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Bloch electrons in finite crystals in the presence of a uniform electric field
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Taking the crystal potentials to be of the Mathieu type, we have investigated the energy

spectrum and the wave functions of Bloch electrons in finite crystals in the presence of a
uniform electric field. Our main purpose is to examine the various aspects related to the
(Wannier) Stark ladders (SL) in finite crystals. The treatment depends on solving the
Schrodinger equation numerically; Gelarkin s approach, in combination with

Householder s tridiagonalization procedure and the Q 1. algor-ithm, is used for the pur-

pose. Our investigation takes into account both the infinite-wall boundary conditions and

the periodic boundary conditions, and it encompasses a wide range of parameters such as
the crystal potential strength, the electric field, and the length of the crystal. The results

obtained by us clarify the circumstances which would control the occurrence of SL and

throw considerable light on the nature of the wave functions corresponding to the SL
states.

I. INTRODUCTION

The study of the dynamics of Bloch electrons in
the presence of a uniform electric field began long
ago with the well-known Bloch's acceleration
theorem. ' In subsequent years, three developments
added considerably to the interest in the subject.
They are (a) the work of Zener in connection with
electrical breakdown in solid dielectrics, (b) the
development of Houston's wave function, ' and (c)
the prediction of Stark ladders (SL) in crystals by
Wannier. Of these three aspects, which are inter-
related, that of Stark ladders still seems to remain
a topic of intensive theoretical as well as experi-
mental studies. To see what features of Stark
ladders still require serious consideration, it is
necessary to review critically the salient works
relevant to this phenomenon as a whole.

A Stark ladder, known currently as a Wannier
Stark ladder, is essentially an equally spaced
ladderlike splitting of the band levels of Bloch elec-
trons, due to the presence of a uniform electric
field. Wannier's prediction "of this phenomenon
is concerned with infinite crystals and is based sub-

stantially on the translational symmetry of the
crystals. Briefly, Wannier's proof is as follows. The
Schrodinger equation for an electron in a one-
dimensional crystal in the presence of a uniform
electric field E can be written as

Hqt(x) =E+(x),

where

d
2 + V(x)+eEx

2~ dx

and e is the energy eigenvalue of the electron. The
periodic crystal potential V(x) = V(x —va), v being
an integer and a the lattice spacing. When we let
x~x —va, Eq. (1.1) takes the form

H%'(x —va ) =e„%'(x —va ),

where

e„=e+veEa.

(1.2)

Considering (1.1) and (1.2) together, one can say
that if %(x) is an eigenfunction of H with the
eigenvalue e, then %(x —va ) is also an eigenfunc-
tion of H with the eigenvalue e„.The spectrum of
energy levels e constitutes a ladder, the separation
between two consecutive levels in the ladder being
eEa. This ladder of energy levels was called a Stark
ladder by Wannier. According to a later analysis
by Wannier, ' ' "only one Stark ladder for each
band should occur.

Wannier's prediction of the Stark ladder was
critically examined by several authors from
theoretical as well as experimental standpoints.
While experimental work was concerned as expect-
ed with finite systems, theoretical studies were car-
ried out for both infinite and finite systems. We
first review the significant approaches followed in
the theoretical study of the SL in infinite systems;
this review is of great help in formulating the
methods for probing the SL in finite systems —a
topic to which this paper, as discussed later, is de-
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e„„=e„(k)+eEX„„(k)+vP,

v=0, 1,2, ...
(1.3)

where e„ is the energy of the vth level in the nth
band,

X„„(k)=(U„k U„k),
a

X

[U„k is the periodic part of the Bloch function
corresponding to nk, and P = eEa. The entity
eEX„„(k)is the intraband shift of the levels e„(k)
due to the presence of the electric field, while P is
the separation between two consecutive levels in
the Stark ladder. The form of P is the same as was
predicted first by Wannier [Eq. (1.2)], and it will
be referred to as Wannier spacing (WS). For very

voted.
The theoretical studies in regard to the SL in in-

finite systems were based on various approxima-
tions and mathematical techniques. Zak, who
used the k-q representation among other things,
challenged the existence of Stark ladders. A point
of Zak's criticism of Wannier's prediction is the ar-
gument that there is no restriction on e [in (1.1)
and (1.2)] that one starts with, and hence there is
no reason to conclude that the energy spectrum is
quantized; all energies, according to Zak, are al-
lowed. Moyer predicted that below a certain criti-
cal field, each energy band splits into not just
one ' ' "but many ladders, the number of such
ladders increasing with a decrease in the electric
field. Avron pointed out that SL states are meta-
stable. The works of Moyer and Avron aggravated
the controversy initiated earlier by Zak about the
validity of Wannier s prediction. Davison and co-
workers ' studied the problem of Stark ladders
in infinite systems by using the tight-binding ap-
proximation (TBA}, and their results indicated the
occurrence of Stark ladders; however, later Avron
et al. " pointed out certain limitations of the
results obtained on the basis of the TBA. Lukes
and Somaratna used' the Green's-function tech-
nique to study Stark ladders in infinite systems,
and the present authors (Roy and Mahapatra) em-

ployed' the evolution operator techniqe in this re-

gard; these works clarified several general aspects
in relation to Stark ladders in infinite systems. It
can be said at present that Stark ladders exist in
infinite systems for fields which are not too high.
The energy spectrum relevant to such Stark ladders
is given@ ' "' '"""as follows (the overbar indi-
cates the average with k):

high fields, Zener tunneling becomes appreciable,
giving rise to a broadening' '"""of the levels
given by (1.3} and resulting thereby ultimately in a
continuous energy spectrum. Obviously, therefore,
one would not expect the occurrence of Stark
ladders when the electric field is very high.

