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We report a theoretical survey of defect energetics in Q.-A1203 and rutile Ti02 which we

relate to structural and transport properties of these materials. The study of these crys-
tals has required us to modify our computational methods based on the Mott-Littleton

theory, which were previously confined to the treatment of cubic materials. We discuss
the theoretical aspects of a new and quite general computational procedure, HADES III,
which can be used for defect calculations on crystals of any symmetry. Our discussion

pays particular attention to the effects on the calculated energetics of the use of Mott-
Littleton methods adapted for anisotropic crystals. Other features, considered in detail,
are the sensitivity of calculated defect energies to the choice of lattice potential and to the
size of the atomistically simulated region surrounding the defect. We also compare our
results for Q.-A1203 and those of an earlier study of Dienes et al. Our calculations are
then used to discuss the simplest features of the defect properties of pure and doped 0.'-

Alz03 and TiO&. The present results support the dominance of Schottky disorder in both

crystals; cation Frenkel energies are high and anion Frenkel pairs may be of significance
in a-A1203. In addition we present a survey of doped alumina and of the effect of oxygen
partial pressure on the defect structure of this material. Our results suggest that defect
clustering will have a major influence on the properties of doped A1203.

I. INTRODUCTION

In recent years there has been considerable suc-
cess in the calculation of defect energies in ionic
oxides using computational methods. Studies of
UO2 (Ref. 1) and the divalent transition oxides2

have shown that methods based essentially on the
original work of Mott and Littleton can yield

good quantitative agreement between calculated
and experimental defect energies. Moreover, the
methods can be applied to the investigation of the
complex modes of defect aggregation in heavily de-

fective phases (see, e.g. , the study of Catlow and
Fender on Fei ~O).

The present study reports an extension of the
computational methods to more complex structures
than those which have hitherto been investigated.
Our paper has therefore two main purposes: first,
to report and discuss the modifications of tech-

nique that were necessary for the calculations on
the noncubic crystals A1303 and Ti02,' second, to
present our calculated energies for basic defects in
the pure and doped oxides, which we relate to ex-
perimental data on the materials. Our study con-
centrates on A1203. The calculations on TiOz are
used largely to illustrate the improvements follow-
ing from the use of our modified Mott-Littleton
code. A more detailed study of disorder in rutile
will be presented elsewhere.

Modification of the computational techniques is
necessary as previous work has been confined to
crystals with dielectric isotropy, that is to say, cry-
stals of cubic symmetry. (That a crystal be cubic
is a necessary but not a sufficient condition for the
validity of the defect simulation methods used to
date. Methods based on the model of dielectric
isotropy are only strictly applicable to a crystal in
which the paint-group symmetry of all lattice sites
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is cubic. Certain crystals where the system is cubic
may not fulfill this criterion; an example is the
perovskite structure where the anions are not at
sites of cubic symmetry. ) This restriction arises
essentially from the structure of the computational
techniques. These simulate the defective crystal by
surrounding the defect with an inner atomistically
treated region (region I) and an outer region (region
II) in which ionic displacements and dipoles are
calculated using simple formulas employing the
macroscopic dielectric constant (see Mott and
Littleton, and for a general discussion, Lidiard
and Norgett ). The calculations published to date
treat the latter region isotropically —an approxima-
tion which is strictly valid only for cubic crystals.

A further restriction of most previous calcula-
tions concerns the lattice potential used in the
treatment of the inner atomistic region. These po-
tentials have been derived empirically by fitting to
bulk crystal data —a procedure which should give a
reliable lattice model for separations close to those
observed for the perfect lattice but which for defec-
tive crystals, where the interatomic spacings may
differ considerably, is more questionable.

In our study particular attention will be paid to
the problems of the anisotropy of region II and of
the lattice potentials. As remarked, the crystals
are noncubic; the structures of both the corundum
lattice of alumina and the rutile lattice adopted by
TiOz are based on hexagonal close packing of the
oxide sublattice. We have therefore developed a
general computer code, HADES III, which can be
used for defect calculations on noncubic crystals.
The program supersedes the earlier HADES II pack-
age written by Norgett, ' ' which was confined to
cubic systems. The development of HADES III has
necessitated not only the introduction of anisotropy
in the treatment of region II as discussed above but
also modification of the symmetry routines which
previously had been specifically adapted for cubic
systems. These points will be further discussed in
Sec. II.

The role of crystal potentials in determining the
reliability of the calculations is also an important
theme of this paper. We will compare the results
of calculations performed using empirical poten-
tials of the type outlined above with those employ-
ing nonempirical potentials obtained from develop-
ments of the electron-gas model of Wedepohl"
and Gordon and Kim. ' ' This section of our
study will allow us to assess both the sensitivity of
our results to the crystal potential as well as the re-
liability of the two ways of parametrizing lattice

models.
Another feature determining the reliability of our

calculations is the size of the atomistically simulat-
ed region. Earlier studies on cubic materials, e.g.,
CaF2 (Ref. 14) and UO2 (Ref. 1), found rapid
monotonic convergence of the calculated defect en-

ergies to a constant value as the size of region I
was increased. We find that the behavior of non-

cubic materials is significantly different. The con-
vergence is slower; that is, larger sizes of the inner
region I are needed before the calculated defect en-

ergies become roughly constant. In addition, the
variation for noncubic crystals of the defect energy
with region size is irregular, contrasting with the
monotonic behavior generally observed for cubic
systems. We will return to these points in Sec. IV.

In the case of A1203, earlier theoretical defect
studies have been reported by Dienes et al. '

These workers used methods broadly similar to
those employed in this study, although there were
significant differences in both technique and in the
lattice potentials. Several of the results of their
study are in fair agreement with our calculations,
but in certain cases we do find large differences be-

tween the two sets of calculations. These will also
be considered in Sec. IV.

The following two sections contain an account of
the methods used in the defect calculations, paying
particular attention to the extensions of technique
necessary in the development of the completely
general HADES III package. Section III contains a
discussion of lattice potentials —both empirical and
nonempirical. Section IV presents our results on
basic defect energetics, and in Sec. V calculations
on doped A1203 are discussed. The defect struc-
ture of doped TiOz is complicated by the possibili-

ty of deviations from the stoichiometric composi-

tion; this is planned to be discussed in a separate
publication. Our discussion of the results will

highlight two aspects of the theory of defect ener-
getics: first, the comparison between the results ob-
tained for noncubic crystals using isotropic and an-
isotropic approximations for the dielectric continu-
um; second, the comparison of calculations based
on empirical and nonempirical potentials. Our
results illustrate the necessity, in certain cases, for
an accurate treatment of the dielectric anisotropy
of noncubic systems; furthermore, the sensitivity of
the calculated energies to the details of the indivi-
dual potentials is found to be critical for some de-
fects. Detailed comparison of our results with ex-
periment is not possible at this stage partly in view
of the complexity of the data. In addition, howev-
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er, such a discussion requires that defect mobility
be considered explicitly and calculations of this
sort will form the basis of subsequent publications.
General predictions of the defect and transport
properties, however, are possible, and in addition,
our calculations provide a guide as to the basic
features of the defect structure of the doped oxides.

II. DEFECT CALCULATIONS

The defect calculations reported in this paper are
based on the Mott-Littleton method developed by
Lidiard and Norgett and Norgett9, io and imple-
mented, for cubic materials, in the HADEs comput-
er package. For noncubic crystals, such as those
considered here, while the fundamental theory for
treating lattice defects remains the same, a number
of important changes in the formulation are essen-
tial to allow for the anisotropy of the structures.
Since an account of HADES methodology is not
generally available, the elements of the theory will

be outlined with an emphasis on the changes need-
ed for noncubic systems.

