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Dielectric band structure of crystals: General properties and calculations for silicon
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We develop the dielectric band-structure method, originally proposed by Baldereschi and Tosatti, for the
description of microscopic electronic screening in crystals. Some general properties are examined first, including the
requirements of causality and stability, The specific test case of silicon is then considered. Dielectric bands are
calculated, according to several different prescriptions for the construction of the dielectric matrix. It is shown that
the results allow a very direct appraisal of the screening properties of the system, as well as of the quality of the
dielectric model adopted. The electronic charge displacement induced by I „and X, phononlike displacements of
the atoms is also calculated and compared with the results of existent fully self-consistent calculations. Conclusions
are drawn on the relative accuracies of the dielectric band structures.

I. INTRODUCTION

The study of electronic dielectric properties of
crystals including local fields implies the use of
dielectric matrices (DM}."The calculation of
these matrices starting from realistic band struc-
tures has proven to be extremely elaborate, even
if a great simplieation can be introduced by using,
e.g. , the mean-value point technique and its ex-
tensions' or other techniques. 4 Such accurate DM
calculations are available for a few materials
only. ' " Furthermore, most numerical results
are only available in the q-0 limit.

Various models have been proposed to simplify
the task of calculating the full DM at all q vec-
tors. These models are generally based on sim-
plified electronic band structures"" and/or on
other more or less reasonable assumptions on the
structure of the DM."" The relative accuracy
of the different models has not yet been estab-
lished. On the other hand, the development of re-
liable simple static DM models is absolutely vital
to future important applications such as phonon
calculations, screening of defects, local-field cal-
culations in real space, etc. If this is true for
those few materials where a great deal is already
known at q- 0, the need is even more evident for
the infinite variety of other crystals where one
hardly knows anything other than the static q= 0
dielectric constant.

Baldereschi and Tosatti have recently proposed

a "dielectric band-structure" (DBS) scheme, "
whereby the static (&u= 0) DM is diagonalized,
yielding screening eigenvalues and eigenvectors
for each q in the Brillouin zone (BZ). They have
shown that in this way symmetry emerges natu-
rally in the screening problem and that the infor-
mation contents of the full DM, a very large ma-
trix, is cast into very few eigenvalues and eigen-
vectors for each symmetry.

In this paper, we (a} clarify further some gen-
eral properties of the dielectric band-structure
approach, (b) present explicit calculations for the
DBS of Si throughout the Brillouin zone, and (c}
compare qualities and defects of different avail-
able DM models, by direct calculation of their
DBS, as well as of the screening charge induced
by some high-symmetry phononlike displaeements
of the atoms.

The main point of general nature which apparent-
ly has not received proper attention thus far con-
cerns the restrictions which causality on one hand
and thermodynamic stability on the other hand im-
pose on any given DM. We show that the dielec-
tric band-structure formulation is a very natural
one for stating clearly these requirements, thus
extending all the very-well-known properties of
diagonal response functions g(q, ~) to the more
complicated nonlocal response matrix &(q+ 6,q
+ 5', &) typical of all inhomogeneous systems.
This line is developed in Sec. IL

Calculating the dielectric band structure out of
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a given DM model —there is a variety of such mod-
els in the field —turns out to be a rather stringent
and instructive test. In Sec. III we describe some
of these models, including one very newly devel-
oped, based on the density-functional formula-
tion. A brief derivation of this model is sketched
in the Appendix A. The dielectric band structures
for all these models are then presented and dis-
cussed in Sec. IV.

A certain class of models, namely, those based
on the "factorization ansatz, "which has been pro-
posed for extreme tight-binding situations, turns
out to have surprisingly few dielectric bands. As
is shown in Appendix B, this is a general conse-
quence of the factorizable form of these dielectric
matrices. The obvious consequence is that only
problems which involve the limited set of sym-
metries represented by these few bands can be
handled with such matrices.

As a realistic application which allows a further
comparison between various screening models, we
present in Sec. V a calculation of the electron
charge density induced by a phononlike displace-
ment of the Si atoms. This calculation is particu-
larly informative, since the same quantity has also
been computed by an accurate self-consistent
pseudopotential method by Baldereschi and
Maschke. " The general conclusions that this type
of comparison allows are very close to those
drawn by just looking at the DBS of the different
models. This lends further support to the validity
of the dielectric band structure method.

II. GENERAL PROPERTIES

The exact inverse longitudinal DM of a general
many-body system with crystalline translational
properties is given by'

~ (q+G, q+G', ~) = 566. -v(q+G)y(q+G, q+G', ~),
(2.1)

with

y(q+ 6, q+ 6', (u) =g (0
~
p *- - ~n& &n

~
p;,

~

0& L;„,( ),

At ~=0, the matrix X(q+G, q+6') becomes Her-
mitian, but the DM &(q+6, q+6') does not, due to
the presence of the prefactor v(q+6). Yet the
DM can be diagonalized with real eigenvalues.
This is seen by first defining a Hermitian g

' in
the form

e '(q+G, q+6') = e '(q+G, q+6').
v(q+ 6 )

Once this g
' is diagonalized with eigenvalues

e„'(q) and Bloch-type eigenvectors

(2.2)

(2.3)

it is easily verified that

(2.4)

y",(r) = e"'Q [v(q+ G)]"'C",(q)e"-. (2.5)

are eigenvalues and eigenvectors of the DM it-
self. This is the dielectric band-structure (DBS)
scheme.

