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The total energy for Si with various lattice distortions has been calculated using a
first-principles linear-combination-of-atomic-orbitals method. The physical properties de-
rived from these calculations include not only the equilibrium lattice constant, cohesive
energy, and bulk modulus, but also the internal strain parameter and several phonon fre-
quencies including anharmonic terms. For all these properties there is good agreement
with experiment. The frozen-core approximation was tested and found to be valid for Si
in a large region about the equilibrium lattice position.

I. INTRODUCTION

Many calculations of the ground-state electronic
properties of solids have firmly established the util-
ity of modern band-structure methods when com-
bined with the local density approximation for ex-
change and correlation. Indeed, with little more
input than the atomic numbers of the constituent
atoms, theory based on calculation of the total en-
ergy is coming within reach of determining the
structural and vibrational properties of solids.
Among the various schemes used for such calcula-
tions the linear-combination-of-atomic-orbitals
(LCAO) method — offering a physically intuitive
local basis — is enjoying a revival as a first-prin-
ciples technique,' and in this paper we investigate
the suitability of a particular LCAO approach for
the evaluation of total energies in solids. Applying
the method to Si we find very good agreement
with experiment, not only for structural properties,
but also for the internal strain parameter as well as
for phonon frequencies including anharmonic
terms. These latter properties involve calculations
for a distorted lattice and represent one of the
more challenging applications of band theory. In
the course of these calculations we tested the
frozen-core approximation for Si and find it valid
within a considerable region around the equilibri-
um lattice constant. This approximation has been
assumed for a similar, very successful investigation
of Si,? using norm-conserving pseudopotentials ex-
tracted from ab initio atomic calculations.?

II. METHOD

The specific LCAO method used here has been
described elsewhere,* and therefore we limit our
discussion to aspects pertinent to total-energy cal-
culations. The Bloch wave functions of Si are ex-
panded in a basis set of 18 localized orbitals (1s,
2s, 2p, 3s, 3p, 3d, 4s, and 4p) centered at the atom
sites. The radial parts of these orbitals are linear
combinations of 18 Gaussian functions, whose ex-
ponential coefficients are distributed following a
geometrical series. The orbitals have been obtained
from a converged self-consistent atomic calcula-
tion, where the longest-range Gaussians were
dropped in a special run to avoid overcompleteness
problems in the solid. The crystal charge density
and potential are also expanded in a Gaussian basis
to avoid the problem of evaluating and storing
four-center integrals. For Si, this basis set consist-
ed of 18 individual Gaussians located at each
atomic site, as well as some additional Gaussians
centered at auxiliary sites. Without the latter, the
charge density and potential would be restricted to
being a sum of spherically symmetric functions
centered on atomic sites — a description well suit-
ed for close packed materials but less adequate for
the open diamond structure, although still an im-
provement over the muffin-tin approximation.

The coefficients for the charge-density expansion
are determined by a least-squares fit to the exact
charge density obtained from the occupied wave
functions. All the integrals in the fit are evaluated
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analytically.

The electrostatic potential and energy are eval-
uated using a combination of real-space and
Fourier-series computations. The total charge,
consisting of the valence charge plus the (fixed)
core charge, fitted as described above, is parti-
tioned into two terms. One term, the “neutral”
charge, is formed by changing the coefficient of
the longest-ranged Gaussian at each site so that the
total spherically symmetric charge on that site (in-
cluding the nuclear charge for atom sites) is zero.
The “polar” charge is the difference between this
and the total charge, and has nonzero coefficients
only for the longest-ranged Gaussian on each site.
The polar charge, which produces all the long-
range Coulomb potentials, has a rapidly convergent
Fourier series and the potential it produces is
evaluated in a reciprocal-lattice expansion. The in-
tegrals necessary for the least-mean-squares fit to
this potential (using all the Gaussians, long and
short range) are easily evaluated analytically. The
Coulomb potential due to the neutral charge at
each site decays in a Gaussian manner, and a
direct-space lattice summation for the (analytic) in-
tegrals involved in fitting this contribution to the
potential converges rapidly. At each atom site, a
Z /r Coulomb potential screened by a short-range
Gaussian is assumed as a constant component of
the potential, and appropriately subtracted in the
fit. This allows much better convergence of the to-
tal potential near the nuclei. The real-space sum-
mation for the neutral charge is partitioned into
atom-site-diagonal and off-diagonal terms to avoid
calculating the electrostatic energy of a core in-
teracting with itself, which could cause a loss of
precision in the structurally significant parts of the
total energy.