Throughout we follow the formulation presented
by Norgett. ' Quite formally, the crystal sur-

rounding a defect is divided into an inner region I,
which is explicitly relaxed and an outer region II,
which is treated by some suitable continuum ap-
proximation. The total energy of the system E can
then be written as

E =E, (x)+E2(x,g)+E3(g) (2.l)

in which Ei( x) is the energy of the inner region,
E3(g) the energy of the outer region and E2( x, g)
the interaction energy of regions I and II. x are
the independent coordinates describing the con-
figuration of the inner region while g are the dis-
placements in region II and are formally dis-
tinguished from x. E3(g) is assumed to be a qua-
dratic function of g; thus

E3(g)= —, g A g,

which together with the equilibriu~ condition,

BE2(x,g)

ag
+A g (2.3)

in which g, are the equilibrium values for g corre-
sponding to arbitrary values of x, leads to an alter-
native form for the total energy E which is given

by

l BEp(x, g)E =Ei(x) +E2(x, g, )——
ag

e

(2.4)

The significance of this rearrangement is that by
making certain assumptions about g„E can be
inade independent of E3(g, ), which formally ex-
tends to infinity. The revised expression involves
summation only over pairs of ions in region I, to-
gether with the interaction of I and II, of which
part can be made near local while the remainder
can be given in some closed form.

Now the defect energy E can be determined ei-
ther by direct minimization with respect to x, the
displacements in region I, i.e., by solving the equa-
tions dE /d x =0, or by the requirement that the
force on each ion is zero, (BE/Bx)& „„„——0. As
pointed out by Norgett, the former, though entire-

ly consistent, is difficult to apply in view of the
complicated nature of E as a function of x. The
"force-balance" requirement, on the other hand, is
rather more straightforward and is equivalent to
the direct minimization provided that the outer re-
gion is in equilibrium, i.e., (BE/Bg)-„=0, since

dE
dx

aE aE+
Bx - Bg —„Bx (2.5)

The solution of the force-balance equations for ion-
ic lattices has been discussed by Norgett and
Fletcher' who have described a method based on
the Fletcher-Powell variable-metric technique. '

The appropriate optimization procedures are im-
plemented in the HADES package and were used
throughout for the present calculations. Clearly, E
approaches the "true" defect energy as the size of
region I is increased, though this, of course, in-
creases the number of variables to be optimized
and hence the computational time. Now it is a
matter of experience that for convergence, the
number of ions needed in region I is of the order of
10, so that within a "shell-model" description of
the system the total number of variables is
-6X10, which is clearly prohibitive. A major
feature of the HADES formulation, then, is its maxi-
mal use of symmetry to reduce the number of
working variables to within reasonable limits. To
achieve this for the crystal structures reported here,
the complete subgroup of 48 cubic symmetry
operations was included in the symmetry process-

ing of' region I for Ti02, whereas for A1203 the cor-
responding subgroup consisted of 36 hexagonal ele-

ments. The net result is that for the present calcu-
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lations in excess of 10 ions could be included in
the explicit region.

Turning now to an explicit two-body representa-
tion for E, the energy of the perfect lattice is writ-
ten as

EL ——g@j(~R; —R,
~

) (2 6)

in which r are the displaced coordinates. The en-

ergy of the defect, therefore, is simply given by

E= y [@J(g; —rj ~
) —@~j( ~R; —RJ ~

)] .

(2.8)

Now the identification of Eq. (2.1) or its alternative
form, Eq. (2.4), with Eq. (2.8) is not quite as
straightforward a matter as it might seem. For
while E& is evidently given by

Ei= y [@~j([r; —rJ ()—@~j((R;—RJ [)],

in which 4,j is some suitable pair potential and R
the appropriate lattice coordinates. Likewise, the
energy of the lattice containing the defect is given

by

(2.7)

a simple summation of the type g,.~» .~» for the
outer region is not an adequate description of E3
since it is not a quadratic function of the displace-
ments r; —R;, as required by Eq. (2.2). Additional
interactions need to be included to suppress the
linear dependence on the displacement which arises
from the power-series expansion of
C&,z( ~

r; —rj
~

) —4&,z( ~
R; —RJ

~

) in region II.
After some manipulation it can be shown that the
correct expression for E3 is

E3= 2 [@~j( I
r —rj I

) —Aj( IR —Rj I )]

+ $ [@j(/R;—rj f
)—@j(/R;—R /)]

(2.10)

It contains a contribution, therefore, which corre-
sponds to a displaced region II with all the ions in
region I at their perfect lattice sites without de-
fects. E2, then, is given by

E2 +[4;j(——
~
r; —r.

~
)—4J(

~
R; —r.

~
)],

iEI
jEII

(2.1 1)

(2.9) so that the final expression for E is

E = y [@J( ( ~g —r,
~

) —@~j( ( R; —RJ ) )]+ y [@J(g; —r, )
) —@~j( (

R; —rJ
~
)]

4&j(~ r; —r ~)—
1 ()

iZI
jEII

(2.12)

Equations (2.6)—(2.12) are perfectly general and apply to systems of all types. For ionic crystals the situa-
tion in general is complicated because of the long-range nature of the Coulomb interaction. This can be
eased, however, by fully exploiting the natural separation of interatomic potentials into short- and long-range
contributions, and is achieved by use of the Ewald method for calculating the Madelung terms, wherein the
nominal long-range interaction is transformed to summations over direct and reciprocal lattices. The form-
er, being manifestly local in nature, can be evaluated together with the repulsive terms and so lead to consid-
erable computational simplications.

The interactions in region I are purely local and can be dealt with exactly for crystals of arbitrary struc-
ture. In the outer region, on the other hand, there is a contribution from long-range interactions which by
necessity requires analytic evaluation. In the neighborhood of region I, the interaction between I and II
comprises both long- and short-range terms which can be dealt with by direct summation. Away from the
boundary between the two regions the interaction is purely Coulombic and the corresponding energy E2 can
be shown to reduce to the form
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which can be written as

i over all
vacancies in Ij6II'

1 1
qqj — + +

i over all
interstitials in IjE II'

1
qtqj

1

g; —R, [

i over all
lattice 1ons I I

jFII'

1

/r; —R, /

1 1+ (2.14)

Now it can be shown that the last summation, i.e., over lattice ions in region I, reduces to

[g; (R; —RJ. )][(~ (R; —RJ)]

iR; —R~ i [R;—RJ ['
(2.15)+ ~ ~ ~

i over all
lattice ions in I

jEII'

in which g; = r; —R;, and furthermore, that the leading term of the corresponding summation in E', is of ex-
actly the same form. These are simply the interaction of displacement dipoles in region I with the corre-
sponding dipoles in region II, and for sufficiently large region I, are assumed to be negligible. Ez and E3,
therefore, are given solely by the interaction of Uacancies and interstitials with the outermost parts of region II.
Without loss of generality, the individual defects can separately be considered as being located at the origin
of the coordinate system, so that E2 reduces to

Ez=Q g qj— 1 1
(2.16)

in which Q is the total "effective" charge of the
ing ionic charge. ) Writing the displacement g;

g y 1 J +. J

).Etr
/
RJ

/

defect. (N.B. that for vacancies, q; is minus the correspond-
as r; —R;, Eq. (2.16) can now be expanded to give

5 2 5 8

(2.18)

The total contribution from the outer part of re-
gion II, then is given by,

which for most cases of practical interest, viz. ,
large Rj, can be approximated by the leading term

q (E.R)'
g y 6 J J

R, I

'

(2.17)
I

bulk strain the change in the lattice energy AE in
an external electric field F is given by

AE= —,5r .W.5r —(q 5r) F

(2.20)

in which 6r is a 3s-dimensional vector of displace-
ments, q an s-dimensional vector of ion charges
and W'a (3s&(3s) matrix,

(2.19)
8 U

Br Br~
(2.21)

in which g, are the equilibrium displacements.
Provided that the inner region is sufficiently

large, then, the displacement of ions in the outer
region is determined to all intents and purposes by
the electric field due to effective charge of the
defect(s), and an essential feature of the HADEs

methodology is the use of the Mott-Littleton ap-
proximation to calculate these displacements. For
a crystal containing s ions per unit cell, at zero

5r =([W '] ~ q)F~. (2.22)

From the definition of the electric displacement
field D and the dielectric constant K,

in which Ul is the field-free equilibrium lattice en-

ergy. At equilibrium in the presence of a field F,
B(bE)/B(5r ) =0, so that
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4m. y.=F~+ (q 5r )
Uc