Some properties of the DBS of crystals have al-
ready been discussed. " In this section we extend
this discussion, mainly to include causality prop. —

erties.
In the homogeneous case, it is well known that

1/e(q, ~) is a causal response function for all val-
ues of q, while the same is not true of &(q, ~) it-
self. '~'25 The reason is that while 1/e(q, &u) de-
scribes the response to an external field, e(q, ar)

is instead the response to the internal field, which
cannot be varied at will, but depends itself on the
response of the medium. Kirzhnits" has shown
that only in the macroscopic limit, q-0, the di-
electric function e(q, ~) becomes itself a causal
response function. Thus the Kramers-Kronig re-
lations, which hold for & '(q, &u) at all wavelengths,
become valid also for &(q, ~) only in the q-0 lim-
it:

D„,((o) =(E„-E,+ (o+io') '+(E„—E, —(u —io") ',

p-, o
=Q exp[i(q+ 6 ) r, ],

2

7T p CO —CO

(2.6a)

where v(Q) =4we'/Q'0, l runs over all electrons,
~0), E, and ~n), E„denote exact ground-state and
excited-state eigenvectors and energies, 6 de-
notes a reciprocal-lattice vector, and q is the
wave vector inside the BZ. The existence of non-
zero off-diagonal elements, 6 e 4', is connected
with spatial inhomogeneity of the electrons,
caused by the periodic lattice potential.

ao I

CO —QP

Introducing the important fact that a system at
thermodynamic equilibrium can only absorb en-
ergy at any given positive frequency, which im-
plies Im & '(q, e) (0, Im&(0, co) & 0, and specializ-
ing (2.6) for &@=0, one gets that for a stable sys-
tem
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1/a(q, 0) &1

for all q, while for q-0
(2.'t) for the electronic response of a crystal" always

yields a causal e (q, cu) rather than a causal
e '(q, &d). Specifically

e, = lim e(q, 0) & 1
q~0

(2 8)

must also hold. Therefore, a system is unstable
if either & '(q, 0})1 or & '(q, 0) (0 for q-0. How-
ever, at finite q, only e (q, 0) ) 1 involves insta-
bility, while & '(q, 0) ~ 0 is perfectly allowed. "
Systems with negative ionic dielectric function
e(q, 0) can be found experimentally. " No system
with negative electronic &(q, 0) appears to have
been explicitly discussed, but some must surely
exist. Good candidates should be systems at tem-
peratures just above electronic superlattice phase
transitions, like for example charge-density waves
or signer transitions. In fact, a transition of this
type, if continuous, must be signaled by

& '(q, 0) r=r

as discussed later in this section. Just above T„
e '(q, 0) should rise continuously from -~ to-
wards zero, to become eventually positive only
when, sufficiently away from T„ the critical
fluctuations are dying out.

We note, in passing, that the well-known one-
electron, or random-phase approximation (RPA},

I

e„'(q) &1. (2.10)

The proof is as follows. The dielectric eigen-
values e„'(q) can be seen as expectation values of
an operator &,'„between eigenpotentials

2 ( }g )(Ukle "'Ick+q)('
(2 9)

E,(k+ q) —E„(k)

which is larger than one for all q, since by defi-
nition conduction states E, lie above valence
states E„. Therefore, the occurrence of a nega-
tive electronic e(q, 0), which is in general possi-
ble, must be necessarily due to so-called ex-
change and correlation effects, not contained in
the HPA.

The natural question at this point is: How do
these properties change in passing from homo-
geneous systems, characterized by a dielectric
function & '(q, &u), to an inhomogeneous system,
particularly a crystal, characterized by a DM
& '(q+G, q+G', &d)? As it turns out, the DBS
scheme provides a very natural way to answer
this question. The equivalent of (2.7) is that all
dielectric eigenvalues must be smaller than unity,

Cp(q )C6", '(q).' x=&t»!I&x'I x!& &&il &'I xi&==&(x~- „' Z - '
-, x&t&+G, t&+G', o&),

pp jq+G I lq+G' I

where use has been made of (2.3) and (2.1). The second term in parentheses can also be written as

7r
2 2Z«. -E.}' ZC5(q) ~q+G~

' «ip;*;,
~

&

nAO P

(2.11}

(2.12)

&, = lim1/& '(q, q, 0),
q, -+ 0

(2.13)

whence, by repeating Kirzhnits's arguments, "
(2.8) is here replaced by

(2.14)

This is not an obvious condition to be verified on
any single eigenvalue of the DM, for q G. This
is because in the crystal, e"' is not an eigenpo-
tential, but can only be expressed as a sum of
e igenpotentials

exp(iq r) =Q a";&t-',(r). (2.15)

and is always positive, since E„)go. Hence
(2.10) is proved.

