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We present a theory of magnetically induced resonance states in narrow-gap semicon-
ductors and apply it to study the resonance states in InSb. By expanding the impurity
wave functions in terms of the free-electron Landau wave functions, we obtain an infinite

set of coupled- equations. If the magnetic field is sufficiently large, i.e., 'p) 1 (here& p
=%co,~2Ry ), only a small number of Landau levels need be solved self-consistently

because for any energy to a good approximation, the coupling need be considered only

between the adjacent Landau level and all the lower ones. The calculation of the energy

and width can be made using a multicomponent generalization of the Kohn variational
method for phase shifts. We have made detailed calculations for the lowest resonant
state associated with the n= 1 Landau level. Screened potentials were used primarily be-

cause they simplify the numerical calculation, but the procedure is applicable without
modification to any potential V(z) which goes to zero faster than 1/z. Furthermore, al-

though we have used the parabolic band model, the method can be readily modified to in-

clude nonparabolicity.

I. INTRODUCTION

It is well known' that in zero-gap semiconduc-
tors resonant states in impurity scattering arise
from the overlap of the bound state of the impuri-

ty with the continuum states of the conduction or
the valence band of the semiconductor. Such an
overlap invariably broadens the impurity state and
if the width I is small, the state is called a reso-
nance which can maixifest itself either as an extra
peak in optical absorption or as a sharp increase in
the electrical resistivity when the Fermi surface is
close to the resonance energy. In semiconductors
such as InSb where the band gap is large compared
with the impurity energy, a similar mechanism, al-

though instrinsically absent, can be induced' by the
application of a magnetic field which is high
enough that the separation between the Landau
levels is greater than the impurity energy. In this
case the impurity states associated with each Lan-
dau level (except the lowest) would overlap with
the continuum of the lower level(s), once again giv-

ing rise to the possibility of resonance states. "

Extensive work, which has been reviewed by
Kaplan, ' ' has been done on the energy of these
states, treating them as bound. Some model calcu-
lations have also been done by Qastard on their
width. The purpose of this paper is to present a
theory which calculates the resonance energy and
the width using realistic potentials. We use the
one-band effective-mass approximation although
the method can be readily modified to include the
effect of nonparabolicity.

In the simplest version of the effective mass ap-
proximation, the one band isotropic case, the prob-
lem of the impurity states in a magnetic field is
the same (except for the screening) as the classic
problem of the hydrogen atom in a magnetic field,
discussed by various authors, e.g., Schiff and
Snyder. The resulting Schrodinger equation being
a partial differential equation in two variables
which are not separable, has not been solved exact-
ly. Certain approximation schemes, applicable
under different conditions, can be devised to
separate the variables. The most widely explored is
the so-called adiabatic approximation (AA), valid
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under high magnetic fields where the rapid trans-
verse motion of the electron can be decoupled from
the longitudinal motion in the same spirit as the
decoupling of the motion of the electrons in a lat-
tice from that of the slow moving ions. Shinada
and Sugano proposed another scheme called the
"two-dimensional" model in which the longitudinal
motion is suppressed by taking m ~/m

~~

~0 which,
although valid only for highly anisotropic semicon-
ductors, has the advantage of being able to treat
the transverse motion in the presence of arbitrary
magnetic fields (plus, of course, the Coulomb
field). While each of these approximations under
their respective conditions of applicability is ex-

pected to give reasonable results for the Coulomb
states associated with the lowest Landau level, nei-

ther of them is suitable for the study of magneti-

cally induced resonances because of their inability
to include an essential ingredient of the problem,
namely the interaction (arising from overlap, or
even just the proximity) of the longitudinal states
associated with different transverse states. The
longitudinal motion, if considered, is taken to be
affected by one or more Landau levels only

through the potential presented to the longitudinal
motion, but different longitudinal motions them

selves are never mixed. %e present a scheme
which takes this interaction into account and
which reduces to the adiabatic approximation when
this interaction is neglected. The scheme is based
on an expansion of the impurity wave function in
terms of the free-electron Landau wave function
which yields an infinite set of coupled equations
because the impurity potential mixes the longitudi-
nal part of any Landau state to that of a/I others.
The coupling between different levels can be trun-
cated to a finite number which depends upon the
values of the magnetic field and energy and upon
the accuracy desired. For the case of one open
channel, this finite set of coupled equations can be
solved by the multicomponent generalization of the
Kohn variational method for phase shifts, as in
Ref. 2.