The exchange-correlation potential V. is also
expanded in Gaussians and is determined by a fit
to the V,.(r;) evaluated on a real-space mesh. The
mesh consists of logarithmically spaced radial
points along rays which give an approximately uni-
form sampling of the unit sphere. Only symme-
try-inequivalent rays are needed. Cells are drawn
enclosing each site of the charge-potential basis us-
ing a Wigner-type construction, with the bisecting
plane between each pair of sites placed at a posi-
tion determined by the ratio of appropriate radii
assigned to the sites. Weighting factors calculated
for each mesh point are approximately proportion-
al to the volume nearest that point. (A Wigner-cell
construction and exact volume calculation for each
of several thousand mesh points would be prohibi-

tive). Both the exchange-correlation potential and
the exchange-correlation energy density are least-
squares fitted. The self-overlap matrix needed in
this fit is evaluated on the mesh using these
weights for consistency, despite the fact that it can
be evaluated analytically (and is for the charge and
electrostatic potential fits). The fitted exchange-
correlation energy density is then integrated analyt-
ically to obtain this contribution to the total ener-
gy. (Actually, the difference between the
exchange-correlation energy density due to the to-
tal charge and to the core charge alone is fit and
integrated for greater precision.)

Although these procedures result in an efficient
general potential band-structure program, they can
introduce annoying problems associated with moni-
toring the quality of the fitting. We have found
that the total energy is more sensitive than the
band structure to these problems. Total-energy
calculations for small molecules closely paralleling
the present calculations were carried out by Sambe
and Felton with considerable success for bonding
geometries and energies.’ The convergence of the
charge fit proved to be a significant problem in
this work also. A recent proposal for modifying
the weighting of the fit to minimize the error in
the electrostatic energy rather than the charge den-
sity itself has yielded substantial improvements for
molecular problems.® Difficulties in converging
lattice sums of the required Coulomb integrals
have so far kept us from applying this technique to
solids, however.

The convergence of the total energy was tested
by increasing the number and radial extent of the
Gaussians. For the majority of the calculations the
forzen-core approximation was used. The resulting
band energies and the charge denstiy are in excel-
lent agreement with general potential linearized
augmented plane-wave (LAPW) results using the
same local-density approximation.” Therefore, no
attempt was made to extend the number of valence
functions in the LCAO basis set.

When calculating differences in total energy for
a series of lattice structures, care must be exercised
in avoiding systematic errors associated with
changes in the structural parameters, while errors
like those associated with the inexact form of the
exchange-correlation potential are expected to can-
cel. For example, when evaluating total energy as
a function of volume, we found it necessary to
scale the radial extent of the Gaussians (in both
basis sets) with the lattice parameter to avoid
a~ 1% systematic error in the equilibrium lattice
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constant. (By coincidence, the first calculations
with unscaled Gaussians gave the exact experimen-
tal equilibrium lattice constant, but the value was
found to depend on the radial extent of the Gaus-
sians until the scaling procedure was adopted.)
Another systematic error was reduced by keeping
the number and angular distribtution of the real-
space exchange-correlation sampling points fixed.
For example, when a phonon distortion would shift
the nearest-neighbor charge maximum off the

[111] direction, the sampling mesh was also shift-
ed. Such manipulations are easily carried out, and
we believe reduce the systematic errors sufficiently
to make the method viable and not unduly cumber-
some.

For the potential and charge basis set, auxiliary
Gaussian functions were placed on the interstitial
sites (forming a second diamond-type lattice) and
on the bond-charge sites. Each of these auxiliary
sites contained three geometrically distributed
Gaussian functions. Including more sites or more
functions on these sites quickly leads to overcom-
pleteness.