(2.23a)

(2.23b)

(2.23c)

(2.23d)

thus

(2.24)

In Eqs. (2.23a) —(2.24) P is the polarization in the
a direction, U, the volume of the unit cell, and 5 ~

the Kroneker delta. The displacements 5r, there-
fore, are given by

([pr —1]aP. )[K—1]Pl'Dr (2.25)

For cubic materials, the ionic displacements are
isotropic and reduce to the simple Mott-I. ittleton
form,

([G '] q)(1 —e ')
x=

4~ (q G 'q) (2.26)

D=— (2.27)

from which the ion displacements in region II' and
the interaction energy can be evaluated. For cubic
materials the latter reduces to

2 jE2 +E' = ——,Q
J~n' I R, I

(2.28)

where mj is determined from Eq. (2.26), whereas
for noncubic materials, it takes the more general
form

P I

E2 +E3 ————,Q g QMJ ~RJ RJ~
jE II' ap

in which
(2.29)

in which 5x is an s-dimensional vector of displace-
ments in either the x, y, or z directions, D" the cor-
responding electric displacement, G the second
derivative of the (s Xs) non-Coulombic interaction
matrix, and e the trace of the dielectric constant
tensor.

For defects with an effective charge Q, the
dielectric displacement field at a distance R is
given by

MJ
~ (——[W '] r q.) [K. ']r~ (2.30)

Incomplete lattice sums of the type given in Eqs.
(2.28) and (2.29) are evaluated by calculating the
complete lattice sums analytically' and subtractirig
the explicit sums for the inner region.

In summary, then, the formal procedure for
determining the defect energy E involves the
evaluation of the displacements g, for the outer re-

gion and the solution of the "force-balance" equa-
tions BE/Bx =0 for constant g, . For an explicit
pairwise interaction, E& is simply given by Eq.
(2.9), whereas the definition of E3 requires some
manipulation to reduce it to a quadratic function
of the displacements. Both the local energy of re-

gion I and the interaction with the innermost part
of region II are calculated explicitly, but the in-
teraction with the outermost part of the crystal is
reduced to a charge-induced dipole interaction in-

volving solely the defects. The Mott-Littleton ap-
proximation is used to calculate the displacements
in region II, which for simple cubic materials are
isotropic and lead to an R interaction. For non-
cubic materials, on the other hand, the displace-
ments are anisotropic and the interaction energy is
of the form g ~ ~R R~/R; one of the objec-
tives of this work is to examine the influence of
these anisotropic effects.

III. INTERIONIC POTENTIALS

Here, as elsewhere in the calculation of defect en-
ergies' ' ' we assume potentials that are essen-
tially ionic and exclusively two body. To allow for
electronic polarization of the lattice we use a sim-

ple shell model of the type introduced by Dick and
Overhauser' in their treatment of the dielectric
properties of the alkali halides and sbbseqpently
used by numerous authors. ' ' ' Non-
Coulombic interactions are assumed to operate
solely between the shells, so that ioris are subject to
distortion by both short-range forces and electric
polarization by the remainder of the lattice. These
effects are of comparable magnitude and often op-
pose each other, so that there is a close relationship
between -the pair potentials of a crystal and the po-
larization of its constitutent ions.

Two approximate methods have been used for
determining potentials, both of which have previ-
ously been described in some detail. The first of
these represents the non-Coulombic contribution to
each pair potential as
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TABLE I. Fitted potential parameters and shell constants for a-AlqO3 and Ti02. In all
cases the metal-metal pair potential is taken to be purely Coulombic.

Parameter or system a-Al&03 Ti02

~ (+ —) (eV)

p(+ —) (~)
C,(+ —) (eVA')

1460.3
0.29912
0.0

656.74
0.40431
0.0

~( ——) (eV)

p( ——) Q.)
C,( ——) (eVA. ')

22764.3
0.1490

27.879

22764.3
0.1490

27.063

Y+ (I e I)
k+ (eVA ')
Y (IeI)
E (eVA ')

1.3830
92.488

—2.81061
103.07

—35.863
65974.0

—2.38856
18.413

V(r)„.„c.„,=a exp( rip) C—ir'— (3.1)

in which r is the separation between the corre-
sponding shells. The sets of parameters 3, p, and
C together with the appropriate shell constants Y
and E are then obtained from an optimum fit to
known lattice properties such as the cohesive ener-

gy, lattice parameters, and dielectric and elastic
constants. For the most part this procedure has
been confined to cubic materials, though it has re-

cently been applied to MgFz and MnF2 by Catlow,

James, and Norgett ' and Catlow and James. A
particular difficulty arises for noncubic materials
in that potentials derived in this way can often
lead to quite sizable bulk and internal strains in the
lattice, which can seriously complicate the subse-

quent evaluation of accurate defect energies. In
the present paper, therefore, we included a simul-

taneous minimization of the lattice strains in the
fitting procedure for the various parameters. In
Table I we list the relevant parameters and shell

constants for o.-Al&03 and rutile Ti02, while in

TABLE II. Calculated and observed crystal properties for A1203 and Ti02.

Lattice
properties or system

a-A1203

Calculated' Observed

Ti02

Calculated' Observed

Lattice energy {eV)
C» (10» dyn/cm )

C1z

C33

C14

0

0
&33

&»

&33

—160.21
42.96
15.48
12.72
50.23

—2.99
16.16
13.70
9.38

11.52
2.08
2.02

—160.4
49.69'
16.36
11.09
49.8

—2.35
14.74

( C11 —C12 ) /2
934

11.54

3 1'

—109.90
25.33
17.80
20.90
77.92

9.22
22. 12
94.76

157.32
6.28
7.99

126.0b

27.01'
17.66
14.80
48.19

12.39
19.30
86

170
6.83
8.43

'Based on empirical potentials.
"Samsonov, Ref. 23.
'Elastic constants for this material taken from %achtman et al. , Ref. 24.
Young and Frederikse, Ref. 25.

'Levine, Ref. 26.
"Elastic and dielectric constants for Ti02 taken from Traylor et al. , Ref. 27.
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Table II we give the calculated cohesive energies
and dielectric and elastic constants that derive
from the corresponding potentials.

The second method we used for obtaining in-
terionic potentials is that suggested by Mackrodt
and Stewart and used in a recent examination of
the alkaline-earth oxides. It is based on a modi-
fied form of the electron-gas approximation" ' in
which cation densities, and in particular those for
ions in high oxidation states, are assumed to be the
free-ion values, while anion densities are derived
from suitable atomic Hartree-Fock calculations
which include a contribution from the Madelung
potential for the crystal in question. Keeton and
Wilson and Dienes et a/. ' have adopted a related
approach in their calculations on CaF2 and n-

A1203, respectively, but without the self-energy
correction to the exchange energy derived by Rae.
A particularly useful feature of the electron-gas ap-
proximation is that interaction potentials involved
in both redox reactions and doping, for example,
can be calculated in exactly the same way as those
for the host lattice, and here we use this procedure
for the hole and electron states in cz-A1203 and the
oxide doped by Mg +. and Ti +, as well as for the
calculation of the basic defect energies. Details of
all these potentials are given in Ref. 30. As yet
there is no reliable, nonempirical procedure for ob-
taining shell constants, so these were found by fit-
ting to the high frequency and static dielectric con-
stants. We assume Al + to be nonpolarizable, and
obtain the following values for oxygen:
Y = —1.974

~

e
~

and K =16.0 eVA . In
Table III we list the calculated lattice properties
for A1203 based on the electron-gas approximation,
together with the experimental values.

The development of the two sets of potentials al-
lows us to test the sensitivity of our results to po-
tential parameters. This point will be discussed in
the following section.

