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Mossbauer spectra in the presence of spin-phonon relaxation efFects: Symmetry restrictions
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The problem of evaluating the Mossbauer line shape in the presence of ion-phonon in-

teractions has been considered. By means of a perturbation procedure it is shown how a
limited number of matrix elements of the relaxation operator are relevant. Moreover, the

restrictions imposed by the symmetry are also taken into account. In the case of Fe + in

C3 symmetry one has to diagonalize a 288)&288 matrix. By taking into account the re-

sults obtained in this paper we have reduced the problem of deriving the line shape of the

Mossbauer spectrum to that of diagonalizing three matrices of dimensions 16, 16, and 15.

I. INTRODUCTION

In recent years the theory of Mossbauer reso-
nance spectra in relaxing systems has been con-
sidered by a number of authors. ' ' In the case of
ion-phonon interactions, which cannot be studied

by means of simple stochastical models, ' extreme-

ly complex computations can be required. In this

paper we present a contribution to the theory
which has the following advantages:

(1) It is shown how a limited. number of matrix
elements of the relaxation operator are relevant.

(2) The restrictions imposed by the symmetry of
the complex consisting of the Mossbauer atom plus
its nearest neighbors are taken explicitly into ac-
count.

In this way one can greatly reduce the dimension
of the matrix of the relaxation operator so that the
computations can be performed more quickly. As
an application we consider the case of Fe + in C3
symmetry.

II. SUMMARY OF THE GENERAL THEORY

The starting point of our analysis is the formal
expression for the emission spectrum. By assum-
ing that the statistical operator can be written as a
product of an atomic operator pz and a lattice
operator p~, one finds

I(co, k)= —Re Trz[p~HG(p)H Jj,=r
where p =I /2 ice (I i—s the Mossbauer linewidth
and co is the energy of the y quantum), H is the
multipole operator associated with the Mossbauer
transition, and G(p) is the I.iouville operator

G(p) =[ ~L. +R(p)i (2)

where L& is the Liouville operator corresponding
to the atomic Hamiltonian and R (p) is the relaxa-
tion operator. Its explicit form can be obtained by
making use of the procedure outlined in Ref. 14:

R (p) = PL, (l P)[p i(1 P—)L]— —

)& (1 P)L iP, —

where P is a projection operator which denotes the
taking of the trace over the variables of the lattice,
P=Trl (pl ), and L and L~ are the Liouville
operators corresponding to the total and ion-

phonon interaction Hamiltonians, respectively.
For our purposes it is convenient to assume basis

states of the form
~

I f)
~
Im), where

~
I; )

denote the eigenstates of the spin Hamiltonian
which transform as the irreducible representation

I; of the symmetry point group of the Mossbauer
atom and

~

Im) are eigenstates of the nucleus. By
assuming that the hyperfine states arising from a
given electronic level I; and a nuclear one I are
equally populated, Eq. (1) can be rewritten as
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I(co, k)=— Re g (mi I&
I
mo~(mo I& I

m& )gp'(I;mo, I';mi [(p iL—&+R) 'I I+Jmo, I+pm'~ ),I 2I, +1
moqNl 0 i,a

j,p
lg), m )

(4)

where the p; s denote the occupation probability for the electronic states I;. Therefore, it is seen that in or-
der to derive the shape of the Mossbauer spectra one must compute the matrix of the operator

p iL~—+R(p) and invert it. The dimension of this matrix is (2S+1) (2I, + l)(2Is+1), where S denotes the
electronic spin of the Mossbauer atom and I, and I~ denote the spin of the nucleus in the excited state and
in the ground state, respectively. In the case of Fe + the dimension of the matrix is 288)&288.

We will show that a limited number of matrix elements are relevant for the calculation of the line shape,
so that one can consider only a submatrix of the entire matrix of the operator p iL&—+R (p). This is a
consequence of the fact that hypertine and ion-phonon interaction energies are, in general, much smaller
than the energy differences between electronic levels.

In order to prove this statement let us start from the power-series expansion (with the position
Lg =Lo+Ls& where Ls& is the Liouville operator corresponding to the hyperfine Hamiltonian):

(p iLo IL—sp+—R) =(p iLo—) +(p —iLo) [ —( —jLq+R)+( iLg+—R)(p —iLo) ( —iL„+R)

+ ](p —iLo)-' .