The above discussion gives a review of the major
approaches and important findings regarding Stark
ladders in infinite systems. Now, the systems we
deal with in practice are finite and the results
relevant to the infinite systems may not, for vari-
ous reasons (discussed in the next paragraph), hold

true for finite systems. Hence the question of Stark
ladders in finite systems needs to be examined on
its own footing. Before taking up the discussion of
theoretical work on finite systems, we review the
experimental investigation in regard to Stark
ladders. The experimental results obviously provide
a basis for judging the validity of the theoretical
findings about Stark ladders in finite systems. The
work of Koss and Lambert' is a significant exper-
imental investigation of Stark ladders. The impetus
to their experiment was supplied by an earlier
theoretical work of Callaway, ' who predicted that
the absorption coefficient in the presence of a uni-
form electric field would possess a staircaselike
structure if one assumes the existence of SL. Koss
and Lambert measured the optical absorption coef-
ficient in GaAs crystals in the presence of a uni-
form electric field and observed that Callaway's
prediction is true. The results of Koss and Lambert
can thus be taken as experimental evidence of the
occurrence' "of Stark ladders. Another experi-
ment that indicates the occurrence of Stark ladders
was reported by Maekawa. ' His investigation was
concerned with the study of the variation of the
conductivity with the electric field. Maekawa s re-
sults indicated oscillations of the conductivity with
the electric field. The peaks of such oscillations
were found to occur at the electric fields E given

by E=Aco/nae, where co is the long-wavelength
phonon frequency. Maekawa's results were ex-

plained by Saitoh' on the assumption that Stark
ladders exist.

As mentioned earlier, proper interpretation of
the questions related to Stark ladders in practical
systems is possible only by the theoretical treat-
ment of the cases of finite systems in this respect.
The mathematical approaches relevant to infinite
systems are often not applicable to the finite cases;
the difficulty arises out of the fact that the k
values for the latter systems are discrete. A large
number of studies of finite systems is carried out (I)
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with an analysis of difference equations' ' ob-
tained on the basis of the TBA, and (II) with the
numerical solution of the Schrodinger equa-
tion relevant to the problem. The treatment based
on the TBA indicates, in a limited way, the oc-

1

currence of Stark ladders in finite systems. The ap-
proach of the TBA in regard to Stark ladders has,
however, been criticized by some authors. "
Compared with the approach of the TBA, the nu-

merical solution of the Schrodinger equation with
the use of suitable boundary conditions (BC) is ex-

pected to be a better method. (Recently, the numer-
ical approach has been applied as well to infinite
systems. ) Rabinovitch and Zak (RZ) used the
infinite-wall boundary conditions (IWBC) to study
numerically the problem of Stark ladders in finite
systems. They studied the energy spectrum as well

as the wave functions for the purpose. Their energy
spectrum did not reveal the occurrence of SL, and
their wave functions did not correspondingly exhi-
bit the localization expected of the SL states.
Later, Rabinovitch, also using the IWBC, found
that SL occur in finite systems only for very large
periodic potentials. However, Rabinovitch did not
study the wave functions, which are very essential
for understanding several features of the SL.

From the discussion in the preceding paragraph,
it appears that the understanding of the problem of
SL in finite systems is not yet complete. The pur-
pose of this paper is to make an exhaustive analysis
of the various aspects related to the SL in finite
systems. Our investigation is based on a numerical
treatment of the Schrodinger equation, with the use
of both the IWBC (Sec. II) and the periodic boun-
dary conditions (PBC) (Sec. III). We have comput-
ed the energy spectrum as well as the wave func-
tions, corresponding to a wide range of the periodic
potentials and the electric field. The PBC are the
only kind of boundary conditions which conform
to the translational symmetry of the crystals and
are therefore considered to be more realistic than
the IWBC. In view of the superiority of the PBC
over the IWBC, we have put more emphasis on the
former, and while the energy spectrum is computed
for both kinds of the boundary conditions, the
wave functions are obtained only for the PBC. The
numerical approach (Sec. IV) we have followed is
based on the use of Gelarkin's method, together
with Householder s tridiagonalization (HTD) pro-
cedure and the Q-L algorithm. Our results ade-
quately clarify (Secs. V and VI) the circumstances
that would control the occurrence of the SL in fin-
ite systems and throw considerable light on the na-

ture of the wave functions associated with the SL
states in such systems. In particular, our investiga-
tion leads to certain new criteria [Eqs. (5.2), (5.3),
and (5.10)] governing the occurrence of SL in finite
systems, and some of these criteria [(5.2) and (5.3)]
explain convincingly (Sec. VI) why some earlier au-
thors could not obtain any SL in finite systems.
Furthermore, our work reports for the first time
the transitional symmetry of the wave functions as-
sociated with Stark ladders in finite systems, and
our results with the PBC are of special significance
in the context of an analytical observation by Rabi-
novitch regarding the compatibility of the PBC
with finite crystals in the presence of an electric
field.

HV(x) =@%(x),

where

d
2 + V(x)+eEx2' dx

and the Mathieu-type potential is

(2.1)

V(x)=2K 1 —cos
2'7TX

a

The crystal is considered to be of length L ( =Na)
and the finiteness of the crystal is incorporated in
the IWBC as follows:

%(0)=4'(L) =0. (2.2)

Taking the BC (2.2) into account, we solve the
equation of motion (2.1) by using a method of
Gelarkin. The starting point for this method is
the choice of the trial functions satisfying the
prescribed boundary conditions. We choose, as our
trial functions, the trigonometric function
sin(iirx/L) (i =1,2, ...). These functions obviously
satisfy the BC (2.2). In terms of these trial func-
tions, the approximate wave function 4'z is written
as

II. THE TREATMENT WITH THE IWBC

We consider a one-dimensional Mathieu-type
crystal in a constant electric field. Slater dis-
cussed that the Mathieu-type crystal corresponds
fairly well to realistic situations, and some authors
studied ' the one-dimensional Mathieu-type crys-
tal also in regard to the SL. The situations just
mentioned have prompted us to choose the
Mathieu-type potential for describing the crystal
potential. Now, the Schrodinger equation for our
system appears as
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%„(x)=g b; sin (2.3)
In view of (2.3), the set of M equations (2.4) leads
to an eigenvalue equation of the form

If qsz is to be the solution of (2.1), it should satisfy
the following equation:

I (H e)V—q(x) dx=0,
Bb;

(2.4)
s 2p ~ ~ ~ /Ms

Bb =eb. (2.5)

b is a column vector with elements b;. B is an
(M)&M) matrix which is real and symmetric; the
elements of B are given by

B,j——
h' ., eEL 4eELij I

SmL 22J +
2

+ ~+~5Nj ~ij+ .2 .2 2 [( I) 1]~(&—j (r ~~2N(i —j(+II ~2N(i+j)~)i —j )r~(i —j )

r =1,2, ...,M —1. (2 6)

Equation (2.5) gives us the eigenvalue as well as coefficients b;; by restoring the b; s in (2.3), we get the
wave functions. The numerical analysis pertinent to the computation of the energy spectrum and the wave
functions in the light of (2.5) is discussed in Sec. IV.