Having found the extension of (2.'l) in (2.10), we
can now look for the extension of (2.8} to the crys-
talline case. The macroscopic dielectric function
is well known to be'

I

Then, the inequality (2.14}, which is the crystal
generalization of (2.8), is only a weak condition
on the eigenvalues

lim a-", 2z„' q &1. (2.16)

The two inequalities (2.10) and (2.16) must be
satisfied by any DBS for q - 0, while for a general
q in the BZ only (2.10) holds. Again, in passing,
we note that in the RPA the exact (2.10) is re-
placed by

x'"(q) & 1

which coincides with (2.10}only as long as &„'(q)) 0.
We can now extend the condition for thermody-

namic instability discussed previously to the in-
homogeneous crystalline case. By virtue of
(2.10), any value of &„'(q) between 1 and -~ is
compatible with stability. At q- 0, (2.16) must
also be obeyed. A negative dielectric eigenvalue



988 R. CAR, E. TOSATTI, S. BARONI, AND S. LEKLAPRUTE 24

~.'(q) -— (2.17)

Inspection of (2.11) shows that this will occur
when at least one excited state of the crystal be-

simply means that a particular perturbation equal
to the corresponding eigenpotential is over-
screened. Overscreening at some special sites
is possible even in the BPA. For instance, in the
case of Si, an external uniform field (which is,
of course, not an eigenpotential) is overscreened
in a small volume centered at the bond sites. "

A crystal is unstable when any of the e„'(q) is
~1. It is clear that if a system is to approach in-
stability in a continuous fashion this can only oc-
cur with at least one of the eigenvalues crossing
over to -~:

comes degenerate with the ground state

E —E -0 (2.18)

A well-known example of this behavior is the oc-
currence of soft lattice modes in ferroelectric
and antiferroelectric phase transitions. " Its
electronic equivalent, which is so far hypothetical,
however, is a soft plasmon" or exciton" mode in
charge-density-wave transitions. The obvious im-
plication of the equivalence between (2.17) and
(2.18) is that the order parameter for a continuous
electronic phase transition in a crystal must be a
dielectric eigenstate.

Armed with this summary of the requisites that
any DM must satisfy if it is to describe a causal
and stable crystal, we can now move on to con-
sider specific DM models.

III. MODELS FOR STATIC DIELECTRIC SCREENING IN Si

We give in this section a brief description of the various DM models whose DBS's will be discussed in
this paper. Among several possibilities, we have chosen as illustrative examples the models of Sinha, ""
of Johnson, "of Car and Selloni, " and a newly developed one based on the local-density-functional formu-
lation. "

A. Sinha model

We consider only a particular form of the Sinha model which gives rise to the so-called generalized
shell model, when applied to lattice dynamics calculations. " In this model the DM is assumed to have the
following factorizable form:

&(q+6 q+6') = a'o(q+6)&a& +a v'(q+6) g f,*(q+G)f,(q, +6')(q+6) (q+6') exp[i(G -6') r,'], (3.1)

where &,(q+6) is an ad hoc function introduced in
order to adjust the diagonal part of the DM (3.1)
to the calculated values of Walter and Cohen, "
further corrected by exchange, " the sum is
over the sites in the unit cell, a, is an ad-
justable parameter, f,(q+6) are spherical form
factors defined in Refs. 18 and 19, and v'(Q) is an
effective electron-electron interaction' given by

v'(Q) = v(Q)[1 -f„,(Q)], (3.2)

where v(Q ) is the Coulomb potential and f„,(Q) al-
lows approximately for exchange and correlation
effects. " In our application we use Eq. (3.1) with
values of the parameter as appropriate for Si,
given in Ref. 19.

I't should be Iloted tllat fo1nl (3.1) 1s'stl'ictly jus-
tified only in the extreme tight-binding limit with
flat bands. "" Clearly a broad-band covalent
crystal like Si is very far from this limit. Never-
theless, according to Sinha et gl.""this model
works fairly well, at least in lattice dynamics.
A feature that makes this model attractive in spite
of its crudeness is obviously its factorizable form

This model was constructed starting from a
very different approach, i.e. , from an off-diagon-
al generalization of the popular diagonal Penn
model, "where an effectively one-dimensional gap
is superposed to an otherwise free-electron mod-
el. In this sense Johnson's model is much more
free-electron-like than Sinha's. Johnson's DM
has the form

a(q + 6,q+ 6') = 5M, +
I+x[q+-,' (c+c )]'j'
(q+6) (q+6')

Iq+6 I' (3 3)

where HARP& is the calculated &(q, 0) in the RPA, as
computed, e.g. , by Walter and Cohen, "p(G ) is
the valence charge density that can be taken either
from experiment or from empirical local pseudopo-
tential band calculations, "and K is a cutoff fixed by

I

that allows the DM to be inverted analytically to
obtain & '(q+G, q+G'), the quantity of physical im-
portance.