In Sec. II we obtain the infinite set of coupled
equations. In Sec. III we discuss the application of
a truncated set of these equations to the study of
resonance. In Sec. IV we discuss the variational
methods for the phase shifts and in Sec. V the

II. IMPURITY ATOM IN A MAGNETIC FIELD

In the parabolic band model, the Schrodinger
equation for the impurity wave functions in the
presence of the magnetic field and a spherically
symmetric impurity potential V(r) is '

3 2m~I. e — —+ V(r) /=ed,P gZ2 f2

where
r T

1 8 8 1 8 ip
LPg= —

P + — +
p ~p ~p p ~p 2l

(2)

l represents the cyclotron radius and is equal to
v'Ac/eH, e=2m*E/I To sol.ve (I), we expand g
in terms of the free-electron Landau wave func-
tions

Q X„I(p)e"Z, ((z).,
21r

(3)

where

1 ikz
Z„I(z)= g a„g e2' (4)

Substituting (3) into (1), and noting that"

I,eX„~(p)e"'=e—.IX.i(p)e',

where

%co~ n + +0 2m* I /+~1
~

2 2

we get

2S

boundary conditions for the wave function and the
consequent modifications in the Kohn expression
for the phase shift. In Sec. VI we give the results
of a numerical calculation for the resonant level
below the n=1 Landau level for InSb assuming the
coupling only between n =0 and n = 1.
Throughout we have assumed a parabolic band but
the treatment can readily be extended to include
the effect of nonparabolicity. For the numerical
calculation we have used screened potentials calcu-
lated from the theory of Jog and Wallace.

2—QX„v(p)e" Z„"I + V(+p +z ) QX„t(p)e' Z„I =+(e e„1)X„te' Z„~,—Z„'ll = zZ„~.
n', 1'
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Multiplying (7) by p P„t (p) e ' and integrating
over p and 0, we get

II—Znl —~ Inn lZn l Gnl+nl ~ (8)

where

p dp V(p +z )X„tX„t
2m 2 2

nn

and

0
~nl =~—~nl. (10)

(Note that Vis an attractive potential, so I«& 0.)
The simultaneous equations (8) which have to be
solved self-consistently, from the basis of our
analysis of the resonance states. But before we
proceed to study resonances in Sec. III, we note the
following points.

(1) The coupling in (8) is between longitudinal
"wave functions" Znl with "energies" e„l where, as
is evident from (10), e„t is the residual energy ob-
tained by subtracting the energy e„l of the trans-
verse motion from the total energy e.

(2) The coupling in (8) is only between states of
the same I. This is expected because the coupling
potential is spherically symmetric. Note that al-
though there is no coupling between states of dif-
ferent l, the coupling potential itself does depend
upon l.

(3) The adiabatic approximation roughly corre-
sponds to replacing Z„ t (n'Qn) in (8) by Z„ I„t„ /t
(e„t-e„t) for e = e„t. Thus, the AA consists in
considering that the dominant contribution to the
impurity wave function of azimuthal quantum
number I and energy e comes from the band nl for
which e„t is closest to e; the contribution from the
other bands is smaller in the ratio of the mixing
integral I«and the energy difference (E„-E'„).
As y~ oo, Z„ t/Z„t ~ 0 for n'Qn, which is the
approximation considered by Yafet et al. Howev-