III. THE TREATMENT WITH THE PBC

We consider here a finite Mathieu-type crystal subject to the PBC. The PBC, as mentioned in the Intro-
duction, are more physical than the IWBC. The PBC can be expressed as

qs(x) =%(x +I.) (3.1)

The behavior of the electrons is now described by the Schrodinger equation of motion (2.1) together with the
BC (3.1). As we did in the case of the IWBC, we use the Ge]arkin method to solve also the Schrodinger
equation under the PBC. For the present case, we choose as trial functions the trigonometric functions
sin(2irix/L) and cos(2irix/L), which obviously satisfy the BC (3.1). The approximate wave function %z, in
terms of these trial functions, can be written as

do . 2n ix 2irix%„(x)= + g d2;, sin +d2;cos (3.2)

(3.3)

If %z given by (3.2) is a solution of (2.1), it should satisfy (2.4) for every d;; we would get in all 2M+1
equations (the number of d s is 2M+1) of type (2.4). In the light of (3.2), these 2M + 1 equations lead to
the following eigenvalue equation:

Dd =ed.

d is a column vector with 2M+ 1 d; coefficients, while D is a real and symmetric matrix of order 2M+ 1;
the elements Dfj of D are given as follows:

DIj —— h s eEL
2m L +( 1) ~~(N/2)s (i)[(i+1)I2]s+f)(i/2)s)+2~+

2 ~ij

eEL
(5[(i+))/2]ssjO+f)iOii[(j+))/2]s) ~~II (f)(i/2)Nf)jO+f)i05(jl2)N)~ 2ms

eEL eELs
4ms

(~[(i pl )/2]s~(j/2)s + [2(i/2)s5[(j +1)/2]s )+ 2 2 (~(i/2)rS[(j+1)/2]s +5[(i+1)/2]s~(j/2)r )5) s —r (qn(r —s )

~l~N (r s) +( 1) ~N(r+s)S)s r(q1(~[(i+1)I2]s5[(—j+1)/2]r+5(il2)s~(j/2)r—)~ (3.4)
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where

IV. NUMERICAL ANALYSES

We have carried out numerical analyses concern-

ing the energy spectrum and the wave functions, as
well as some other features related to them. The
energy spectrum has been computed for both the
IWBC and PBC, while the wave functions are
computed only for the PBC. The procedure for
computing the energy spectrum is to solve the
equations relevant to the determinantal compatibil-
ities of the matrix equations (2.5) and (3.3), corre-

sponding, respectively, to the IWBC and PBC; the
matrices B and D are of orders 100 and 105,
respectively. For the purpose of computing the
wave functions (corresponding to the PBC only),
the eigenvector d is also evaluated and used in

(3.2).
The numerical technique used throughout is the

Householder's tridiagonalization (HTD) method, in

combination with the Q Lalgorithm. -This par-
ticular numerical procedure is followed for the
reason that an approach of this sort alone can give
us the complete set of the wave functions and ener-

gy eigenvalues. We have discussed in the Appendix
the mathematical features of the method and also
indicated its merit and degree of accuracy.

The energy spectrum is given in Figs. 1 —4, and
the wave functions are shown in Figs. 5 —7. Using
the results relevant to Figs. 1 —4, we have comput-
ed the values of certain entities such as the max-
imum level separation in the absence of the electric
field (E =0) and the Wannier spacing P (P=eEa).
These results are shown in Tables I and II; as dis-
cussed later, they are of great help (Sec. V) in es-
tablishing certain criteria regarding the occurrence
of Stark ladders. Further, we have studied the lo-
calization length relevant to the wave functions.
The localization length g~ is defined as

k =4+42 (4.1)

i,j =0, 1,...,2M,

q, r,s =1,2, ...,M.

Equation (3.3) determines the energy eigenvalues

(e) and the coefficients d;, which later give us the
wave functions via (3.2). The numerical analyses
pertinent to the use of (3.3) for computing the ener-

gy spectrum and the wave functions are discussed
in the next section.

g~ and g2 satisfy the following equations:

I
q'(xo+ 4)

I

'
=exp( —1),

[
%(xo —gg) [ =exp( —1),
/%(x, ) /'

(4.2)

(4.3)

where xo is the point at which
~

4
~

has the peak
value. Using the graphs of Figs. 5 —7, we comput-
ed the localization length as a function of certain
pertinent parameters and show these results in the
Figs. 8 and 9. These results help us to obtain a
substantial grasp of the relation between the oc-
currence of the SL and the localization of the SL
states.

V. RESULTS

A. Energy spectrum for the IWBC

As discussed in Sec. IV, the energy spectrum
corresponding to the IWBC is computed on the
basis of (2.5); the results in this respect are shown
in the graphs of Figs. 1 and 2. The energy spec-
trum is computed for varying values of the length

L, the crystal potential strength 8', and the electric
field E; these three parameters are closely related
to the problem.

The graphs in Fig. 1 show the general pattern of
the energy spectrum for diAerent fields for 8'=4.5

eV. The energy eigenvalues for the zero-field case
show the usual features. Thus, they have direct
connection with the wave number k, and group
themselves into allowed bands separated by forbid-
den gaps, except for one allowed energy value
which falls in a forbidden gap and corresponds to
a surface state. Furthermore, the number of levels
in an allowed band equals the number (20 in our
case) of unit cells in the crystal. With the applica-
tion of the field, the energy eigenvalues become a
function of the number monitoring the states, and
we notice the occurrence of Stark ladders in certain
cases. Thus for E=3& 10 V/m, the smaller of
the two fields in Fig. 1, all energy eigenvalues of
the first band except the two levels near the band
edges form a Stark ladder, i.e., they are equally
spaced. The spacing between the levels forming the
SL is seen to be 0.1696 eV, which corresponds to
the Wannier spacing P as given in (1.3), and the
spacing between the two levels near the band edges
differs from the level spacing in the SL by about
2%. With regard to the case of the second band
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FIG. 1. Energy spectra for a finite Mathieu-type crystal in the presence of uniform electric fields E and subjected to
IWBC. The crystal parameters are as follows: 8'.=4.5 eV, L=20a, and a=5.6532 A. In the absence of the field