B. Johnson model
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Johnson as

k(~"'" —l)"'/2m~, if ~6-6'~ &2k,
E= (3.4)0 if ~6 -6'

~

& 2k
~

~ ~

~

where kz is the Fermi momentum and &u~=(4vne'/
m)' '. This cutoff, which is introduced rather ar-
bitrarily, has the effect of seriously overesti-
mating some off -diagonal matrix elements. For
example, for small q and ~6 —6'

~

& 2k~ the cutoff
may give rise to important nonzero off-diagonal
DM elements even for very large ~6

~

and ~6' ~,

which is unphysical since a(q+G, q+G') should go
to zero at least as O(G ') for large 6 and 6' = G
+v, where w is a constant. Johnson's model was
originally devised for diamond, giving quite good
results for the DM elements in the limit q-0,
when compared with the accurate calculations of
Van Vechten and Martin. ' It is also rather simple
and parameter-free, both the charge density p(G)
and g, being normally known. We did, however,
get very poor results when we tried to apply this
model to other semiconductors like Si or Ge."

C. Car-Selloni model

A modification of Johnson s model was introduced by Car and Selloni, who applied it to screening of
point-charge impurities in Si.' In their model the DM takes the form

q+6}~ (q+6
[i+Bi(q 6+} (q+6')lj' Iq+Gl'

(3.5)

Here the function f(q+ G) is fitted to the diagonal dielectric function as calculated by Walter and Cohen, "
and the constants A and B are adjusted to reproduce the off-diagonal DM elements as calculated in the
limit q-0 by Baldereschi and Tosatti, "and p(4) is again that of Ref. 39.

The dielectric model (3.5) does not have the unphysical cutoff K of the Johnson model. Its accuracy has
been found to be nearly the same in various semiconductors. However, unlike Johnson's model, this
formulation depends upon the availability of accurate calculations of at least some off-diagonal DM ele-
ments (at q= 0, or elsewhere} so that the parameters A and J3 can be adjusted to fit them.

D. Local-density model

(3.6)

where the matrix R is given by
P 2

B(q+Gq+G, }=—'—", co(p '~'}g o. —2 c„[(q+6)'+(q+6')' (q+6) ~ (q+6')](p ')& &, +
vp . (3 g)

4e G G'-

A very simple dielectric matrix without adjustable parameters can be obtained from the local-density
approximation of the density functional theory. The form we use here is

e(q+G, q+6') = &«, -v(q+6)R '(q+G, q+6'),

Here c, = —'(3~'}'~', c, = —', p is the valence
charge density, and (f(r))d denotestheC-Fourier
transform of the function f(r). The most impor
tant steps in the derivation of this model are
sketched in Appendix A. For more details we re-
fer to a future publication. "

Owing to the Thomas-Fermi form of the approx-
imate functional (Al), the DM (3.6) has an unde-
sired "metallic" behavior in the limit q-0, that
is, a l/q' divergence in z(q, q) and e(q, q+ 6)."
We expect, however, that except for these ele-
ments at q- 0, and generally for q t 0, this model
should constitute quite a reasonable approxima-
tion for a semiconductor DM. This can already
be seen in the homogeneous approximation where
the free-electron Lindhard or Thomas-Fermi di-
electric function approaches rapidly the'Penn di-
electric function of a semiconductor of same av-

I

erage electron density, as soon as ~q ~

is larger
than a fraction of k~ .

IV. DIELECTRIC BAND STRUCTURES
FOR SILICON

We present in this section the results of the
diagonalization of the different model DM's dis-
cussed in the preceding section. To provide a
fixed reference point, we first reproduce from
the work of Baldereschi and Tosatti" the "empty
lattice" DBS obtained by simple folding of the in-
verse diagonal dielectric function g '(q) without
any off-diagonal elements. This is shown in Fig.
1. Also shown there is the result of an accurate
diagonalization of the full DM calculated in the
RPA and in the q-0 limit only. ' The shifts and
splittings of these q= 0 dielectric eigenvalues with
respect to the empty lattice DBS are indicative of
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Si

0.8

0.6

OA

the effect of crystal inhomogeneity on screening,
in the same way that the shifts and splittings in
the electronic band structure with respect to the
empty lattice energy bands are indicative of the
effect of the crystal potential.

It will soon become apparent that shifts and
splittings in the DBS, though quite noticeable, are
not such as to make it look totally unlike the empty
lattice dielectric band structure of Fig. 1. This
explains why for many noncritical applications the
usual diagonal e(q) is sufficient.

The symmetries of the most screened eigenpo-
tentials [i.e. , those corresponding to the lowest
e„(j)]reflect indirectly important characteristics
of the underlying electronic structure, that is of
the chemical bond in the crystal, as explained in
Ref. 22. In Si and at q = 0 the most screened sym-
metries are, in order of increasing magnitude of

f„,r,', r», r,'„r,'„r,. The qualitative reason
why a 1,' perturbation is screened best, is because
it excites transitions from bonding (I'») to anti-
bonding (I"») states most efficiently.