er, it is important to note that the final equation
for the longitudinal state in the adiabatic approxi-
rnation involves only one value of n and l. Thus,
the limited mixing, considered in AA, amounts
simply to a renormalization' of the original state
without permitting its free mixing with other states.
Depending upon the sophistication of the adiabatic
procedure followed by different authors, this renor-
malization has been carried anywhere from the
lowest order of perturbation (Yafet et al.6) to all
orders. ' However, this clinging of a longitudinal
state to its parent Landau state is hardly likely to
be satisfactory when there are overlapping bands,

an essential feature of the resonance under study.
(4) The Z„i's obtained by solving (8) self-

consistently will give an exact solution of the prob-
lem for any magnetic field. However, the compu-
tational effort increases greatly with the number of
Z„t's included in the self-consistent scheme. To
keep this number small, one must restrict oneself
to high fields and low energies. The field must be
high in order that the Coulomb energy is small
compared with fico, which reduces the effect of
Landau levels on each other, brought about by the
impurity potential. Furthermore, the energy must
be small because for any energy, the coupling be-
tween the adjacent Landau level and all the lower
ones has to be considered in any case,

In the following three sections we discuss the
solution of these coupled equations for a two-
component system. From the presentation, it
would be evident that the method applies equally
well to a multicomponent system with one open
channel. '

III. APPLICATION TO RESONANCE

All that there is to know about the impurity
states is contained in the self-consistent equations
(8). Equations of this type are well known' in the
study of the scattering (resonant or nonresonant) of
electrons from atoms and a great variety of
methods have been developed to solve them. The
problem of resonance may be approached in essen-

tially two different ways. One, due to Fano, ' con-
sists in considering a resonant state as nearly
bound and to study its decay into the various con-
tinua. The other is to consider it as a continuum
state which becomes nearly bound by the scattering
potential. For the case of parabolic band and two
Landau levels (n =0 and n = 1) for which we have
carried out the numerical calculations, the two ap-
proaches give consistent results. However, below
we discuss only the scattering approach because it
is broader in scope: Firstly, it is free from the re-
striction of narrow widths. Secondly, it can be
readily generalized to the case of multiple open
channels.

In (8), taking 1=0 and ignoring all coupling ex-

cept between n=0 and n=1, we get

—Z0 —I00Z0 —I0&Z& =k Z0

—Zi' —IiiZi —IipZp=(k —2S)Z),

where

m*cocS=
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and

k =e —S.

It is convenient to rewrite (11) in the matrix nota-
tion

L u=0,

where

L= — —k, 1+
dz2

IOO I01

—I]p 2S —I11

(12)

and

ZO
u =

Z 1

B5
aE E=E„

(I' & 0)

(here the subscript 0 has been dropped from 5).
For the study of scattering from realistic poten-
tials, variational methods have been found to be
particularly useful. These methods are briefiy dis-
cussed next.

IV. VARIATIONAL METHODS
FOR THE CALCULATION

OF THE PHASE SHIFT

Since the potentials I„„aresymmetrical about the
origin, parity commutes with the Hamiltonian and
all the information about the scattering is con-
tained in two phase shifts 50 and 51 corresponding,
respectively, to even and odd parity. I.et us con-
centrate only on the even case which should yield
the ground quasilocalized state. To find reso-

nance, we study 50 as a function of energy. If
5o(E) increases rapidly through n/2, the .resonant
energy E~ is given by the value of E at which 50
= ~/2 and the width I is given by

V. BOUNDARY CONDITIONS
AND THE FUNCTIONAL J

Even-parity solutions of (11) satisfy the boun-

dary conditions

Q(z) =Q( —z), (13a)

dz Z =0=0

where g stands for either Zo or Z~ (or any other
component included in the coupled equations). In
view of the evenness condition. (13a), we will res-
trict the remaining discussion only to z g 0 and
denote ~z~ by r

If Zp is the only open channel, we must also
have

Z1 =0,
P~ oo

Zo —: cos(kr+5).

(14a)

(14b)

A solution of the form of (14b) can, of course, oc-
cur only if the potentials asymptotically approach
zero faster than 1/r.