IV. BASIC DEFECT ENERGIES—
RESULTS AND DISCUSSION

In this section we present first our calculated en-
ergies for vacancy and interstitial formation in
A1203 and TiO2, paying special attention to the ef-
fect on these results of the treatment of region II
and of the choice of lattice potential. (The vacancy
formation energy is that required to remove a lat-
tice ion to infinity allowing the remaining lattice to
relax to equilibrium. Likewise, the formation ener-

gy of an interstitial is that involved in bringing an
ion from infinity to an interstitial site with a corre-
sponding relaxation of the surrounding lattice. )

Second, we discuss the problem of the convergence
of calculated defect energies with expansion of re-
gion I, taking the cation vacancy and interstitial in
A1203 as typical examples. In doing so we consid-
er the way in which cubic and noncubic materials
may differ in this respect. A comparison of our
results with those previously reported by Dienes
et al. ' is considered next. Finally we consider the
relation of our results to experiment.

A. Defect energetics

In Table III we present the results of a series of
calculations on vacancies and interstitials (both ca-
tion and anion) in A1203 and Ti02. We give values
for both isotropic and anisotropic treatments of re-
gion II, and, in the case of A1203, for empirical
and nonempirical potentials. For this material we
also quote the results of the previous study of
Dienes et al. ' The results are then combined to
give Frenkel and Schottky energies which are also
reported as the energy per defect (i.e., the Frenkel-
pair energy divided by two, and the energy of the
Schottky quintet in A1203 divided by five). We
also include the energy associated with interstitial
disorder, i.e., A1203~2Alz++ 30& . Calculations
of the Schottky and interstitial disorder energies
require the lattice cohesive energies, which are
given in Tables II and III.

Perhaps the most striking feature of the results is
the failure of the calculations on Ti02 employing
an isotropic region II to converge. The effect on
region I of using an incorrect, isotropic field for
the outer region is so severe as to lead to diver-
gence. This must occur because an isotropic field
due to the region-II displacements, when acting on
the ions in region I, causes the latter to enter re-
gions where the lattice model is unstable. The par-
ticular type of divergence encountered is a "polari-
zation catastrophe" which involves the develop-
ment of massive ionic dipoles during the iterative
course of the caclulation. Shell-model potentials
are usually less susceptible to this particular insta-
bility than simple point-dipole models (see Faux
and Lidiard '); nevertheless, there are, in general,
interatomic spacings at which the potentials are
unstable, and it is clear that the calculations using
the isotropic treatment of region I have led to re-
laxations which result in such spacings. Our study
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TABLE III. Defect energies in (a) A1203 and (b) Ti02. Values in parentheses are energies per defect.

Defect

(a) A1203

EmplAcal
potential calculations

Calculated energies (eV)

Nonempirical
potential

calculations

Isotropic
region II

(HADEs II)

Anisotropic
region II

(HADEs III)'

Anisotropic
region II

(HADEs III)'

Previous
study of

Dienes et al. '

Anion
interstitial
Anion vacancy
Cation vacancy
Cation
interstitial
Cohesive
energy
Schottky quintet
energy
Anion Frenkel-
pair energy
Cation Frenkel-
pair energy
Interstitial
disorder
energy

—16.34
24.45
55.35

—42.42

—160.53
23.50
(4.70)
8.12

(4.06)
12.94
(6.47)
26.67
(5.33)

—16.59
24.17
54.30

—43.87

—160.21
20.90
(4.18)
7.58

(3.79)
10.44
(5.22)
22.70
(4.54)

—5.22
21.75
61.15

—46.98

-161.85
25.70
(5.14)
16.54
(8.27)
14.18
(7.09)
52.23

(10.44)

—10.1
24. 1

54.3

—34.4

—156.7
28.5
(5.7)
14.0
(7.0)
20.0

(10.0)
57.6

(11.5)

Defect
(b) Ti02

Calculated energies (eV)
employing empirical potentials

Anion interstitial
Anion vacancy
Cation vacancy
Cation interstitial

Schottky trio
Anion Frenkel pair
Cation Frenkel pair

—8.58
17.30
80.58

—68.63
5.22(1.84)
8.72(4.36)

11.96(5.98)

The calculations of Dienes et al. (Ref. 15) used 30 ions in region I.
HADES II calculations used 70 ions in region I.
HADES III calculations used 80 ions in region I.
HADES III calculations {HADES II failed to converge).

has therefore shown that the use of the incorrect
region-II field for highly anisotropic materials can
have a severe eAect on the interaction between the
two regions which may prevent the calculation
from converging.

%e note that Ti02 indeed represents a particu-
larly extreme case of dielectric anisotropy (eq ——86,
e~~ ——170). In contrast, the dielectric properties of

A1203 are largely isotropic (e~ ~

——e22 ——9.34,
633—1 1 .54). Thus the results in Table III(b) show
relative insensitivity of the calculated defect ener-
gies for this material to the treatment of region II.
The conclusion to be drawn from these compar-
isons is simple. Isotropic treatments of the contin-
uum region in Mott-Littleton calculations for non-
cubic materials may be acceptable in the limited
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number of cases where the dielectric properties are
in fact nearly isotropic. When, however, there is
significant anisotropy, the correct anisotropic treat-
ment of the displacements, as incorporated in the
HADES III package, is essentia/ for reliable results.
The highly anisotropic material TiOz provides an
extreme example wherein an incorrect isotropic ap-
proximation leads to a divergence of the calcula-
tion.

The second comparative theme stressed in this
paper concerns the effect of different potentials on
our calculated energies. The calculated Schottky
and Frenkel energies for Alz03, as well as the indi-
vidual defect energies in Table III(a), show reason-
able agreement in all cases but that of the anion in-

terstitial (and consequently the anion Frenkel ener-

gy) in A1203. The latter value is -3—4 eV higher
for the calculations using the nonempirical models.
The energy of the 0 ion in the interstitial site in

Alz03 is clearly sensitive to the parameters describ-

ing the 0 - . . 0 short-range potential, which

differs very considerably for the two types of
model. We should note the contrast between this
behavior and that found for UOz, where the large
interstitial site results in relative insensitivity of the
results to the choice of potential. In oxides with a
close-packed anion sublattice (which is the case in

A1203 and Ti02 but not in UO2) interstitial ener-

gies are clearly much more sensitive to potential
parameters.

B. Convergence of calculations
on noncubic crystals

TABLE IV. Anion interstitial energies as a function
of size of region I.

Number of ions
in region I

Calculated
energy (eV)

21
33
45
65
71
83

101
125
149
161
185

—4.006
—4.053
—4.655
—5.203
—5.229
—5.218
—5.162
—5.201
—5.262
—5.343
—5.425

In Table IV we present the results of calculations
on the anion interstitial in Alz03 as a function of

the size of the inner, explicitly relaxed region.
Three observations can be made on these results
which are typical of the behavior of the calculated
energies of isolated defects. First, the variation of
the defect energy with the size of the inner region
may be irregular; this contrasts with the smoother
convergence observed by, for example, Catlow' for
expansion of the inner region for defects in UOz.
Second, the defect energies do not converge to a
constant value; once region I becomes sufficiently
large the values vary irregularly with no tendency
for a general decrease in energy with increase of
the size of the region. These irregular variations
are -0.1 eV in magnitude, and they represent the
limits of the accuracy of our calculated absolute
energies. Similar behavior is found for cubic crys-
tals, although the magnitude of this "noise" is
smaller. Third, the convergence appears to be
slower than in the cubic systems, e.g., UOz. In the
latter case, little variation of most defect energies
(apart from the irregular "noise" just discussed) is
observed after expansion of the inner region beyond
-60 ions. For the defects in Alz03 appreciable
variation is still observed for expansion beyond 100
lons.

The superior convergence properties of calcula-
tions on cubic crystals is directly attributable to
their higher symmetry. Owing to the isotropy of
cubic materials spherical inner regions are clearly
suitable. On the other hand, the anisotropy of
noncubic systems would suggest that nonspherical
inner regions are, perhaps, more appropriate; how-
ever, this refinement has not been implemented in
the present calculations.

Thus for noncubic systems, particular care must
be taken in discussing the results of defect calcula-
tions, especially in those cases where we are con-
cerned with comparisons of energies (for example,
in obtaining activation energies) where we must use
comparable sizes of region I. Where absolute ener-

gies are important large sizes of region I should if
possible be used to ensure that satisfactory ap-
proach to convergence has been achieved. The
sizes of region I employed for the calculations re-
ported in Table IV should be adequate for the ac-
curacy required in the present study.