It has not proved practical to test the suitability
of this basis set by evaluating the rms error of the
charge fit. Instead we follow the procedure used
previously* of comparing the value of the uncon-
strained fit charge to the actual charge in the unit
cell. Plots of the fitted charge density and smooth
variation of the fit coefficients provide additional
checks for fit quality. For the frozen-core approx-
imation the fitted valence charge was accurate to
5% 1073 of the actual eight valence electrons per
cell, and for the all-electron calculation the accura-
cy was better than 5 10~ of the total charge (28
electrons per cell). The unconstrained fit was only
used to provide this figure of merit, and a con-
strained fit was then made to ensure charge neu-
trality for evaluation of the potential.

The charge fit was performed by solving a sys-
tem of coupled linear equations. The eigenvalues
of its homogeneous part had to be monitored care-
fully to avoid linear dependences between the vari-
ous prefactors of the charge-density Gaussian func-
tions. Eigenvalues very close to zero were indica-
tive of overcompleteness. They could be caused by
inappropriate sets of auxiliary sites and/or Gaus-
sian functions as well as by too large cutoffs in the
evaluation of the overlap integrals. The near-zero
solutions led to large and oscillatory prefactors of
the longest-ranging Gaussians and consequently to
large numerical noise in the total-energy results.
When we choose (usually at the atomic sites) the

full width at half maximum (FWHM) of the
longest-ranging Gaussian ~ 10 a.u., then an over-
lap cutoff of ~1071° had to be taken to suppress
this part of the numerical noise problem. In addi-
tion, it was necessary to choose rather contracted
Gaussians at the auxiliary sitess (FWHM ~2—4
a.u.) to avoid that the smallest eigenvalues of the
homogeneous part dropped below ~1075. A
further decrease in the overlap cutoff to ~ 1072
allowed even smaller eignevalues of ~10~¢ (and
thus longer-ranging Gaussians), yet the total-energy
results varied only insignificantly. However, the
large increase in computer time was of signifi-
cance.

The local exchange-correlation potential was
evaluated using the Wigner interpolation formu-
1a.”® For Brillouin-zone integrations six special
points were chosen for the undistorted lattice.”!°
For the transverse-optic phonon at I, TO(T"), and
the internal strain the same set of K vectors along
with members of their stars which become ine-
quivalent under the_’distortio"n were used. For the
TA(X) phonon the k vectors corresponding to
g =4 in the Monkhorst and Pack notation'® were
used. All calculations were carried to self-consis-
tency with the total energy stable to seven signifi-
cant digits.

The computations have been performed on the
IMB 370/3033 of the Kernforschungszentrum
Karlsruhe using a FORTRAN program package of

~ 8000 lines. The computational time per given
distortion was between 1 and 4 min.

III. RESULTS

We first present the total energy versus lattice
constant calculations, from which the equilibrium
properties are derived, and we also comment on the
validity of the frozen-core approximation. We
then give the results for the frequencies of the
TO(T") and TA(X) phonons, and finally describe
the evaluation of the internal strain parameter
which involves calculations for the lattice strained
along the [111] direction.

Using the frozen-core approximation, the total
valence energy was evaluated for eight values of
the lattice constant and fit with a 4th-order poly-
nomial. The lattice constant varied from 8.6 a.u.
(V/Vy=0.59) to 10.8 a.u. (V/Vy=1.16), and the
rms error was 6X 107 Ry/atom, with a maximum
error of 8.6 1073 Ry/atom. The fitted curve is
shown in Fig. 1. The derived values for the equili-
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FIG. 1. The fourth-order polynomial fits to the total
energy versus volume for the frozen core and all-
electron calculations. The energies have been shifted by
—8.00317 Ry and —576.076 34 Ry, respectively. The
third- and fourth-order contributions to the all-electron
result are also shown. ¥,=270.0 a.u.3, the experimental
volume.