In order that the phase shift enter as a linear
parameter in the trial WF, it is convenient to
rewrite (14b) as

(WF) as in Joos et al. We found it possible to
choose nonlinear parameters for which the Kohn
method was free from such computational difficul-
ties over a very wide range of energy for all the
values of magnetic fields and screening parameter
for which the calculations were made. Further-
more, the second-order Kohn correction was rather
small, lending confidence to the suitability of the
trial WF. In Sec. V we discuss the boundary con-
ditions satisfied by the even-parity solution of (11)
and the functional J (which turns out to be the
same as for solutions of odd parity). The potential
used and the trial WF used are discussed in Sec. VI.

In variational methods the phase shift is calcu-
lated by estimating the stationary value of a certain
functional J of the wave function within the space
spanned by the trial wave functions. Two of these
methods, due to Kohn and due to Harris, have re-
cently been used by Joos, Das, and Wallace for
the study of resonance in zero-gap semiconductors
where the coupled equations are similar to (11). In
the present problem we have used the Kohn
method. Computational difficulties, commonly as-
sociated with this method, were avoided by intro-
ducing nonlinear parameters in the wave function

Zp -. coskr —k sinkr

5I=I[u +5u] —I[u ]=k M, , (16)

where

I[u]= I dr u L u.

where A. = tan 5.
With the boundary condition at the origin and

(15), it is easy to see that if u is the true WF and
su any variation in u subject to the same boundary
conditions as u itself, then we get
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Thus, the stationary functional J is given by (iii) Using BJ/BA, = 0 in (19) we get

J=I—kk. (17)
~Kahn

M)p
(21)

As in Joos et al. , the variational WF can be
written in the spinor form

2n

u= g CX;+C—AS,

where

1

X, = g,. 0 (odd i),

0
i(even i),

1C=C 0

(iv) A, given by (21) is the value of tan 5 for the
optimum WF. If I is the value of the integral in

(16) using the optimum WF, a still better estimate
of k can be obtained by using

1 detM
[A1Kohn =AKohn

11

(22)

where det M=MppM» —M&pMp~. (det M)/M&t is
the value of I for the optimum WF. The term
—I/k essentially amounts to modifying the op-
timum WF to bring the value of I closer to zero
(which is the value of I[u]).

The simplest choice for C is

C =coskz, (23)
1S=S 0

J(A)=Mpp+(Mpi+Mip)A, +MiiA, —kA, ,

where

(19)

Mpp ——
I
CILl AC+;+C I,

2n

Mgp ——
I

—S IL
l Q C A;+C l,

)
(

Mpi=l 6IL
l g —C,"A'; —S I,

)

(20)

My&=i —5IL
l g c,"X;—S—l.

with C having the asymptotic form coskr and S
the form sinkr in accordance with (15). Thus, all

the formalism of the Kohn method goes through

by changing S and C of the usual theory to C and
—S, respectively. In particular, we find the fol-
lowing.

(i) BJ/Bc; = 0 leads to two systems of 2n linear
equations: Two systems because each of the 2n

c s is written as C —A,C, the superscripts C and S
corresponding to cos and sin terms in (15), the
values of C and C separately being required for
the evaluation of A,.

(ii) If the equations for C and C,' can be solved
(failure would occur when the energy at which the
phase shift is being calculated, happens to be very
close to an eigenvalue of the Hamiltonian in the
space spanned by the ri s), we get

which is acceptable because it satisfies the bound-
ary condition at z=O. If, on the other hand, we

were to choose S to be sin kz, the derivative at the
origin would not be zero. An acceptable choice is

S= (1—e )sinkz, (24)

where d is a nonlinear parameter. The choice of
q's depends not only on boundary conditions at
z=O but also on the I« 's. These will be discussed
in Sec. VI following the discussion of the poten-
tials. It may be mentioned that for odd parity, J is
still given by (17) and (19); in (20), C and S are re-

placed by S and —C (just as in the usual Kohn
formalism); (21) and (22) remain unchanged.