C. Comparison with previous theory

Dienes et al. ' have reported a shell-model
Mott-Littleton study of defect energies in Alz03.
Their approach, therefore, is basically similar to
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that used in this paper. The potentials were some-
what difFerent than those used here, although the
short range parameters were derived using
electron-gas methods of a type similar (though not
identical) to those discussed in Sec. III. Two
features of these previous calculations, however,
suggest a lower order of reliability by comparison
with the present work: first, the use of an isotropic
treatment of the lattice displacement in region II;
second, the small size (30 iona) of the explicitly re-
laxed inner region. The defect energies obtained by
Dienes et al. ' are given in Table III(a} together
with our results. As seen, for vacancies of both
types, the agreement is good; for interstitials, on
the other hand, much larger differences are found.
The latter may, in part, arise from difFerences in
potentials, and in particular we believe that the
cation-anion short-range potential used by these
authors is probably too repulsive, thereby leading
to a cation interstitial energy that is too high.
Their anion interstitial energy is closer to our work
and falls between the values derived from the two
different potentials used in the present study.

This completes our review of the results on the
basic defect energetics of Alq03 and Ti02. Ques-
tions of technique have been stressed in this sec-
tion. We consider the comparison of our results
with experiment in Sec. VI after we have discussed
our calculations on doped A1203.

V. IMPURITY IONS IN A1203

The principal impurities in this material are
tetravalent and divalent cations. Both types of
dopant are considered in this section. We examine
their modes of solution in the alumina host under

two types of conditions: First, the divalent or
tetravalent oxide enters the host without exchange
of oxygen with the atmosphere; second, we consid-

er the case when solutions of the impurity may be
accompanied by oxygen loss or gain from the crys-
tal.

The first section of our discussion will ignore the
effect of defect interactions; the results here are
therefore appropriate for systems at high dilution.
We then present calculations on defect aggregation
which allow us to discuss the behavior of crystals
at higher dopant concentrations. The calculations
on hole and electron states, necessary for our dis-

cussion of redox processes, also enable us to com-
ment on the band structure of the solid; we sum-

marize these results in the final part of this section.

We concentrate on the Ti + and Mg + impurity
ions. Other species are, however, also considered.
These results enable us to discuss briefly the varia-
tion of the enthalpy of solution with the radius of
the dopant ion.

The calculated energies of lattice and impurity
defects needed for our survey in this section are
presented in Table V(a}. All were obtained using
the nonempirical potentials, which for the
impurity-lattice interactions were generated by the
procedure discussed in Sec. III. For the substitu-
tionals, values are reported only for Mg + and
Ti +. Potentials are, however, available for the
other dopant ions whose heats of solution are dis-
cussed in Sec. VA3.

In calculating the energies of electron and hole
states the simplest procedure is to assume a small
polaron model for the hole, in which case calcula-
tions are performed for holes localized on a single
oxide ion (i.e., an 0 ion). By analogy with va-

cancy and interstitial defects, the formation energy
of the small polaron involves the removal of a lat-
tice 0 ion to infinity, its ionization to 0, and
subsequent return to the lattice allowing for relaxa-
tion of the surrounding ions. The use of such
models simplifies the treatment of the hole species,
whose energy may be estimated once the appropri-
ate potentials for the interaction between lattice
ions and the 0 species have been generated.
These potentials were again obtained by the non-
empirical procedures discussed in Sec. III. To ob-
tain the hole formation energies we need to add to
the lattice energy term calculated by HADES, the
value of the electron affinity of the 0 ion. Col-
bourn and Mackrodt have considered this and
other aspects of the electronic structure of a-A1203
in some detail, and in this paper we use their
values for the energy of conduction-band electrons
and the hole formation energy. Details of these are
given in Tables V(b) and VIII.

A simpler procedure may be used for the calcu-
lations required for our survey of hole-dopant clus-
tering when this involves localization of a hole on
a neighboring lattice site. No inclusion of electron
affinity terms is necessary as we are only interested
in the difference between hole energies at various
sites in the crystal. In this context, the short-range
potentials for the 0 ion may be treated as identi-
cal to the lattice oxide ion. Adjustment of the
short-range potential does not significantly affect
the binding energies which are mainly Coulombic
in origin. This latter result was confirmed by de-
tailed calculations on selected clusters.
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TABLE V. Component energies for investigation of modes of solution of Mg + and Ti +

solution in A1203. (a) Dopant and lattice defect energies; (b) hole and electron energies.

(a) Dopant and lattice defect energies (eV)

Lattice energy of MgO
Lattice energy of Ti02
Lattice energy of A1203
Al'+ interstitial energy

Mg + interstitial energy
Al + vacancy energy
0 vacancy energy
0 interstitial energy

Mg + substitutional energy
Ti + substitutional energy
Ti + substitutional energy

—40.74
—122.40
—161.85
—46.98
—16.20
—61.15
—21.75
—5.22
32.46

—31.31
7.98

(b) Hole and electron energies (eV)

Lattice-energy term for hole formation
Effective ionization of 0 in a-A1203
Hole formation energy
Measured band gap
Conduction-band edge

16.10
—8.4(32)
—7.7(32)

9.5(33)
—1.0(34)

We are now in a position to use our calculated
energies to discuss modes of solution of the dopant
ions. We assume throughout that these can be
predicted on energetic ground alone, that is we
neglect the contribution to the free energy of solu-
tion of vibrational defect entropies.

A. Crystals at high dilution:
defect interactions omitted

1. Solutions ui'thout exchange of
oxygen with the atmosphere

a. Tetravalent ions

The large Madelung potential at the cation site
ensures that these species enter as cation substitu-
tionals. We are concerned, therefore, with the na-
ture of the charge compensation. There are two
alternatives —cation vacancies or anion interstitials.
In the former case, solution takes place with dis-
placement by the tetravalent impurity of lattice ca-
tions to the surface with the creation of one cation
vacancy for every three substitutionals. (The dis-
placed cations are again removed to the surface. }
The energy EM per substitutional of this reaction
may be written as

EM —— E(MOz) +—, E (Alz03)—

+E(MAj+ )+ —,E( VA|), (5.l)

(5.2)—,E(Vo)+ 6Es s .

For the energy of the anion interstitial mode of
compensation we have

Est E(MOz ) +E (M ~z+—)+———,E (Alz03)

+ ,
' E«t)— (5.3)

where E(Ot) is the energy of the oxygen intersti-
tial. Noting that the oxygen Frenkel energy per
defect EoF is given by

EoF zE (Ot )+ —,E ( Vo )——,

where E (MOz) is the lattice energy of the tetra-
valent oxide, E (Alz03) that of AlzO&, E (M„"i ) the
energy of the tetravalent substitutional, and

E(V~i) the cation vacancy formation energy.
Equation (5.1) may be readjusted by noting that

the Schottky energy per defect Esd, may be written
as

E ',„=—,[2E(VAi)+3E(Vo)+E(AlzOz)],

where E( Vo) is the energy of the anion vacancy.
We then write Eq. (5.1) as

EM — E(MOz)+E(M—~i+ )+ z E(Alz03)
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we can write E~ as
EMs —— E—(MgO)+E(MgA+i )+ , E—(Alt+ )

E~—— E—(MO2)+E(MAi+ )+ —,E(A1203)

E( ~o)+EQF
1 1 (5.4)

+ —,E(A1,0,), (5.6)

Comparing Eq. (5.2) with Eq. (5.4) we conclude
that vacancy rather than interstitial compensation
will operate if

5 1

6 Esch +Eop .

Results calculated using the empirical potentials
suggest that —,Es,h-EOF. From these results, we
can, therefore, draw no definite conclusion as to
the nature of the charge compensation. If these
calculations are correct, the nature of the predom-
inant defects will probably be determined by the
degree of stabilization that derives from clustering.
However, if the results derived from nonempirical
potentials are correct there is no question that ca-
tion vacancy compensation will dominate, as the
Schottky energy per defect is considerably less than
that of the oxygen Frenkel energy.