(E=O), the dependence of the energy levels (e) on the wave number (k) is shown. In the presence of the field (E =3)& 10'
and 3&(10 V/m), the dependence of the energy levels (e) on the level number (v) is shown. For all the three values of E,
the identification of the energy levels is as follows: ~, levels of the first band; O, levels of the second band; A, levels of
the third band; El, surface levels.

e„o=e„(k)+eEX„„(k) (5 1)

for this field, about 11 levels near the center out of
a total of 20 levels form a Stark ladder, while no
Stark ladder occurs in a band higher than the
second one. The occurrence of a Stark ladder for a
fraction of the levels in the second band corro-
borates the idea of quasi-Stark-ladders reported by
Heinrich and Jones. ' Considering those graphs in

Fig. 1 which correspond to the higher field (3)& 109

V/m), we find that SL occur now in both the first
and second band, but not in any other higher band.
The SL spacing is seen to be 1.6959 eV, which
again corresponds to the WS P. It is noteworthy
that the SL in the two bands have an overlap. %e
find that in the cases where complete SL exist (i.e.,
the first band levels for E=3&10 V/m and the
first and second band levels for E=3&& 10 V/m),
the zeroth level, e„o, corresponds to (1.3):

The results in the graphs of Fig. 2 illustrate the
effect of the variation of the crystal length on the
SL pattern; also, comparison of the results in Figs.
1 and 2 would indicate the effect of the change of
the crystal potential on the SL. The values chosen
for a (=5.6532 A) and W (=0.75 eV) are similar
to those in GaAs crystal —a system used in experi-
mental studies' of SL. It is seen that for the par-
ticular field (i.e., 8.495 X 10 V/m) chosen, SL do
not occur for L=20a, but they do occur for the
higher length L=50a. To comprehend thoroughly
the roles of the length of the crystal and the crystal
potential on the occurrence of SL, we have com-
piled Table I by using, as mentioned earlier (Sec.
IV), the results relevant to Figs. 1 and 2. This
table, together with Figs. 1 and 2, indicates that
the Stark ladder begins to occur at first around the
center of the band if the following inequality is sa-
tisfied:
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FIG. 2. Comparison of the energy spectra of two finite Mathieu-type crystals in a uniform electric field and subjected
to IWBC. The crystals are of length 20a and 50a. All other parameters are the same for both lengths; their values are
as follows: 8'=0.75 eV, E=8.495)& 10 V/m, and a=5.6532 A. The graphs show the dependence of the energy levels

(e) on the level number (v):, levels of first band; 0, levels of second band; El, surface levels.

(h,„)„i&eEa, (5.2)

B. Energy spectrum for the PBC

The energy spectrum corresponding to the PBC
is shown in the graphs of Figs. 3 and 4. The value

where (b,„)„lis the maximum level separation in
the nth band for E=O under the IWBC. The table
further suggests that a larger number of levels get
involved with the SL when inequality (5.2) be-
comes more pronounced. Now it is known that the
maximum (zero-field) level separation in any band
would be smaller for larger 8' and larger L. Hence,
in view of (5.2), we expect that when the field and
the crystal potential are fixed, the occurrence of SL
would be favored if L is large. This explains the
difference with respect to the results for L =20a
and 50a in Fig. 2. In view of (5.2), we note also
that when the length and the field are given, the
chance of occurence of the SL would become large
if the electrons are very tightly bound.

of W in Fig. 3 is quite high (4.5 eV); this choice
makes the maximum value of the (zero-field) level

separation small or, equivalently, the band gap
large. These situations allow us to examine the SL
over quite wide ranges of the electric field. The
value of W in Fig. 4 is quite small (0.75 eV) and is
similar to the crystal potential in GaAs, as was the
case in Fig. 2; the results in Fig. 4 would help ex-

plain the occurrence of the SL for weakly bound
electrons.

Considering Fig. 3, we find that for E=O the
states (as expected) group themselves into allowed
bands separated by forbidden gaps, the number of
states in any band equaling that of the unit cells
(21) in the crystal. Furthermore, the states have
direct connection with the wave number and they
are doubly degenerate. With the application of the
field, the distribution of the states changes, the en-

ergy eigenvalues in each band becoming (as they do
for the case of IWBC) functions of the number
monitoring the states. For E=3)& 10 V/m, the
lower of the two fields, all the levels in the first
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TABLE I. The entries in this table are relevant to the results in Figs. 1 and 2. The total number of levels in a band
equals the number of unit cells. The symbol (6,„)„lmeans the maximum level separation in the nth band for E=O
under the I&BC. Values with asterisks are approximate.

8'
(eV)

Number of
unit cells

Band
number

(n)
(~max )nI

(eV) (V/m) (eV)

Number of
levels

forming
SL Remarks

4.5

4.5

4.5

4.5

0.75

0.75

0.75

0.75

0.75

20

20

20

20

20

20

40

50

50

0.009 32

0.069 47

0.009 32

0.06947

0.048'03

0.048 03

0.024

0.085*

3 y10'

3 X10'

3 g10'

3 ~10'

1.6 y10'

8.495 y 10'

5.2 y10'

8.495 g 10'

8.495 g 10'

0.1696

0.1696

1.6959

1.6959

0.009 04

0.048 02

0.0294

0.048 02

0.048 02

17

19

19

12

24

SL exist for
almost all
levels

SL exist
partly

SL exist for
all band lev-

els

SL exist for
all band lev-

els

SL do not
occur

SL do not
occur

SL exist
partly

SL exist
partly

SL do not
occur

band, except the surface state, form SL. In the
second band there occurs a partial SL involving all
'levels, except the surface state and three levels each
near the top and bottom of the band. In regard to
the third and still higher bands, no SL is seen to
occur. For this field, the SL spacing (0.1696 eV) in
both the first and the second bands again corre-
sponds to the WS, P. Compared to the cases of
Fig. 1, a larger fraction of levels (all 20 levels in

the first band and 14 out of 20 in the second band),
is now involved with the SL. This difference is ex-
plainable in light of condition (5.3), taking into ac-
count the fact that the length of the crystal for the
present situation is slightly larger than that corre-
sponding to Fig. 1; condition (5.3) is similar to
(5.2) and is described later in detail For the hig. her
field (E=3X 10 V/m) in Fig. 3, SL are observed
in both the first and second bands except for the
surface state in each of the two bands. The SL

here, like those in Fig. 2, overlap and the level

spacing in the SL corresponds to WS. For both
fields in Fig. 3, the zeroth level corresponds to (5.1)
when complete SL are present (i.e., the levels in the
first band for E=3&10 V/m and the levels in
both the first and the second bands for E=3)& 10
V/m).