Another general fact worth noticing is that the
(0, 0, 0) plane wave gives rise to a I', eigenpoten-
tial which is the lowest of all, and is also un-
coupled to all the higher 1,'s. It is instead cou-
pled to all higher I"» eigenvalues, by the so-called

"wings" of the DM, & '(j, q+G). For q-0, these
elements take the nonanalytic form (q/ ~q ~

) C(G).
The coupling 1",-I"» is at the origin of the "longi-
tudinal-transverse splitting" of all 1"„eigenvalues
(I"»-Z, +g, ), for g-0. Physically, what happens
is that a longitudinal perturbation, even if cell-
periodic, gives rise at long wavelength to a
macroscopic field parallel to q. This field, in
turn, causes a response which is cell-periodic,
and acts to reinforce the original perturbation,
thus yielding a total reduction of screening pow-
er, i.e. , an increase of g~'(g-0). The same does

1
not happen for a transverse perturbation, whence
the L-T splitting, which is a completely analogous
in nature to that well known for phonons.

We can now proceed to illustrate the DBS ob-
tained with each of the models chosen.

A. Sinha model

The DBS obtained by diagonalizing (3.1) is shown
in Fig. 2. The dielectric bands are very few and
very flat. Remarkably, only perturbations of sym-
metries 1",', and I'» (=g, +g, ) at j=0 are screened
at all, while any other perturbation is left un-
screened, including I"2, which is known" to be in
reality silicon's best screened. However, there
are no q - 0 phonons in Si other than I'„and I",„
which shows that the model is practically custom
made for use in lattice dynamics. "" A general
connection between DM factorizability and selec-
tive screening of a few symmetries only is eluci-
dated in Appendix B.

The flatness of the dielectric bands of Fig. 2 in-
dicates that Sinha's model leads to expect exceed-
ingly large local-field effects, with strong devia-
tions from purely diagonal screening. Comparison
with either the accurate q= 0 eigenvalues of Fig.
1 or with other models discussed later in this sec-
tion indicates that local-field effects are indeed
overestimated in this model. This is not surpris-
ing, silicon being very far from a tight-binding
two-band insulator, which is the ideal case where
Sinha's model applies exactly.

B. Johnson model

0.2

0.0 '

L

FIG. 1. "Empty lattice" dielectric band structure of
silicon obtained by simple folding in the BZ of the dia-
gonal e (g). The dots at I' are the Q 0 accurate RPA
results of Baldereschi and Tosatti (from Ref. 22).

Not being factorizable, Johnson's DM strongly
screens all symmetries and not just some of them.
However, the DBS of Fig. 3 shows clearly
that this is not a very good model either. A

large number of bands are strongly compressed
towards the lower values of c '. This means
that the local-field effects, instead of becom-
ing less and less important for higher bands
(that is, for large ~G

~

values), have an unphysical
tendency to remain constant. For instance, the
L-T splittings at q-0 remain of the same order



DIELECTRIC BAND STRUCTURE OF CRYSTALS: GENERAL. . . 99 l

1.0

0.8

L3

X4

0.6

L3

0.4 X„
X3

L)

0.2

X

FIG. 2. Dielectric band structure of Si obtained with
Sinha's model [Eq. (3.1)].

for higher as for lower bands, while they decrease
strongly in the realistic calculation of Ref. 22.
Furthermore, there are suspicious oscillations in
the bands in the middle of the Brillouin zone which
do not seem to have a proper physical motivation.

A closer inspection shows that the unphysical
features just described are due to the -cutoff K
introduced in the denominator for ~G -G'

~

&2k~.
The large L-T splittings are due to exceedingly
large DM wings e(q, '1+G), while the oscillations
arise from the sudden onset of the cutoff K in q

space.
There is also another problem introduced by

the cutoff, which is not directly shown on Fig. 3
in order not to make the figure too cumbersome
butis nevertheless serious. Atlarge ~q+5~, where
the diagonal DM elements are already very close
to 1, the excessive magnitude of the off-diagonal
elements leads to high-lying eigenvalues c„'(l)
larger than 1. This is in contradiction with the
general requirements of causality and thermody-
namic stability (2.10). Thus Johnson's model de-
scribes a system that has a short-wavelength in-
stability, unless care is taken to drop all the un-
physical bands, &„"'(l)& l.

C. Car-Selloni model

Clearly, once the cutoff is dropped, many of the
undesirable features described above should dis-
appear. The DBS corresponding to this model is
shown in Fig. 4. By comparison with Fig. 1, we
see that the eigenvalues have now quite reasonable

L~+L

L3

L3
Li

Lp

L3
L3

LI
Li
L3
L~

LI

L3
L2

L3
L,
L3

L3

Li
L

Li X

1.0
1

L3
L~

LI
L3

L3

~X)
-X

3

Ix',
X~

X3

X4

x,

FIG. 3. Dielectric- band structure of Si obtained with
Johnson's model [Eq. (3.3)]. Vertical units are the same
as in Fig. 2.

