entire
line shape changes. Clearly the quality of the line-

shape fit should change (hopefully, improve) when
the correct theoretical line shape is used.

hv' (meV)

12

FIG. 5. Theoretical luminescence line shapes for the
electron-hole liquid in (001)-stressed Si with densities

chosen to give a full width at half maximum AE=6.8
meV (T =1.4 K). Solid curve: uses energy-dependent
density-of-states hole mass from Fig. 2(a), with —0.=55
kgf/mm and n =5.53X10' cm '. Dashed curve: uses
infinite-stress hole mass and n =3.79X10' cm . The
dashed curve has been shifted so its half maximum
points agree with those of the solid curve.
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