The results in Fig. 4 are obtained for a system
which is, as mentioned earlier, similar to a one-
dimensional GaAs crystal. The graphs indicate the
results for E=0, 7.5&10, 1.25&10, and 2.5)&10
V/m. We have also computed the energy eigen-
values for E=5)& 10 V/m; these results are not
given in the graphs but are discussed below. For
E=7.5X10 V/m, no SL occur. For E=1.25
X 10 and 2.5X10 V/m, SL occur partially only
in the first band; out of a total of 20 band states,
the number of levels involved with the SL for the
two fields is, respectively, 8 and 13. For E
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FIG. 3. Energy spectra for a finite Mathieu-type crystal in presence of uniform electric fields (E) and subjected to
PBC. The crystal parameters are as follows: %=4.5 eV, L=21a, and a=5.6532 A. In the absence of the field (E=O),
the dependence of the energy levels (e) on the wave number (k) is shown. In presence of the field (E=3X10' and 3)& 10

V/m) the dependence of the energy levels on the level number (v) is shown: ~, levels of the first band; o, levels of the

second band; X, levels of the third band; El, surface levels.

=5 &(10 Vim, we observe no kind of SL in any
band. This field is very high and is likely to give
rise to an appreciable Zener tunneling. The oc-
currence of Zener tunneling is expected to be re-

sponsible for the absence of the SL in a finite sys-

tem under very high fields, in very much the same

way as it disturbs the SL in infinite sys-
tems. ' ' "" For thorough comprehension of
the observations relevant to Figs. 3 and 4, we have

compiled Table II. The conclusions one can draw
from Table II are similar to those relevant to the
inequality (5.2), the inequality for the present case
being, of course, given by

1

g (~max)na «&~ . (5.3)

(h,„)„p is the maximum level separation in the
nth band for E=O under the PBC. The factor —, in

(5.3) is due to the second-order degeneracy of the

levels under the PBC.

C. The wave functions and the related aspects

The wave functions, computed for only the PBC,
are shown in Figs. 5 —7. Figure 5 shows the
results for E=O, and the others indicate the wave

functions in the presence of electric fields. We take
first the cases for E=O. RZ pointed out that, in
the absence of an electric field, the wave functions
near the nondegenerate band edges can be inter-

preted in terms of the effective-mass approximation
(EMA); according to the EMA, the wave functions
can be described as a product of the Mathieu func-
tion and a sine (or cosine) function. Our results
corroborate this observation of RZ with respect to
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FIG. 4. Energy spectra for a finite Mathieu-type crystal in the presence of an electric field (E) and subjected to the
PBC. The crystal parameters are as follows: %=0.75 eV, L=21a, and a=5.6532 A. In the absence of a field (E=O),
the dependence of the energy levels (e) on the wave number (k) is shown. For E+0 (E=7.5 )& 10, 1.25 X IO', and

2.5&(10 V/m), the dependence of the energy levels (e) on the level number (v) is shown: , levels of the first band; 0,
levels of the second band; H, surface levels.

%i ——cep(ro)f 2g co

1V
(5.4)

the wave functions near the nondegenerate band
edges. However, we note that the zero-field wave
functions near the degenerate band edges cannot be
described in terms of the EMA. This finding em-

erges from the nature of the wave functions near
the edges of the first and second bands in Figs. 5(a)
and 5(b). Let us first look at the cases of the non-
degenerate band edges. The lowest state in the first
band (e=4.274949 eV) and the highest state in the
second band (e= 12.393 86 eV) are nondegenerate,
and some states around these two can be described
in terms of the EMA. The mathematical forms 4&
and 4'2 of the wave functions corresponding,
respectively, to the states near the bottom of the
first band and the top of the second band, appear
as follows:

e,=~e, (~}f 2g co

1V
(5.5)

T

co
~ei(co)cos 2 ——P2

or

where pep(N) and ~e2(rp) are the two Mathieu
functions, rp=irx/a, and f(y) =sin(y) or cos(y). q
is an integer characterizing the states near the bot-
tom of the band; in practice, q can take the values

0, 1, or 2. That the EMA fails for those band
edges where the states are degenerate can be in-
ferred by looking at the wave functions near the
top of the first band (e=4.320738 eV) and the bot-
tom of the second band (e= 11.896411 eV). If the
EMA were valid for the wave functions near the
top of the first band, they would correspond to
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TABLE II. The entries in this table are relevant to the results in Figs. 3 and 4. The total number of levels in a ban
equals the number of unit cells. The symbol (h,„)„pmeans the maximum level separation in the nth band for E=O,
under the PBC.

W

(eV)

Number of
unit cells

Band
number

(n)

1
—,(~ .,),p

(eV)

g
(Vrm) {eV)

Number of
levels

forming

SL Remarks

4.5

4.5

4.5

0.75

0.75

0.75

0.75

21

21

21

21

21

21

0.038 98

0.003 08

0.038 98

0.045 46

0.045 46

0.045 46

0.045 46

3)& 10s

3X 10'

3X 10'

3X 10'

7.5 X 10

1.25)& 10

2 5&108

7.5y 10'

0.1696

0.1696

1.6959

0.0424

0.07066

0.141 33

0.424

20

14

20

13

16

SL exist for
all band lev-

els

SL exist
partly

SL exist for
all band lev-

els

SL exist for
all band lev-

els

SL do not
occur

SL exist
partly

SL exist
partly
SL exist
partly

N co
~e (co)sin 2 ——P

2

where P is an integer around N/2 but less than
N/2. Similarly, if the EMA were valid near the
bottom of the second band, the wave functions
there would correspond to

N co
eei(c0) cos 2 —P

2 N

or

N co
~ei(co)sin 2 ——P2 N

The graphs relevant to these wave functions [Figs.
5(a) and 5(b)] indicate that they are much more
complicated than what the EMA requires them to
be.