FIG. 4. Dielectric band structure of Si obtained with
the Car-Selloni model [Eq. (3.5)].
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magnitudes at the 1" point, and that they seem to
retain a sensible behavior over all the BZ. The
L-T splitting also has the right order of magni-
tude, which is not surprising since the parameters
in Eq. (3.5) are given the values that best fit the
off-diagonal elements of the DM of Baldereschi
and Tosatti. " However, although the most
screened eigenvalues at I' are the same as in Ref.
22, the ordering is not the same. We have found

that it is not possible to reproduce this correct
ordering with a formula like Eq. (3.5), neither by
changing the values of the parameters A and B,
nor by slightly modifying the formula itself. We
conclude that the simple local dependence on the
valence charge density of Eq. (3.5), while quite
good for a semiquantitative description of screen-
ing in Si—and, we would expect, other crystals
as mell —is not suitable when a high accuracy is
required.

This is a consequence of the fact, already men-
tioned in the Sec. IIID, that the LD formulation is
not capable of giving a nonmetallic behavior in the
dielectr ic response. Hence

in this model, irrespective of the existence of a
gap in the electronic spectrum.

In spite of this defect, this model seems to us
quite an attractive one, both because it has a
stronger theoretical basis than the others and be-
cause it is parameter-free, requiring the crystal
density as its sole input. It can be of direct use
to study screening in aQ those crystals where our
knowledge has been so far very limited.

V. AN APPLICATION: CHARGE INDUCED BY
HIGH-SYMMETRY LATTICE VIBRATIONS

D. Local-density model

The DBS obtained with the local-density (I.D)
model is presented in Fig. 5. The overall behav-
ior is not very different from that of the Car-Sel-
loni model, the deviations from the empty lattice
bands being generally somewhat smaller. This in-
dicates that a general tendency of the LD model
may be to underestimate the local-field effects.
All best screened symmetries at I" are repre-
sented, though not always in the same order as in
Ref. 22. However, the lowest I', eigenvalue is
identically zero, and no L-T splittings are found.

X3

(x,
/X) X)

3
Xt

-X +X
NX 2 3

4

X)
X4

Xt

X

FIG. 5. Dielectric band structure of Si obtained with

the local-density model [Eq. (3.6)].

Though the dielectric band structure itself is a
rather instructive object, it does not of course
contain all the information of the full DM. The
remaining part of information is contained in its
eigenpotentials, which we have not discussed so
far. A proper appraisal of the differences between
DM models should include a comparison of their
eigenpotentials. This is, homever, both very
cumbersome to do and rather devoid of immediate
physical appeal. A more natural choice could be
to compare, for example, real-space distributions
of induced electronic charge when the crystal is
subject to a given perturbation of practical occur-
rence. Examples of such perturbations could be
a uniform external field, "point-charge impur-
ity, " 4' or a phononlike displacement of the
atoms. " One extra bonus is that, in the lack of
any direct experimental measurements, there ex-
ist accurate self-consistent calculations of these
induced charges" against which the various mod-
els can be tested.

In this section me apply the different screening
models discussed in the previous sections to the
calculation of the induced charge caused by a high-
symmetry lattice vibration in an Si crystal. The
local charge distribution is, incidentally, a very
relevant quantity to the microscopic theory of lat-
tice vibrations, because the pointlike ion core
feels the local field ' ' rather than the mean field,
such as one would calculate with a diagonal g(q}.

We have chosen the following two perturbations:
(a) The unit cell of the distorted crystal contains
two atoms, one at (000) and the other at —,'a(111)(1
+x). This corresponds for xg0 to a I",, phonon
displacement. (b) The distorted unit cell consists
of four atoms at (0, 0, 0), —,'a(111), —,'a(2+x, x, 2},
and ~a(3+x, 1+x,3). This corresponds to an X,
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(b) (c)
FIG. 6. Accurate results (from Ref. 23) for the induced electron charge density (in units of 0.01 electrons per cell)

produced in the (110)plane by the I'25 distortion described in the text with x=0.004. (a) Total induced charge; (b) dia-
gonal contribution; (c) off-diagonal contribution.

phonon displacement.
The reason for this choice is because Balder-

eschi and Maschke" provided a self-consistent
pseudopotential calculation of the charge-density
change for these displacements of the atoms for
small x. Figures 6 and 7 show their results,
plotted as constant density contours in the Si unit
cell. These authors have shown, furthermore,
that the charge induced via linear screening by a
I",, phonon displacement, defined in terms of the
bare atomic pseudopotential e" as

p'"(r) =g exp(iG r)u '(G)[c '(G, G') -5M, ]Vf.',
G5'

where

Vg = fd're "Q[."(R+d(x) —r)-u"(8+d(D))]

(5.2)

is, if g is the DM of Ref. 11, almost indistin-
guishable from that obtained directly by differ-
ence between two full self-consistent pseudopo-
tential calculations. No such comparison had been
possible for the X, phonon, as there was no DM
calculation at X. However, since the diagonal di-
electric function &(g) is well known at all q in Si,"
it is possible to separate the diagonal and the off-
diagonal contributions to the total screening
charge, both at I' and at X. The separate contri-
butions to the screening charge found in this way
by Baldereschi and Maschke are plotted in Figs.
6(b), 6(c), t(b), and 7(c).