The operator (p —iLo) ' possesses only diagonal
matrix elements:

(I;,I ~, i(p iL ) 'iI;—,I g i)
I

i(coo —co)+—+i(c0 co —)J

where coo is the energy diAerence between the excit-
ed and ground levels of the nucleus and co; and coj
are the energies of the electronic levels I; and I j,
respectively. Since coo—co is of the order of magni-
tude of hyperfine energies co&~ &&

~
co; —coj ~, the

matrix elements in Eq. (6) with i =j are much
greater than those corresponding to i' By tak-.

ing into account this result it is seen that only the
matrix elements of R iLs~ of—the form

(I;m, l ~m, ~R —iLs
~

I' m I m, )

are relevant in calculating the line shape. Indeed,
as a result of (5), these matrix elements are of the
order of magnitude of Npp whereas the remaining
ones are of the order of (coq~+cox )/

~
coj —co;

~

. In
other words, one can conceive the Mossbauer atom
as a set of oscillators of frequency
so=8(I;m ~ ) —co( I;mo ) coupled by hyperfine and
ion-phonon interactions. This is justified by the
consideration that the coupling between these oscil-
lators and all others of frequencies c0(I';m

& )
—c0(I mo) =ti)o+co" is negligible (Fig. 1).

III. THE ROLE OF SYMMETRY

In the ab initio theories reported in the literature
the expressions for the matrix elements of the re-
laxation superoperator are quite involved. We will
now show that by using a "dynamical spin Hamil-
tonian" to describe the ion-lattice interaction, '

the complexity of the problem is greatly reduced.
The dynamical spin Hamiltonian can be derived by
using only the symmetry properties of the vibra-
tions of the particles surrounding the paramagnetic
ion and the symmetry properties of the wave func-
tions of the paramagnetic ion, which are assumed
to be known. The dynamical spin Hamiltonian has

fc mr

r ], ~m,

m

clgp'-

/ "m~ /;"m~

/. ~my /" m~

FIG. 1. Schematic representation of the transitions of
the coupled system. Downward lines denote the gamma
transitions between pairs of individual levels. The wavy
line denotes significant coupling term. The dotted lines
denote negligible coupling terms.
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the characteristic of incorporating all kinds of re-
laxation mechanisms and leads to expressions for
the transition probabilities containing some param-
eters whose determination is the central problem of
the experimental work. The task of theory consists
evidently in predicting the correct values for the
parameters.

The dynamical spin Hamiltonian can be written

m, =g ~,F, ,
I o

whereAE and I'E are electron and lattice operators,
respectively, transforming as the o component of
the irreducible representation I

&
of the point group

of the Mossbauer atom. We consider the case
without externally applied magnetic field; in fact,
in the presence of the magnetic field the electronic
degeneracy would be completely removed and the
problem could be dealt with by simple stochastical
models. In the present case the operators AE are
functions only of the components S„,Sz, and S, of
the spin. One can always take the operator AE to
be dimensionless with matrix elements of the order
of unity. The quantities I'"E then have the dimen-
sions of an energy and are of the same order of
magnitude as the single contributions of the
dynamical spin Hamiltonian.

In what follows we will make use of the correla-
tion functions of lattice operators defined as

&Ft (o)Ft '(t)&=TrI [pLFt (o)Ft (t)] &

where the trace is performed over a complete set of
I

lattice states and

Ft (t)=e Ft (o) .

It is easy to show that the correlation function sa-
tisfies the relation

&Ft (o)Ft (t) & =5tt 5~&)Jt(t& T), (10)

where Jt(t, T) is a function of temperature and
time. In order to prove (10), note that the correla-
tion function (8) is invariant under all the sym-

metry operators of the point group. On the other
hand, the statistical operator pL which is a func-
tion of the lattice Hamiltonian, is invariant under
the same symmetry operations. Therefore, Eq. (10)
directly follows from the orthogonality theorem for
the representations of a group. ' Moreover, we will

assume that the correlation function for two lattice
operators transforming as the same irreducible
representation, but describing different physical
processes, is equal to zero. This is not a result of
group theory but arises only from plausibility argu-
ments.

Here we will make the hypothesis that the life-

time of the lattice states involved in the relaxation
processes is much shorter than the relaxation time
and the Larmor period. These conditions are, in

general, satisfied in the case of ion-phonon interac-
tions which are the object of the present work. '

Under these conditions the WNA is also valid.
We can thus substitute L for Lo and o) for o)0 (p
for po) in Eq. (3).