We now analyze the wave functions in the pres-
ence of the electric field; these wave functions are

shown in Figs. 6(a) and 6(b). We have taken
E=3)(10 V/m and the crystal potential the same
as that for Figs. 5(a) and 5(b). We first consider
some aspects related to the localization of the wave
functions, and we find it useful to recall in this
context the results in Fig. 3, which provide the en-

ergy spectrum for the situations in Figs. 6(a) and
6(b). We note that the energy spectrum pertinent to
the wave functions of Figs. 6(a} and 6(b} is such
that all energy eigenvalues in the first band, except
the surface state, form a complete SL, whereas in
the second band, only some levels around the
center of the band group themselves in the form of
one SL. Figures 6(a) and 6(b) show that the wave
function corresponding to the nth level becomes lo-
calized around the (n + 1)th atom. The localization
for a certain level in the first band is more than
that for the corresponding level in the second band.
This observation, in view of the aforementioned
features of the energy spectrum in the first and
second bands, suggests that the wave function is
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FIG. 5. (a) Wave functions for a finite Mathieu-type crystal in the absence of an electric field (E=O). The crystal
parameters are W=4.5 eV, L= 21a, and a=5.6532 A. The entity K' is related to the wave number (k) as K'=kL/2n. .
All of these wave functions refer to the first band and correspond to the use of PBC. (b) Wave functions in the second
band for a finite Mathieu-type crystal under the same conditions as those in (a).

most highly localized for the states in those bands
where complete Stark ladders occur. Besides the
SL states, the surface states also show localization
near the end atoms in the chain. The surface states
in Figs. 6(a) and 6(b) are those corresponding,
respectively, to a=5.836 509 and 13.945 39 eV.

That the wave functions for the SL states should
be localized is one of the main characteristics of
such states, and our numerical treatment also cor-
roborates this feature of the SL states. Further dis-
cussion of the localization of SL states is given
later.
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under the same conditions as those in (a).

The graphs in Figs. 6(a) and 6(b) establish that
the wave functions of the SL states follow the
translational symmetry ' as exp es yx ressed b

4„„+&(x+pa) =%„„(x), (5.6)

where n=1, 2 is the band index and v and p are
la-positive integers such that v+ p &X. The trans a-

tional symmetry is absent for the states which do
not form SL. An example of such states is provid-
ed by the wave function corresponding to e
=12.212029 eV in Fig. 6(b); this state pertains to

10the lower edge of the second band for E=3)&10
V/m in Fig. 3.

The question as to whether the EMA is applica-
ble to the wave functions in the presence of an

l tric field deserves serious considerations. Ac-
r thecording to the EMA, the wave functions for t e

electrons in a finite Mathieu-type crystal under a
uniform electric field should be the product of a
Mathieu function and a combination of the Airy
functions Ai and Bi, this combination depending
upon the BC one uses (PBC in our case). The wave
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k =go+ prlu (5.7)

where r)=eb /P p l. go can be interpreted as the
localization length for the isolated atom and pg is
a measure of the additional spread of the wave
function due to the combined action of the electric
field and the crystal potential. To see definitely
how the degree of localization of the wave func-
tions is connected with the occurrence of SL, we
have plotted the graph in Fig. 9; this graph leads
to the following relation:

functins for the SL states shown in Figs. 6(a), 6(b),
and 7 do not resemble any such product just men-
tioned, and hence the EMA does not seem to be
applicable to the SL states. This observation of
ours appears to contradict a prediction of RZ.
However, for the cases where SL do not occur [i.e.,
for small fields E where (5.3) is not satisfied], the
wave functions (not shown in the figures) were
found to resemble what RZ reported, and it may be
possible to interpret such wave functions in terms
of the EMA.

The nature of the wave functions of the SL
states depends significantly on the bandwidth, eb„,
and the SL spacing P (=eEa). The situation in this
respect is displayed in Figs. 7 and 8. Figure 7
shows in a general way how the spread of the wave
functions depends on eb„and E. More useful infor-
mation is provided by Fig. 8 which shows the lo-
calization length (gi) [introduced in (4.1)] as a
function of the ratio eb„/P. The graph in this fig-
ure leads to the following relation:

gi =go+(0.588)Za,

where
E(b, ,„)pz=

(5.8)

gi &go+0.588L .

Noting that go
——0.33a, (5.9) can be reduced to

(5.9)

gi &aL,

where a=0.33/N+0. 588.

(5.10)

UI. CRITICAL DISCUSSION
AND CONCLUDING REMARKS

In Sec. V, we have indicated the various features
of our results, more or less on their own merits. In
this section, we discuss critically and pointedly
how our findings compare with other results,
relevant to both finite and infinite systems. We em-

phasize in this context the following aspects.

A. The energy spectrum and the
occurrence of Stark ladders

Our study indicates that Stark ladders would oc-
cur in finite crystals, under both IWBC and PBC,

ko —to=0.33a .

(b, ,„)z is the maximum level separation according
to the PBC for E=O. Combining (5.8) with (5.3),
we come to the conclusion that for the occurrence
of SL, the following inequality must be satisfied:

C = l2.769942 eV
W=4.5 eV
6 = 3 x ip~ V/m
n=[, 0=4
cow = 0.045789 eV

x L

C =20.585997 eV
W=4.5 eV
r =s&~o v/rn
n=2, 0=4
8&w = 0.497449 eV

-4-
5 w

0==

C =3, 0&86ll eV
W =0-75 ev
g =2.5x Ipe V/m
n=i & Q= lP
Cgw = 0.594798 eV

C =2.453175 eV
W=0.75 eV
f = l.25 x )0 V / m

n= ), 9=12
Cgw = 0.594798 eV

FIG. 7. Wave functions of a finite Mathieu-type crystal in the presence of uniform electric fields and subjected to
PBC. The electric field (E) and various other parameters relevant to those wave functions are shown in the figure. The
parameter eb„corresponds to the bandwidth for E=O. For all graphs, L=21a and a=5.6532 A.
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FIG. 9. Variation of the localization length (gi) of SL
states with some pertinent parameters; X is the number
of units cells in the chain, (h,„)p is the maximum level
separation (under the PBC) for E=0. The calculated
values of gi are indicated by O.

provided certain criteria are satisfied. These cri-
teria, called henceforth as existence conditions, are
(5.2) and (5.3), corresponding, respectively, to the
IWBC and PBC. The existence conditions give the
lowest value of the field at which the levels around
the center of the band start forming a (partial)
Stark ladder, with more levels joining the Stark
ladder as the inequality becomes more and more
pronounced. Furthermore, the existence conditions
reveal that, in general, the electric field, the period-
ic crystal potential, and the length of the crystal,

all have a role to play in connection with the oc-
currence of the SL. Now, three questions arise in

regard to the just-mentioned features we obtained
for the energy spectrum. They are the following:

(a) How do the SL in finite systems compare with

the SL in infinite system? (b) How does our finding

that SL can occur in finite systems compare with

other theoretical work in this respect? (c) How do
our results compare with experimental findings,
which are obviously pertinent to the finite system?