VI. NUMERICAL CALCULATION

For the purpose of numerical calculation, we
chose InSb primarily because of the small effective
mass and large dielectric constant so that y may be
large enough for moderate magnetic fields. We
confine the calculation to the case where only the
n =0 Landau state is occupied' and all the spins
are aligned (which is readily achieved because of
the large spin splitting in InSb). The spins are tak-
en to be aligned to justify neglecting spin-orbit in-
teractions.

The potential used was the screened potential
calculated from the theory of Jog and Wallace.
The unscreened potential, although closer to the
conditions which one would choose for optical
experiments ' ' (which usually are for low densities
where screening is not very important), could not
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be used because of the requirement (see Sec. V)
that the I„„'smust go to zero faster than 1/z.
Screening may, however, be very weak, and the un-

screened case can, in principle, be obtained by ex-
trapolation.

In the theory of Jog and Wallace, screening
depends only on one dimensionless parameter p
which, for a given material, depends upon tem-
perature and on the ratio of N/H where N is the
number density of carriers. We calculated I and
Ez for three different values of p (=0.332, 0.193,
and 0.1) and three fields (25, 50, and 100 kG} for
each p. The first two values of p correspond to
T=2 k, N=10' carriers/cm, and H=50 and 100
kG.

In terms of p, I« 's are given by'

2m el„„(g)=, „„(g)
&o&'~

Now we discuss the choice of the localized func-
tions g needed for representing the inner part of u.
These functions are determined primarily by the
behavior of Z1 close to the origin. The solution of
Z1 in which we are interested is one which would
be a bound state in the absence of mixing. For a
single exponential potential of the form ae
(a & 0), the one-dimensional bound-state problem
can be solved exactly. The solution is a Bessel
function J„(X)with v ~ &

~

E
~
/P (~E~ is the bind-

ing energy measured from the bottom of the n = 1

continuum) and X= ve ~" . The various terms
in the expansion of the Bessel function have the
form e ' e ~' "with i an integer taking dif-
ferent values from 1 to oo and a' = (2m~E~/
fi )'~ . Since ri's are determined primarily from the
behavior of Z1 close to the origin where the poten-
tial (26) can be written as a single exponential, the
most suitable form of q; must be

= (a ) &2y&„„(g) (25)
—a'r —P(i —1)rg;=e e

where

W«(g}= f dx P„„.(x)e "exp (
(x +pe

—")'"
and

But q; given above does not satisfy the boundary
condition (13b), so we modify the above ri; to the
form

1 I+r e e
—a r —P(r —1)r

a'+(i —1)P
g=z/iv 2.

P«are polynomials, a few of which are given by

P00 1, Po&=Pi—p—x, P]] =(1———x),

or

1 II

+x e e
—a x —(r —1)x

a'+ (i 1)—
(27)

W„„(g)=C)e ' +C2e (26)

Three exponentials were found to fit for g & 11
with an error of less than 0.1% for p=0.332 and
0.193. For p=0.1, the error was about 1% at cer-
tain points but much less for the important region
of small g (less than 0.1% for g& 3). The form
(26) results in a saving of the computer time be-
cause the integrals in (20) can be performed analyt-
ically.

Ppz ———,x, P,2=P2) ——x(2—2x+ —,x ),
2 I 2

Pz2 ——(1 —2x+ —,x ) .

For a given p, Jr«, (g) may be calculated once
and for all, different values of H affecting I„„(z)
only through scaling (which enters in two places:
in V 2lg and in y). W«(g) was found to have a
feature which considerably reduced the computer
time. It was noted that unless p was very small,
the integral could be written as a sum of exponen-
tials of the form

where a" = a'/I3 and x =Pr
Therefore, the variational WF has three non-

linear parameters: u' and P in (27) and d in (24).
With P= 1 and d=10, values of 5 were found to
be stable with respect to variation of a' and with
respect to the number of g's used in u for all the
calculations made. The best value of a' varied
from 0.5 to 1.0. For each p and H, the search for
ER was found to be considerably simplified by
finding Ezo, an approximate value of Ez, by
direct integration of the Schrodinger equation for
Z, with no mixing. From 5= 5(E) with E= Eqo,
we obtained d5/dE (hence, I ) analytically by fit-
ting 5 (E) with a polynomial. The results for I
and E~ for different values of p and H using nine
exponentials for the inner part of each Zo and Z1
are given in Table I.