(c)
FIG. 7. Accurate results (from Ref. 23) for the induced electron charge density (in units of 0.1 electrons per cell)

produced in the (110) plane by the X3 distortion described in the text with x = 0.1. (a) Total induced charge; (b) diagonal
contribution; (c) off-diagonal contribution.
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(b)

FIG. 8. Induced electron charge density in Si (in units of 0.01 electron per cell) obtained with Sinha's DM model in the
(1IO) plane by the I && distortion described in the text with x=0.004. (a) Total induced charge; (b) diagonal contribution;
(c) off-diagonal contribution.

1

We have calculated the induced charge (5.1) for
the I'2, phonon, and that, defined similarly, for
the X, phonon, by using the DM models described
in the previous sections. The bare pseudopoten-
tial v"(r) has been chosen to be the same as that
of Baldereschi and Maschke, "and also the dis-
tortion magnitudes x are the same. The results
of the Sinha, Car-Selloni, and local-density mod-
els are presented for comparison with the full cal-
culations, in Figs. 8-13. (Johnson's model has
been omitted now, on account of its many unphysi-
cal features. )

The following comments can be made. It is
known that, while the diagonal screening gives
rise to dipoles centered on the atoms, the off-
diagonal screening in the diamond structure gives
rise to additional dipoles centered on the

bonds. "'"" For a I"2, perturbation, which is
itself parallel to the bond, the atom and bond di-
poles are lined up, that is, the off-diagonal
screening merely reinforces the diagonal effect.
In an X, perturbation, instead, the atom and the
bond screening keep their individuality. The rela-
tive importance of the bond contribution is larger,
with the bond screening charge oriented differently
from the atomic screening charge. This contrast-
ing behavior can be seen by comparing Figs. 6 and
'7.

The results for the Sinha model, Figs. 8 and 9,
indicate a tendency to overestimate the off-diag-
onal screening, that is the magnitude of the bond
dipole, which has become even more important
than the diagonal. A second fact is that the bond
dipole lines up with the atom dipole not only in the

(a) (b) (c)

FIG. 9. Induced electron charge density in Si (in units of 0.1 electrons per cell) obtained with Sinha's DM model in
the (110) plane by the X3 distortion described in the text, with & = 0.1. (a) Total induced charge; (b) diagonal contribu-
tion; (c) off-diagonal contribution.
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(a) (b)

FIG. 10. Same as Fig. 8 with the Car-Selloni DM.

I",, case, but also in the Xs case, contrary to the
self -consistent results.

The Car-Selloni model gives, of course, good
results for a I'2, perturbation (Fig. 10), with off-
diagonal effects practically indistinguishable from
those of Fig. 6. However, the bond dipoles are
somewhat underestimated for the X, perturbation
(Fig. 11), and their direction is intermediate be-
tween parallel and transverse to the bond direc-
tion, while the full calculation indicates a rather
more transverse direction.

Finally, the local-density model exhibits a
screening charge of qualitative features similar
to those of the full calculation, both for I'2, (Fig.
12) and X, perturbations (Fig. 13). Quantitatively,
however, there is a general tendency to underes-
timate local-field effects (that is, the bond di-
poles are smaller than they should be) both with
respect to the full calculation and with respect
to the Car-Selloni model.

Summing up, the above comparison of induced
charge densities leads to fairly similar conclu-
sions to those based on comparing dielectric band
structures: Local-field effects in Si are too
strong and lack symmetry in Sinha's model and
are substantially better represented but somewhat
weaker than they should be in the Car-Selloni and
local-density models.

VI. CONCLUSIONS

In this work we have addressed the general
problem of electronic screening in a crystal and
further developed the dielectric band-structure
approach to handle it. The extension of the general
properties of causality and thermodynamic stabil-
ity to this case shows that all inverse dielectric
eigenvalues must be smaller than one, but not

necessarily positive. Continuous electronic phase
transitions occur, in particular, when one inverse
dielectric eigenvalue goes to -.

(a)

FIG. 11. Same as Fig. 9 with the Car-Selloni DM.

(C)
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(a) (b) (C)

FIG. 12. Same as Fig. 8 with the local-density model.

The problem of a full dielectric band-structure
calculation throughout the Brillouin zone is then
considered, for the test case of silicon, which is
the crystal whose dielectric properties are best
known. Four different dielectric matrix models
are considered, among those existing in litera-
ture: They are the models of Sinha, Johnson,
Car and Selloni, and a newly developed one based
on a local-density functional. Comparison among
their dielectric bands, and with those calculated
by Baldereschi and Tosatti at q - 0 leads to the
conclusion that local-field effects are generally
overestimated by the models of Sinha and Johnson
models, while they are underestimated, but gen-
erally better represented, by the Car-Selloni and
the local-density models. Also, the important
general fact that factorizable models necessarily
screen only perturbations of a small incomplete
set of symmetries is brought out. It is also found
that certain dielectric matrices, such as John-

son' s, violate either causality or stability, and
must be dropped.