brium lattice constant, the bulk modulus, its pres-
sure derivative, and the cohesive energy are listed
in Table I along with the corresponding experimen-
tal values. The cohesive energy was obtained by
subtracting the total valence energy of the
corresponding atomic calculation (which included
the extended Gaussian functions) and making
corrections for spin polarization and the zero-point
motion. The pressure derivative of the bulk mod-
ulus depends on the third-order derivative of the
potential and is more sensitive to the fit than the
other quantities. Additional calculations in which
the radial extent of the Gaussian functions were
varied resulted in changes of 0.1% for the lattice
constant, 1.1% for the bulk modulus, and as much
as 10% for dB /dP, with little or no change in the
cohesive energy.

Our results are in good agreement with experi-
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ment and compare favorably with other recent cal-
culations.!'~!> However, the pseudopotential cal-
culation of Yin and Cohen? agrees even better with
the experiment, although the same Wigner local
approximation for exchange and correlation was
used. This suggests that our somewhat larger
discrepancy with experiment does not so much in-
dicate basic limitations of the local-density approx-
imation, but may be caused by a less than opti-
mum choice of auxiliary sites and Gaussian basis
sets. These parameters are not yet conveniently
optimized within our LCAO method.

Since for Si the frozen-core approximation is
easily avoided when using the tight-binding
method, we repeated the calculations treating the
1s, 2s, and 2p orbitals as valence states and keeping
everything else the same. The total energy was
again fit with a fourth-order polynomial (rms error
=2x107° Ry/atom). The fit is shown in Fig. 1
and the derived properties listed in Table I. Over a
volume change of ~ +15% the total-energy curves
are essentially the same and it is only for volume
compressions beyond ~20% that the all-electron
energies are relatively lower. Thus, for Si the
frozen-core approximation is valid over a wide
volume range and the use of pseudopotentials for
studying the pressure-induced structural phase
transition (diamond to f3 tin) seems well justified.?
The small errors we find are consistent with a re-
cent general theory of the frozen-core approxima-
tion by von Barth and Gelatt.'®

Within the Born-Oppenheimer approximation,
dynamic lattice distortions (phonons) are treated as
static and a calculation of the total energy as a
function of the normal-mode amplitude yields
essentially classical potential wells or force con-
stants from which the frequencies are obtained.
These calculations are feasible for high-symmetry
phonons for which group theory suffices to deter-
mine the polarization, and for which the resulting

TABLE I. Calculated and experimental properties for the ground state of Si.

a B dB /dP
Lattice Bulk Pressure Cohesive
constant modulus derivative energy
(a.u.) (Mbar) (eV/atom)
Frozen core 10.40 0.89 3.22 492
All electron 10.37 0.87 4.11 4.84
Expt. 10.26* 0.992 4.24° 4.66*

#Reference 22.
bReference 23.
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new periodicity contains a tractable number of
atoms per unit cell. We performed such calcula-
tions for the TO(T") phonon of Si, which is dom-
inated by bond stretching along the [111] direction,
and for the TA(X) phonon which has no bond
stretching in first order. The results are given in
Table II. Also listed is a third-order term k,,,
which is allowed for the TO(T") phonon. This
term can be derived from experimental third-order
elastic constants using Keating’s model.!” We note
that the TO(T") frequency was rather insensitive to
changes in our basis-set parameters, such as adjust-
ments in the range of the Gaussians. Even a cal-
culation using only atomic potential sites gave very
similar values for the TO(T") frequency.

We show in Fig. 2 the valence-charge density in
the [110] plane for the TO(T") phonon with a dis-
placement of ~0.14 A. The difference in bond
charge is evident as is the characteristic bond-
charge shape. The elongation of the bond charge
along the bond axis is experimentally observed!®
and is obtained with accurate pseudopotential”!* as
well as other first-principle techniques.