where E(Alt+) is the energy of the aluminum in-

terstitial ion.
(ii) Self com-pensating solutions. Here, EMs is

given by

EMs ———E(MgO)+ , E (—MgA+i)+ , E (M—gI+)

+ —,E(A1,0,), (5.7)

E« ———E(MgO)+E(Mg, '+)+ —,E( VAi)

where E(Mgt+) is the formation energy of a Mg +

interstitial with respect to ions at infinity.
(iii) Interstitial solution of Mg +. First we con-

sider cation vacancy compensation for which we
have the expression

+ —,E (AliO)), (5.8)

b. Divalent ians

E', = —E(Mgo)+E(MgAi )+ —,E(V, )

+ —,E(A1,0,), (5.5)

where E(MgAi ) is the energy of the cation substi-
tutional Mg + ion (with respect to Mg + and Al +

ions at infinity). Other terms are as defined above.
Aluminum interstitial compensation of the substi-
tutional Mg + will result in an energy of solution
given by

As commented earlier, we concentrate here on
the commonest divalent impurity in A1203, namely

Mg +. Several modes of solution are possible for
this species: First, the ion can dissolve substitu-

tionally with either anion vacancy or cation inter-
stitial compensation. Second, "self-compensating"
modes of solution are possible in which Mg + sub-

stitutionals are charge compensated by Mg + inter-
stitials. Third, the Mg + may dissolve entirely as
interstitials with either cation vacancy or oxygen
interstitial compensation. We may develop the fol-

lowing expressions for the enthalpy of solution,

EMg of MgO in A1203 for the modes described
above.

(i) Substitutional solutions For the Uaca. ncy
compensation we have the expression

where E( VAi ) is the energy of a cation vacancy.
The alternative of oxygen interstitial compensation
gives

EMs —— E(MgO—)+E(Mgt'+)+E(Ot ) . (5..9)

The energies calculated for the different modes
of solution are given in Table VI. As noted earlier
all the calculated quantities are derived from the
modified electron-gas potentials. Similar qualita-
tive conclusions follow the results based on the em-

pirical potentials, though the details are not
presented here. The results suggest that either the
substitutional and/or vacancy or self-compensating
modes of solution will dominate. If we bear in
mind the sensitivity of our calculations, both seem

equally favorable on energetic grounds. Further-
more, the energy for aluminum interstitial compen-
sation of the Mg + substitutional is sufficiently
high to allow this mode of solution to be eliminat-
ed for Mg +-doped A1203. A variety of charge-
compensating modes would, therefore, seem to be
possible in this defect solution, and the nature of
the dominant defect is likely to be determined by
the extent to which the different compensating de-

fects are stabilized by the clustering which is dis-
cussed in Sec. V B. This situation exactly parallels
that found by Mackrodt and Stewart in their ex-
amination of the reduction of CdO in which defect
aggregation was shown to play a critical role.
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TABLE VI. Calculated enthalpies of solution {eV) of (a) MgO and (b) Ti02 in a-A1203 at
infinite dilution. Energies quoted per dissolved impurity ion. All values obtained using ener-
gies in Table I and expressions given in Sec. V A 1 of text.

(a) MgO

Substitutional-vacancy mode
Self-compensating mode
Interstitial aluminum compensation
Interstitial Mp + with vacancy compensation
Interstitial Mg + with oxygen interstitial compensation

{b) TiOz

3.15
3.03
3.59
5.78

13.77

Substitutional-vacancy mode
Interstitial oxygen compensation

3.53
7.52

2. Variation of solution energies
with dopant ionic radius

In this section we briefly summarize the results
of a survey of the heats of solution of a variety of
divalent and tetravalent oxides in A1203. For the
divalent ions we considered substitutional solutions
with anion vacancy compensation, while for the
tetravalent ions, cation vacancy compensation was
assumed. These substitutional energies were ob-
tained from calculations which employed dopant-
lattice interactions obtained using the electron-gas
methods. ' %e report, however, in Table VII only

TABLE VII. Calculated heats of solution bH„~ of
aliovalent oxides in A1203 for (a) divalent and (b) tetra-
valent oxides.

the resulting heats of solution obtained using the
expressions derived in the preceding section. Our
calculated values are displayed graphically in Figs.
1 and 2.

The results show that the heats of solution hH„~
of all oxides are high and positive, suggesting that
the levels of impurities in solid solution in A1203
will be low even at high temperatures. The lowest
energies are found for MgO and Ti02—a result
which is clearly compatible with the observation of
these ions as the major impurity species in alumi-
na. For the tetravalent dopant, we find the expect-
ed monotonic increase of the heat of solution with
the radius of the tetravalent ion. For the divalent
ions a minimum is observed at MgO; the value for

12.0-

Oxide

BeO
MgO
Cao
SrO
BaO

(a) Divalent oxides

(b) Tetravalent oxides

aH... (eV)

4.0
3.2( 3.9)'
6.8

10.4
14.2

)0.0-

8.0

~ s.o
0

x
4.0 ture

hOg

uorite
tructure

TiO
SnO
Pb02'
Th02'

3.5
5.5
7.1

10.3

2.0-

0.0 I I I

I. 90 2. IO 2.30 2.50
M -0 bond distance in M02 (R)

'Experiment data of' Roy and Coble (Ref. 35).
"Rutile-structured oxide.
'Fluorite-structured oxide.

FIG. 1. Calculated heats of solution for oxides of di-
valent metal ions in A1203 host.
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CI

0.0
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FIg. 2. Calculated heats of solution for oxides of
tetravalent ions in A1203 host.

BeO is higher due to the exceptionally large lattice
energy of the latter oxide.

Finally we note from Table VII that our predict-
ed heats of solution for MgO in Alz03 is in good
agreement with the data of Roy and Coble. This
provides a valuable confirmation of the validity of
our host lattice potentials. Investigations of the
solution of dopants into A1203 may, however, be
complicated by the possibility of accompanying
redox reactions; these will be discussed in the fol-
lowing section.

3. Dopant solution with oxygen loss
or gain from the host lattice

(where AlAi is a lattice aluminum ion, Vzi is an
aluminum vacancy, h is a hole, and A1203 is
aluminum on the surface of the oxide), and second,

02(g)—+20; +4h

(where by Ot we indicate an oxygen interstitial).
High values of 25.98 and 41.91 eV are calculated
using nonempirical potentials for the vacancy and
interstitial reactions, respectively.

When we consider reduction, there are again two

Before examining the redox reactions which may
accompany doping of A1203, we discuss brieAy the
oxidation and reduction of the pure oxide. Oxida-
tion with the formation of holes (assumed to be
small polarons) may occur either by cation vacancy
or interstitial formation, i.e., we have two possible
reactions. First,

02(g)+ —,Al~+, ~—, V~i+4h + —,A1~03

possibilities. First, there is oxygen loss by vacancy
creation, involving the reaction

20o ~02(g)+2Vo+4e,

(where Oo is a lattice oxygen ion, Vo is a vacan-
cy, and e, is a conduction-band electron). Alterna-
tively, interstitials could be formed when oxygen is
lost, i.e., by the reaction

20o + 3 Al~] ~02(g)+ , Alt —+4e,

(where Alj+ is an interstitial). Again we find high
heats of reduction of 17.95 and 19.71 eV for vacan-
cy and interstitial modes, respectively.