In regard to question (a), we find that when SL
occur in finite systems they possess certain charac-
teristics typical of the SL in infinite systems. Thus
(I) the spacing in the SL in finite systems is the
same as P predicted "by Wannier for infinite sys-

tems, this equality being true for both the complete
and partial SL in finite systems, (II) for complete
SL in finite systems, the zeroth level is located in

the same way as predicted ' ' ""' ""for the
SL in infinite systems, and (III) the absence of SL
in finite systems under high fields can be explained
in terms of the occurrence of Zener tunneling in

the same way as explained for infinite sys-
13(b), 13(c),26

In regard to question (b), we note first that our
results generally confirm the findings of Sessa and
Sitte and Rabinovitch; these authors carried out
numerical studies to show that SL exist in finite
systems under certain conditions. Moreover, the
fact that we obtained partial SL in certain cases
corroborates the idea of quasi-Stark ladders report-
ed earlier by some authors. ' ' ' Our results, howev-

er, are in disagreement with those obtained by
RZ. We find that this disagreement can be resolved
amicably if we make use of inequality (5.2), togeth-
er with the role of the Zener tunneling. The ab-

sence of SL in the work of RZ for the lower values
of the field is due to the fact that these fields and
the relevant parameters (Fig. 5 in Ref. 24) do not
satisfy inequality (5.2); the reason why they did not
obtain any SL for higher fields (Fig. 7 in Ref. 24)
is due to the fact that these fields are very large
and they give rise to appreciable Zener tunneling.
The arguments just given also explain the absence
of the SL in the empty lattice case treated by RZ
(Fig. 2 in Ref. 24); for this system, the band gap is

negligibly small and any field for which existence
condition (5.2) is satisfied would give rise to an ap-
preciable Zener tunneling, thus barring the oc-
currence of SL.

Coming to question (c), we recollect that a few

experimental investigations' ' indicated the exis-
tance of SL; these positive experimental results ob-
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B. Wave functions of the SL states

We note the following. (a) Localization The.
wave functions of the SL states are found to be lo-
calized. This feature is also prevalent in the SL
states in infinite systems, as was discussed by
Wannier. "

As mentioned in Sec. V, the localization of the
wave functions of the SL states in finite systems
was also studied by Saitoh; he reported that for
the occurrence of SL, the localization length gt
should satisfy the following condition:

L. (6.1)

Condition (5.10) obtained by us is the analog of
(6.1). For most practical cases, (5.10) would reduce
to the following form:

viously confirm the occurrence of SL in finite sys-
tems. We can easily check that the circumstances
under which the experiments on SL were carried
out conform with our existence conditions and,
moreover, they make the effect of the Zener tunnel-

ing insignificant. For instance, Maekawa' made
use of the following parameters: the band gap,
Eo (=2%)=3 eV, N=3&10, E =10 V/m. For
these parameters, inequality (5.3) is easily satisfied,
due mainly to the higher value of N. Furthermore,
a band gap of 3 eV is too high to permit any ap-
preciable Zener tunneling for the value of E used in
the experiment.

We would now like to mention how our results

appear in the context of a study done by Rabino-
vitch. The fact that we have obtained solutions
to (2.1) under the PBC is in contradiction to
Rabinovitch's finding that the PBC is not pertinent
to a finite crystal in the presence of an electric
field. We feel that this contradiction can (perhaps)
be resolved by examining closely the translational
symmetry related to the system and accounting

properly for the surface levels to which the PBC
gives rise in the presence of an electric field [Figs.
3, 4, 6(a), and 6(b) in our work].

states in infinite systems. These authors studied nu-

merically a one-dimensional infinite system with a
Kronig-Penney potential. They found that Stark
ladders occur in such infinite systems when the
wave functions are localized, the criterion for a
sharp localization of the wave functions being that
Zener (interband) tunneling should be negligible. A
close examination of Fig. 1 of Ref. 26 shows that
the localization length for the SL states in the in-

finite system treated by Nagai and Kondo almost
corresponds to our formula (5.7). Thus one can say
that the localization of the wave functions charac-
terizing the SL states is independent of the size of
the crystal. However, our investigation has led ad-

ditionally to the result expressed by inequality
(6.2). This result, very significant for finite crystals,
indicates that there may be localization of the wave
functions and, yet, no Stark ladder may occur.
What determines the occurrence of the Stark
ladders is the condition that the degree of localiza-
tion of the wave function should conform to the
limit set by inequality (6.2).

(b) Translational symmetry of the wave functions.
In Sec. V, we discussed how the wave functions of
the SL states in a band exhibit translational sym-

metry [Eq. (5.6)]. The translational symmetry of
the SL states was predicted by Wannier~"' ' ' in
connection with infinite crystals; our investigation
shows that this feature is possessed by the SL
states in finite crystals as well.

In conclusion, we would like to note that the
periodic boundary condition is, as clearly discussed
in the Introduction, the most physical boundary
condition. The results obtained with the help of
this boundary condition are, consequently, of con-
siderable physical siginificance. It appears, howev-

er, that the quantitative study of the finite crystals
in an electric field with the use of PBC has not yet
received any attention. Viewed from these con-.

siderations, our exhaustive analyses of the energy
spectrum and the wave functions with the applica-
tion of the PBC are expected to resolve many
(rather longstanding) controversies in regard to
Stark ladders in finite systems.

gt (0.59L . (6.2)

Looking at (6.1) and (6.2), we can say that, com-
pared with Saitoh s finding, our investigation re-

quires a sharper degree of localization of the wave
functions for the occurrence of SL.