The value of the TA(X) frequency was sensitive
to how accurately the charge density was modeled
along the bonds. With the usual set of auxiliary
sites the centers of the bond charges were essential-
ly constrained to the midway positions between the
atoms, and the calculated frequency was poor.
However, when we added further auxiliary sites to
permit distortions of the bond-charge density the
frequency moved closer to experiment. Indeed, we
found that the center of the bond charge moved
somewhat away from the midway position, similar
to what has been proposed in the adiabatic bond-
charge model.!® This motion of bond charges in
zone boundary TA phonons has also been verified
in previous work.!""%

A further structural property of the diamond
lattice is the internal strain parameter {. As the
diamond structure is a nonsymmorphic space

group, an external stress may induce an internal
strain between the two sublattices, in addition to
the homogeneous deformation of the unit cell.
This is the case for a uniaxial compression in the
[111] direction. Here the [111] bonds become ine-
quivalent to the other bonds along the [1 11],
[T11], and [111] directions. As a consequence,
the position of the second atom in the primitive
unit cell need not shift with the homogeneous de-
formation, but may relax along the [111] direction.

This relaxation depends on the relative magni-
tude of the different forces in the crystal. It is
described by the internal strain parameter §, which
equals zero for zero internal strain (the [111] bond
is fully compressed) and equals one for a relaxation
such that all four bonds have the same length. In
lattice-dynamic models, £ is given as a quotient of
force constants and (1—¢) reflects roughly the ra-
tio of the bond bending to the bond stretching
forces.

Applying a strain of ~4.7% along the [111]
direction, we have calculated the total energy as a
function of the [111] bond length. The results are
shown in Fig. 3. The minimum occurs at {=0.61,
which is in much better agreement to the experi-
mental value of 0.62+0.04 (Ref. 21) than the
£=0.5 obtained by the adiabatic bond-charge
model (ABCM).!® The latter value is off by ~20%
in spite of the fact that the ABCM agrees with the
values of all experimental phonon frequencies
within a 2% average deviation. This big discrep-
ancy has been attributed to the assumption of con-
stant bond charges in the ABCM. Indeed, this
seems to be the case, as is evident from the top of
Fig. 3. There, the difference in charge between the
[111] bond site and one of the inequivalent bond
sites is shown as a function of {. The bond
charges are equal for {~0.5, the same value as ob-
tained by the ABCM."

Finally, from the total curve of Fig. 3 we may
also derive the shift of the TO(T") phonon frequen-

TABLE II. Comparison of theory and experiment for various properties of Si involving

lattice distortion.

TA(X)-phonon TO(T')-phonon

Internal strain shift of

frequency frequency Kxyz parameter £ TO(T) frequency
Calc. 49 THz 15.0 THz —34.8 eV/A® 0.61 0.42 THz
Expt. 4.5 THz* 15.4 THZ* —35.1°¢V/A® 0.62+0.04° 0.53+0.05 THz

2Reference 24.
bReference 25.
‘Reference 21.
dReference 26.
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FIG. 2. The charge density in the (110) plane for the
lattice distortion corresponding to the TO(I") phonon
with a displacement of —0.137 A along the [111] direc-
tion (in units of a.u.Xx 10%).

cy for the strained lattice. This number is also in
reasonably good agreement with experiment (see
Table II).

IV. CONCLUSION

In this paper we have shown that the LCAO
method can be a viable technique for calculating
the total energies of solids from first principles.
For Si, the theoretical numbers deviate from exper-
imental values by (i) ~1% for structural properties
like the lattice constant, (ii) ~10% for vibrational
properties like the bulk modulus of phonon force
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FIG. 3. The lower curve is the total valence energy
per atom for the [111] strained crystal as a function of
the [111] bond length. The minimum occurs at
1=2.309 A corresponding to an internal strain parame-
ter value of £{=0.61. A value of {=0.0 corresponds to
maximum compression of the [111] bond, while {=1.0
corresponds to equal bond lengths. Also shown is the
difference in bond-site charge Q[111]—Q[T1T].

constants, and (iii) up to 30% for third-order
anharmonicities. In addition, our results confirm
that the frozen-core approximation is well justified
in total-energy calculations for Si.

Note added in proof. New measurements suggest
a revised experimental value of the internal strain
parameter of £~0.7 (M. Cardona, private com-
munication).
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