By a straightforward procedure one obtains

&r'~o r ~i I
Jt(po) lrj~o r,'~i &=5, ,5, ;& g I

&r'I~t Irti& I'Jt(~k T)5,5 +ps
Ecr ke

—&r'l~t Ir)&&r,'I~t''Ir &JI( 'J T)

where we have used the relation

g&r, la, 'lrk&&rkl~;lrr&

=5.,+ I &I, IA, 'lr,'& I' (12)

(13)

and where
00

~Jt(cotj &
T):I dt e Jt( t T)

Equation (11) contains temperature-dependent
terms of the form

w, jp
—g&r, la, Irj'&&r, IAt Ir, &J(,, T),

E, cr

(14)

which can be determined by experiments. Their
temperature dependence allows us to establish the
kind of relaxation. When P=a and 5=@the
quantities 8'. ';p coincide with the transition prob-
abilities W(1; ~rjr) between the electronic states

I; and I J~. We observe that, in general, the relax-
ation operator cannot be written only as a function
of the transition probabilities. An important ex-
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ception is Oared by the case of Kramers doublets.
Let us denote with

I
I; & and

I I; & a pair of
Kramers conjugate states. Invariance with respect
to time reversal gives the relation

(r, I~1 Ir,'&= —(r„"Ia, Ir, &. (15)

By taking Eq. (15) into account, the diagonal ma-
trix elements of the relaxation operator can be
written in the form

(r;m, I';m, IR(P )II;m, I;m, &

w(r, r,')
k, e(Qi, a)

+2(1—5 p)W(r; I; ) . (16)

Moreover, the only OA'-diagonal matrix elements
different from zero have the form

( r; m p, I; m1 I
R (Pp )

I
rjmp, rj)'m1 &

=—w(r, r)') . (17)

Therefore, when the hyperfine Hamiltonian is diag-
onal with respect to the electronic states, the ma-
trix of the operator p —iL&+R factors into subma-
trices of lower dimensions. Contributions to the
line shape arise only from the submatrix whose ele-
ments are of the form (I; I;

I I

I J~I ~~ &. In this
case the expression for the line shape is in agree-
ment with the results of Ref. 2.

IV. AN EXAMPLE: THE CASE OF Fe3+

IN C3 SYMMETRY

5 qS

W=O

L 1 l 1 1 I 1 1 1 )
I I l 1 I 1 I I 1 1

-1Z -8 -4 0 4 8
fjpgg/s)

FIG. 2. Theoretical relaxation spectra of Fe + in a
crystal field of C3 symmetry evaluated for different
values of the parameters. For simplicity reasons W~ has
been assumed to be equal to W2 (Wi ——W2 ——W).

As a specific example let us consider the case of
the Fe + ion in a crystal field of C3 symmetry.
The ground state S5&2 of the ion splits into three
Kramers doublets, transforming as (I q, I"5) and rs.
In the case of methylamine sulphate the three
doublets have the simple form

Irs&= I+ —,
'

&

From the multiplication table for the group C3 it
is seen that the three Kramers doublets are coupled
by spin operators transforming as (I 2, I 3). Here
we consider only the quadrupolar relaxatlon. 17 It
is seen that the spin operators having the required
symmetry properties are of the form

a(r, )=s', , ~(r,')=-,'(s,s +s s, ),
A(r3)=S, A(r3)= —,(S,S++S+S,) .

Transition for which hm, =+2, hn, =+1 arise
from operators of first and second kind, respective-
ly. At the temperatures of interest the energy
differences between the ground doublets (-1 cm ')
are much smaller than the thermal energy kT.
Therefore, the three doublets may be assumed to be
equally populated. Moreover, since the density of
phonon states does not change significantly for a
frequency change of the order of 1 cm ', we can
assume that the quantities J(co,z, T) do not depend
on co&j e

In order to calculate the line shape we have used
the eigenvalue-eigenvector method described in
Refs. 24 and 25 which largely reduces the compu-



M. MANCINI, G. SPINA, L. FIESOLI, L. CIANCHI, AND P. MORETTI

I

v I+

~ TH

+

0

c5
U
V

E
4

4

P

I

I

I

I

+ +

I
- +



25 MOSSBAUER SPECTRA IN THE PRESENCE OF SPIN-PHONON. . . 105

tational time. In our case one should diagonalize a
complex matrix of dimension 288 &288. Accord-
ing to the results of Sec. II the dimension of this
matrix can be reduced by a factor of 3. Finally, by
taking into account the selection rules due to sym-

metry, one obtains three matrices of dimensions 16,

16, and 15.
The relaxation matrix is reported in Table I.

Figure 2 shows the calculated Mossbauer line
shapes for different values of the transition proba-
bilities. On a Data General Eclipse S200 computer
the spectrum was simulated in about 60 sec.
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