It may be noted that as p is increased, the
resonant level becomes shallower since the binding
potential becomes weaker because of more effective
screening. As H is increased, the resonance be-
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TABLE I. Results for I and E~ for different values of p and H. Ez is measured from
the bottom of n=1 band downwards. Units of Ez and I are effective Rydbergs.

H (kG)

p
25
E

50 100

0.1

0.193

0.332

0.711
(0.025)

0.556
(0.027)
0.382
(0.028)

0.852
(0.020)

0.641
(0.022)
0.434
(0.024)

0.923
(0.015)
0.721
(0.018)
0.482
(0.019)

comes deeper primarily because of the presence of
y in I„„[see(25)].

The width I is found to increase with p but to
decrease with H. An increase of p, on the one
hand, tends to decrease I because of a decrease in
the strength of the mixing potential; on the other
hand, it tends to increase I because a given mixing
potential causes a greater spread of a shallower lev-

el. Evidently, in the range under investigation, the
latter effect dominates.

With H, the mixing potential increases but it be-
comes less effective in spreading the level both be-

cause of the increased gap between n =0 and n = 1

and because of the resonant level having become
deeper. The net effect is a decrease of I with H:
This feature may turn out to apply more generally
than just to the range considered.

It was also noted that for all p and H, the value
of I is comparable with the difference of Ett and

E~o, as is expected from the Kramer-Kronig rela-
tion.

For p =0.332 and H =50 kG, we also compared
the results of I and E~ with those obtained from
the Fano method. Eq, the superscript denoting
Fano, is, of course, the same as Eqo, discussed
above. I "was calculated by taking the unmixed

Zo to be just a plane wave, i.e., ignoring the effect
of I00 on the unmixed Zo. This gave I to be

about 20% larger than I (V denotes variational).
To check the consistency of the results, we recalcu-
lated I by artificially setting Ioo ——0 and by
reducing Io~ by a factor of 10. In this case, I
and I matched almost exactly although I was
still too high by about 2%. E~ and Ezo were also
in almost perfect agreement because their differ-
ence is comparable with I which is reduced by a
factor of about 100 when the mixing potential is
reduced by a factor of 10. It may be mentioned
that restoring I00 to its actual value in the varia-
tional calculation increases I slightly although the
effect (on I or Ett ) is very small.

For comparison with the experimental results of
Kaplan, we approximated the unscreened poten-

3(b)

tial by a series of exponentials which agreed with
the exact numerical values of the potential to
within 2% up to (=12. At 50 kG, the resonance
energy was 3.42 Ry* but no reliable estimate of I
could be made because unlike the case of screened
potentials, the value of 5 was not stable with
respect to variation of a'. The value of the reso-
nance energy compares favorably with the experi-
mental result of about 4.8 Ry~ (read approximately
from Kaplan's diagram ' ') at 77 kG. We plan to
pursue the problem of the unscreened potential by
a direct integration of the two-component
Schrodinger equation.
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Transitions to n=1 state are still possible by optical

excitation.
To obtain the I„„'swe write the potential V(r) as a

Fourier transform

V(r) = v(q )e' q ' "d q.

Substituting this in Eq. (12) we integrate over p which

gives

2m*
I„„(Z)= — v (qp, q, )P„„(q~)

—]/2'q I iq i
pe ~ e 'dqzdq,

where

—1/2q I
X.oe ' '7t'..od'p.

In the high-field limit, U (q) has the form A/(q, + A )

where A and A depend only on qz. Thus the q, in-

tegral can be done immediately to yield Eq. (28).