From the magnitudes of these values we con-
clude that pure A1203 would show negligible devia-
tions from stoichiometry —a result which is in ac-
cord with observations on the purest experimental
materials. We now continue with our account of
redox reactions in tetravalent and divalent doped
crystals.

a. Tetraualent ions

When tetravalent ions enter the A1203 host, oxy-
gen may be lost with the consequent release of elec-
trons. These now compensate the eAective charge
of the dopant. If we assume that vacancies are the
favored lattice-defect compensators, then the va-

cancy population wi11 be in equilibrium with gase-
ous oxygen and electrons. As we shall show, the
final state of these electrons is the controlling fac-
tor in determining the ease of oxygen loss. Let us
first consider the possibility that electrons are
released to the conduction band. For the vacancy
and electron modes of compensation we have

3Ti02+4A1A) ~2A1203+ 3T1A) + p~)

and

4Ti02+4AlA~ ~ 2A1203+4T1A)

+4e, +0&(g),

in which e, denotes an electron in the conduction
band. From these two processes we derive the
equilibrium equation

—,A4»+-, VAi ~0~(g)+4e, +-, A4i

(The mechanism of vacancy annihilation by oxygen
loss presumably involves cation vacancy migration
to the surface; the oxygen vacancies left by the ox-

ygen released to the gas phase and the cation va-

cancies are mutually annihilated at the surface. )
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+E )p
—D (02), (5.10)

The energy Eo of this process per eliminated oxy-
2

gen molecule is given by

E (02)= ——,E ( VA) ) —, E (—A1203)+4E (e, )

E(02) is 5.57 eV—a value which would lead to
negligible oxygen loss. The second factor which

may render oxygen loss less favorable is clustering
between the vacancy and the Ti + dopant —a point
to which we return later.

where E(e, ) is the energy of the conduction-band
electron, E &z is the sum of the first and second
electron aAinities of oxygen, and D(02) the dissoci-
ation energy of oxygen. The component energies
and resulting value of E(Oq) are given in Table
VIII. The value of 0.82 eV for E(02) suggests that
titanium-doped alumina could release oxygen by
this mechanism. Furthermore, if we allow for the
trapping of the electron by Ti + ions to form Ti +,
then the release of oxygen is described by

6T1A) +2V~)+Alg03 ~ 2 02(g)+ 6TtA) +2AIA)

for which the energy per eliminated oxygen mol-

ecule is now —10.02 eV. At infinite dilution, then,
our calculations suggest that the doping of A1203

by Ti + could lead to the release of oxygen and the
possible reduction of the dopant to Ti +. The

problem could, however, be complicated by two
factors. First we have assumed that complete ther-

modynamic equilibrium can be maintained between

the gas phase and the crystal. This may not be

possible if the aluminum vacancy mobility is low,
in which case oxygen loss may take place with an-

ion vacancy formation rather than cation vacancy
annihilation, for which the calculated value of

b. Divalent ions

Here, oxygen gain may accompany dissolution of
the dopant in the A1203 host, with consequent
creation of holes in the valence band. These holes

now compensate the effective charge of the dopant
ion. Once more the possibility of redox reactions
will lead to an equilibrium between the point-defect
compensators discussed in Sec. IV and the hole po-
pulation. Thus for the vacancy and hole compen-
sation models, we have:

2MgO+2A1A+(+Oo ~A1203+2Mg~+)+ Vo

4MgO+02+ 4Alg) ~2A1203+4MgA) +4h

in which h denotes a valence-band hole. As before,
from these processes we derive the equilibrium

equation

Oz(g)+2Vo m4h +20o

The energy E(02) of the oxygen gain reaction for
doped lattice is given by

TABLE VIII. Energies (eV) of redox reactions in doped A1~03. (a) Component terms. (b)

Energy of reduction of Ti +-doped Al&03. (c) Energy of oxidation of Mg +-doped A1203.

(a) Component terms

Conduction-band energy
Hole-formation energy
Sum of 0 and 0 ionization potentials in a-A1203'
Dissociation energy of 02
Cohesive energy of A1203
Cation vacancy formation energy
Anion vacancy formation energy
Fourth ionization potential of titanium

(b) Energy of reduction of Ti +-doped A1203

—1.0
7.7

—8.2
5.15

161.8
61.15
21.75
42.81

Conduction-band electrons
Ti'+

(c) Energy of oxidation of Mg +-doped A1203

0.82
—10.02

8.85

Effective ionization potential of 0 in o.-A1203, —0.2 eV extrapolated from alkaline-earth

oxide values (5).
Reference 36.
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E(02)= —2E( Vo)+4E(h) —2E,2+D(02),

where E(h) is the hole formation energy. Again
we report component energies and the resulting
value of E(02) in Table VIII. With regard to our
calculated value of E(O~), namely 8.85 eV, we

stress that this is based on a smal/-polaron model
for the free hole. However, as discussed by Col-
bourn and Mackrodt, the large polaron could be
more stable than the localized hole in which case
our value for E(Oz) will be reduced and could, in

fact, be negative. Again we note that our calcula-
tions omit the effect of defect clustering; the in-

clusion of this factor has a significant effect on our
predictions as will be seen in the next section.

using a mass-action formalism suggests that for
Ti + concentrations of 1 ppm clustering will dom-
inate at temperatures below 1500 K. The second
point concerns the relative magnitudes of the inter-
stitial and vacancy clustering energies. Although
both are large, the binding of the vacancy with the
substitutional is significantly greater. This factor
strengthens the argument for vacancy rather than
interstitial compensation in tetravalent doped ma-
terials. Third, we should note that clustering will
have a major effect on defect formation energies de-
duced from measurements on doped crystals (see,
e.g. , the analysis of Mohapatra and Kroger ). The
formation energies will in effect be reduced by the
large stabilizing term provided by the interaction.
We find that similar conclusions emerge from our
analysis of clustering in the divalent-doped oxides
which we present below.

B. Defect clustering: higher
dopant concentrations 2. Clustering in divalent-doped oxides

1. Clustering in absence of oxygen
exchange with atmosphere

a. Tetravalent ions

We examine clustering of Ti + substitutionals
with both cation vacancies and the alternative O
interstitial compensators; we recall that it was not
possible to decide from our calculated defect ener-

gies which compensation mode would be favored.
The most obvious dopant-interstitial cluster has
two Ti + substitutionals at the nearest-neighbor
(NN) site with respect to the interstitial. Thus the
effective charge of 0 interstitials is neutralized
by the Ti + substitutional in adjacent sites along
the c axis of the corundum structure. We find a
high binding energy of 3.05 eV for this cluster.

We then examined substitutional-vacancy in-
teractions. Again, a simple electroneutral cluster
can be proposed in which three Ti + substitution-
als are placed in the nearest-neighbor cation sites
with respect to the cation vacancy. Once more, we
find the cluster to be strongly bound; the calculated
binding energy is 5.23 eV.

This result has three general consequences. The
first follows from the magnitudes of the calculated
binding energies. These are far larger than general-
ly obtained in oxides —a consequence of the short
interionic spacings and low dielectric constant of
A1203. Cluster formation will dominate the defect
structure of doped alumina at all but the lowest
dopant concentrations. Thus a simple treatment

From our analysis of the defect structure of
Mg +:A1203 at high dilution, substitutional vacan-
cy and "self-compensation" emerged as the most
probable mode of solution of such dopants. The
simplest cluster based on the vacancy mode of
compensation is that in which two substitutionals
occupy nearest neighbor sites with respect to the
vacancy. For the self-compensating mode, an
equally simple model can be proposed: The charge
at the Mg + interstitial is neutralized by two Mg +

substitutionals situated above and below the inter-
stitial site along the c axis. The calculated binding
energies are presented in Table IX. Both clusters
are strongly bound, but the binding energy of the
vacancy-substitutional aggregate is significantly
greater. Clustering will therefore strongly favor
the vacancy mode of charge compensation. And,
as with the Ti +-doped crystals, the magnitudes of
the calculated binding energies suggest that cluster
formation will dominate at all but the lowest
dopant concentration, and that there will be a ma-
jor effect on defect energies deduced from the
analysis of doped crystals.

3. Clustering with electronic species

a. Tetravalent-doped crystals

We have shown in Sec. V A 3 that oxygen loss
from crystals containing, e.g., Ti + results in the
removal of point defects and the creation of elec-
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TABLE IX. Cluster binding ener'gies (eV). Figures in parentheses are the calculated heats
of solution hH„~ in eV, allowing for clustering.