Worth discussing here are our results on the lo-
calization of the SL states with the numerical
results of Nagai and Kondo, in relation to the SL
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APPENDIX

As mentioned in Sec. IV, the purpose of this ap-
pendix is to discuss the mathematical features and
the advantages relevant to Householder's tridiago-
nalization method (HTD) and the Q Lal-go-
rithm; these approaches were applied to (2.5) and
(3.3) to determine the energy eigenvalues and the
corresponding eigenvectors. The matrices B and D,
corresponding to (2.5) and (3.3), respectively, are
real and symmetric; these properties being required
because the matrices provide the energy eigenvalues
e, which are real. A symmetric matrix, say B, can
be brought to the diagonal form, B', as follows:

this characteristic adds considerably to the accura-
cy of the results. We outline below the mathemati-
cal aspects of the HTD method and then indicate
the salient features of the Q-L algorithm, which
performs the task of reducing to diagonal form the
tridiagonal matrix obtained by the HTD method.

We consider the M )&M matrix B which is sym-
metric and real. The HTD method reduces B to a
tridiagonal form through M —2 similarity transfor-
mations, each of which brings an entire row and a
column to the desired form. The matrices P"
which perform these similarity transformations are
symmetric and involutary; explicitly, they appear
as given below:

B'=Z BZ, (Al) B(i) P(i)B(i +1)P(i)

where Z is an orthogonal matrix and ZT is the
transpose of Z. The diagonal elements of B' are
the eigenvalues of B, and the kth column of Z con-
tains the normed eigenvector corresponding to the
kth eigenvalue of B. The use of Householder's tri-
diagonalization method, in combination with the
Q-L algorithm, is regarded ' as the most efficient
and the fastest procedure, when it is necessary to
find out the complete set of eigenvalues and the
eigenvectors pertinent to a symmetric matrix.
These advantages lie substantially in the fact that
the HTD method —the first phase of the approach
towards diagonalizing a given symmetric matrix—
brings, during every step of transformation, a com-
plete row or a column to the desired form. This as-
pect of the HTD method has an edge over the oth-
er tridiagonalization methods such as the Givens
method; the latter kind of method, reduces to zero
only one element at a time outside the three diago-
nals which alone are required to have nonvanishing
elements. The HTD method thus requires fewer
steps to reduce a given (symmetric) matrix to its
tridiagonal form and becomes thereby relatively
economical and accurate. The HTD method has
another characteristic: the multiplication in every
step can be carried out without round-off error;

p(i) I Q(i)[Q(i)]Tye

e 1 [Q(i)]TQ(i)

(A3)

(A4)

is the normalizing factor,

B(M+1) (A5)

U"[U"] is a diadic product of a column vector
U" and its transposed (row) matrix [U(i)] . The
process starts with i =M, i being used as an index
for the M —2 similarity transformations. For
i =M, the elements of U' ' appear as

( U(M)) ()

(M) e[s+(B )M, M —1])M=(=

(B' +")M „v 8
( U(M))

2 (B(M+1)) ](/2

where n=1,2,..., M —2 and

M —1

s2 g (B(M+1))2
I=1

(A6)

Using (A6) the elements of the transformed matrix
B' ' are obtained as

(A7)

M —1 M —1

(B(M)) (B(M+1)) (B(M+1)) ~ (B(M+I)) (B(M+1)) (B(M+1)) ~ (B(M+1)) (B(M+1))
pq pq Mq MK Kp Mp ~ MK Kq

K=1 U K=1

1 M —1

(B M+
) (B M+

) y (B + ) (B( + )),(B(M+ )}
U K,B =1
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Zi (p(M)p(M —11 p(3)) (A8)

%e now consider the mathematical aspects relat-
ed to the application of the Q Lalgo-rithm. By ap-
plying this algorithm to the tridiagonal matrix
resulting from the HTD method and the accumu-
lated transformation matrix Z' concerned with it,
we obtain the eigenvalues and the eigenvectors of
the matrix B. In the Q Lalgorith-m, similarity
transformations are used for reducing the original
tridiagonal matrix to a sequence of similar tridiag-
onal matrices, such that the off-diagonal elements
become gradually smaller and smaller, and the tri-
diagonal matrix finally converges to the diagonal
form.

The Q Lalgorithm -is defined as

(3) TBs+i=L sQs

where

(A9)

where

U =(&'+&(B' +")M,M —1].
In B' ', the elements in the Mth row and column,
except the diagonal and the (principal) subdiagonal
elements, are zero. In the next step (i.e., i =M —1),
the similarity transformation reduces the (M —1)th
row and column to the proper form. %'hen contin-
ued to i =3, the process gives the desired tridiago-
nal form of B. The accumulated transformation
matrix Z', relevant to this tridiagonalization, is
given by

L, =Qs(B,' ' K—sI),
and B1

' ——B'3' is the tridiagonal matrix. Q, is a
unitary matrix and L, is a lower triangular ma-

trix; the term E,I is introduced to improve the
convergence of the nondiagonal elements to zero.

Q, can be determined in the factorized form

(Alo)

=P(s P(s)... (s)
Qs rl r2 rM —1' (Al 1)

The matrices r „"are determined in the order
r M' 1,..., rI", r„"'is a rotation in the (n, n +1)
plane designed to annihilate the (n, n + 1)th ele-

ment. Before iterations for each eigenvalue, the
symmetric tridiagonal matrix is checked for a pos-
sible splitting into submatrices. If a splitting oc-
curs, only the uppermost submatrix participates in
the next iteration, because the eigenvalues of each
of the submatrices can be obtained without refer-
ence to the others. The iterations continue until the
uppermost (1X1) principal submatrix splits from
the rest of the matrix; its element is taken to be an
eigenvalue and the algorithm proceeds with the
remaining submatrix. The process continues uritil

the matrix completely splits into submatrices of
order 1, i.e., the matrix reduces to the diagonal
form. The similarity transformation matrices Q,

T

are accumulated in Z, which is defined as
Z=Z'Qr; QT is the product of all the matrices Q,
connected with the Q Lalgorith-m. The kth
column of Z represents the eigenvector correspond-
ing to the kth eigenvalue of the matrix B.
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