Cluster of two Ti + substitutionals with
one oxygen interstitial

Cluster of one cation vacancy and three
Ti + substitutionals

Cluster of two Mg + substitutionals and
one anion vacancy

Cluster of one Mg'+ interstitial with
two Mg + substitutionals

3.05(5.9)

5.23( 1.79)

2.56(1.87)

2.43(2.22)

trons in the conduction band. The Ti + substitu-
tional would, however, be expected to function as
an ionized donor, i.e, there should be a significant

trapping energy for electrons at the Ti + sites, ef-

fectively converting these into Ti + ions. We have
estimated this energy by combining calculations of
the lattice energy of the Ti"+ and Ti + substitu-
tionals (which used potentials for the Ti +- and

Ti +-lattice interactions obtained from the
electron-gas procedures discussed in Sec. III) with
the fourth ionization potential of Ti. The resulting

trapping energy of 2.4 eV (Ref. 32) compares with

a value of 2.77 eV deduced by Mohapatra and
Kroger from electrical conductivity measure-
ments.

b. Divalent-doped crystals

Oxidation of, e.g., Mg +-doped A1203 results in
hole formation. A simple cluster of one substitu-
tional with one hole localized on the neighboring
oxygen lattice site may form. If we assume that
the hole is localized on the oxygen site nearest to
the Mg + substitutional, we calculate a binding en-

ergy of 0.56 eV. A binding energy of this magni-
tude would be sufficient to lead to the majority of
hole species being bound to the impurity at room
temperature. We should note, however, that these
models for the Mg +-hole clusters may be oversim-
plified, for Cox has suggested that the preferred
location of the hole is the further of the two sites.
And indeed, recent work of Colbourn et al. finds
an increased binding energy of 0.7 eV for this corn-
plex. Mohapatra and Kroger report a value of
1.95 eV for the binding energy, but Cox has re-
cently obtained a value of 0.7 eV from recombina-
tion kinetics following uv excitation.

C. Electronic structure
of doped A1203

Our conclusions as to the electronic structure of
doped A1203 can be summarized as follows. We
find that introduction of Ti + leads to donor
centers with thermal ionization energies of 2.4 eV;
Mg + results in acceptor levels with an ionization

energy of 0.56 eV. Further details of impurity lev-

els in A1203 are planned to be reported separate-
41

VI. COMPARISON WITH EXPERIMENT

We turn now to a comparison of our results with
the available experimental data. It is our intention
to discuss the effect of these on transport proper-
ties and the energy levels of impurities ' in

separate publications. Here we concentrate on en-

ergies of defect formation and oxidation and reduc-

tion, and in particular we compare our results with

the data reported recently by Kroger and his co-
workers

In terms of the basic defect structure two points
emerge from our calculations: The first is the ab-

solute magnitude of the defect energies, which
determines the extent of the disorder; the second is
the relative values of the defect energies for the
various type of defect. With regard to the former,
the values derived from empirical potentials are ap-
preciably lower than those from electron-gas poten-
tials, both ours and those reported by Dienes
et al. ' We have no definite knowledge at present
as to which set of results is more reliable, though
as we show later experiment favors the nonempiri-
cal results. With regard to the second point, name-

ly the relative energies of the type of defect, we

find the following order for the various types of po-
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tential.
For the empirical potential:

OF +Es'ch +EAIF '

For the electron-gas potential:

Esch & EA1F & OF '

From Dienes et al.':
Esch & EOF &EA» .

In a recent examination of the thermodynamic
data Mohapatra and Kroger suggest that
Schottky disorder is dominant in A1203 and derive
an enthalpy per defect of 3.83 eV. This is some-
what lower than our calculated values of 4.70 and
5.14 eV, though as we have mentioned, estimates
of the effective defect formation energies could be
reduced when the influence of clustering is taken
into account. Mohapatra and Kroger also report
a value of 4.45 eV for cation Frenkel defects, which
is appreciably lower than our theoretical values
(6.47 and 7.09 eV) and that found by Dienes
et al. ' (10.0 eV). Now a possible explanation for
this discrepancy is that the theoretical values for
the energy of a cation interstitial, Alr+, are simply
too high, thereby overestimating the Frenkel ener-

gy. This could certainly be the case, for there are
inaccuracies in all calculations of this type, al-

though the magnitude of the discrepancy is much
larger than that found for other systems. ' How-

ever, from a comparison of the enthalpies of oxida-
tion discussed in detail below, we suggest that an
alternative explanation is that the experimental
values reported by Mohapatra and Kroger are, in

fact, too low. In particular, we suggest that the
discrepancy between theory and experiment is attri-
butable principally to the enthalpy of the oxidation
reaction

4 O2(g)+3e ~ Oo + VA1

used by Mohapatra and Kroger to derive their
Schottky and Frenkel formation energies. The
present calculation suggests that their energy
(enthalpy) for the above reaction might be seriously
in error and that a value nearer the theoretical en-

ergy reported here would increase their formation
energies for both Schottky and Frenkel defects to
something approaching the theoretical estimates of
both Dienes et al. ' and the present work.

Turning now to the oxidation of a-A1203 there
are a number of processes by which this can take
place. Of these, Kroger and co-workers have re-

ported enthalpies for three:

—O2(g)+ Vo ~Oo +2h,

4 Oz(g) +Alt . ~ —,A120q+ 3h,

and that mentioned previously, namely,

—,Oz(g)+3em 20o +Vwi .

For the first of these we calculate an energy of 4.43
eV, i.e., half the value for Eq. (5.11), based on a
small-polaron model for the hole, which agrees ex-

tremely well with the value of 4.05 eV reported by
Mohapatra, Tiku, and Kroger. " If we used a
large-polaron model our calculated energy would

be about 3.6 eV. For the second reaction we find
an energy of 5.34 eV, which is slightly lower than,
though still in good agreement with, the value of
6.57 eV derived by Dutt and Kroger. The agree-
ment with experiment for these two reactions lends

support to the view that our energies for Alr+ are
not grossly overestimated. For the last of the three
reactions, however, we find considerable disagree-
ment. Whereas we calculate an energy of —0.59
eV, Mohapatra and Kroger report a value of
—15.39 eV and it is this that is used to derive the
Schottky and Frenkel defect energies. In arriving
at our value of —0.59 eV we use three theoretically
determined quantities, namely, the cation vacancy
energy, the lattice energy of a-A1203, and the "ef-
fective" electron affinities of lattice oxygen. Our
calculated lattice energy of —161.8 eV is 1.4 eV
lower than that reported by Samsonov so that our
cation vacancy energy and electron affinity between
them would have to be in error by about 15 eV,
which seems unlikely in view of the good agree-
ment we find for the first two reactions. We
suspect, therefore, that the value reported by
Mohapatra and Kroger is substantially inaccu-
rate, and in particular point to their value for E,„',
[Eq. (2.1) of Ref. 43] as being the possible source of
error. Given this possibility, if we then assume a
value of, say, —1.5 eV for the last of the three oxi-
dation reactions, the Schottky energy per defect re-

ported by Mohapatra and Kroger would be in-

creased by 2.8 to 6 eV and the cation Frenkel en-

ergy per defect by 7.0 to about 11.5 eV. Not only
are these closer to the theoretical (nonempirical)
energies, but they support the predominance of va-

cancy disorder even more strongly. Our results for
transport properties and energy levels of impurities
lend further support not only to this view but also
to the greater reliability of the electron-gas poten-
tials for a-A1203.



25 DEFECT ENERGETICS IN a-A1203 AND RUTILE Ti02 1025

VII. CONCLUSIONS

This paper has concentrated first on questions of
technique in the calculation of defect energies for
noncubic oxides. Here we have shown that when
dielectric anisotropy is appreciable, an adaptation
of the Mott-Littleton method to allow of this an-

isotropy is essential. Regarding the efFect on defect
energies of lattice potentials, we find here that al-

though a fair measure of agreement can be
achieved between the result of empirical and
nonempirical potentials for a large number of de-

fects, in certain cases the nature of potential
parameters can be critical. Thus the oxygen inter-
stitial energy in A1203 is clearly highly sensitive to
the potential. We suspect that this may be a gen-
eral problem with interstitial energies in lattices

with close packed anion sublattices. Limited com-
parison between theory and experiment has been
possible, although further work is necessary in both
areas. The present calculations provide, however,
the first stage in advancing our detailed under-
standing of the defect properties of noncubic ox-
ides.
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