To compensate for the fact that no direct com-
parison with experiment is possible at this stage,
we have calculated with linear response the in-
duced charge densities for periodic phononlike I'»
and X, displacements of the atoms and compared
the results with the full self-consistent pseudopo-
tential calculations of Baldereschi and Maschke. "
The extent to which the two approaches agree var-
ies substantially from one model to another. Con-
clusions that can be drawn this way support
strongly those obtained by simple comparison of
dielectric bands.
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FIG. 13. Same as Fig. 9 with the local-density model.
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APPENDIX A: DENSITY-FUNCTIONAL DIELECTRIC
MATRIX

According to the theorem of Hohenberg and
Kohn, "the ground-state energy of a system of ~
interacting electrons in the external (local) field
V(r) is a unique functional of the electron charge
density, which can be written in the form

s,[p)= f d«( )8(p)8

+-, , d'r d'r'+G[p],p(r) p(r')
(A1)

'

where G[p] is a universal functional of p(r) that
includes kinetic and exchange-correlation contri-
butions to the total energy. From the minimum
property of (Al) subject to the condition f p(r)d'r
=N we get

(A2)

i.e. ,

V„(r)= V(r)+ y(r) —p=- «[p]
&p(r)

'

Here p, is the chemical potential and

(t)(r) = d'r'.p(r')
fr -r'I

(A3)

«..(r) ~'G[pl
R r, r')=

5p(r') f) p(r) &p(r')

or in Fourier space

(A4)

&'G plR(q+G, q+6') =- (A
~ q+6 ~- (q+6')

where pg are Fourier components of the charge
density. The DM is given by

~(q+G, q+6') = &oo, +v(q+G)X(q+G, q+6')
in terms of the density response

(A6)

X(q+G, q+6'} = — " = -R '(q+G, q+G').
[)V„(-q-6')

The left-hand side term of Eq. (A3) has the mean-
ing of the self-consistent field V„(r) seen by a
test charge in the system.

By taking the functional derivative of Eq. (A3)
with respect to p(r} we get the response function APPENDIX B: SYMMETRY ANALYSIS OF

FACTORIZABLE DM MODELS

The fact that only a few specific symmetries
are screened in Sinha's model is a direct conse-
quence of the factorizable nature of that model.
To see this more clearly let us seta G(q+ 0) = 1 in Eq.
(3.1) and look in detail at the part of the Sinha DM
that is responsible for LF effects, i.e. , to

&(q + G, q+ G') —5(dg, = [i)'(q+ 6)u'(q+ 6')]'~ '

x y(q+ G, q+ G'), (B1)

X(q+Gq+6 ,) ~.('q+=6) (q+6 )'
xf8'(q + 6)f(q+ 6))g ei (G-(p') rs

(B2)

We get, therefore, Eq. (3.6) with R given by Eq.
(A7).

This formulation is exact and completely gen-
eral: From the knowledge of the functional G[p] .

and of the equilibrium charge density which sat-
isfies Eq. (A3) we can calculate R, whose inverse
gives the proper polarization part X. In practice,
however, we must content ourselves with an ap-
proximate form of G[p]. In the present paper we
have chosen the Thomas-Fermi local form cor-
rected with first gradients":

G[p(=c, f d rp'~'(r)+c d'r (A8)
I87p(r)l'

p r
from which Eq. (3.7) follows directly. The form
(A8} does not include exchange and correlation ef-
fects, , and is appropriate to the comparison with
the RPA results of Baldereschi and Tosatti. "

In our application we do not use in Eq. (3.7) the
equilibrium charge density obtained with Eq. (A3)
with the functional (A8), but simply use in Eq.
(3.7) the empirical pseudopotential charge den-
sity. This is a common practice in Thomas-Fer-
mi methods. Indeed it is known" that the Thomas-
Fermi approximation with gradient corrections
can badly fail in some applications when used as
a variational method, but gives in any case a fair-
ly accurate approximation of the total energy if an
accurate charge density (Hartree-Fock, pseudo-
potential, experimental, etc.} is used as an input
to the Thomas-Fermi formulas.

A more complete account of this density-func-
tional based method will be given in a future pub-
lication. " It should be pointed out, in closing,
that a complete self-consistent formulation of the
local-density linear screening theory in real space
has been given previously by Ying, Smith, and
Kohn, "who applied it to the problem of chemi-
sorption from jellium surfaces.
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We can restrict our analysis to the I' point and
consider only the matrix (Bl) at j= 0," in order to
avoid the complication of the DM nonanalyticity in
the limit q -0. This is equivalent to consider the
DM without the wings, i.e. , without the first row
and the first column. Considering the complete
matrix for q-0 will only cause L-T splittings of
the I'» eigenvalues found for q = 0.

We note first, by inspection of Eg. (Bl), that
the symmetry of the eigenvalues of e(G, G') is the
same as that of the eigenvalues of 11(G,G'). There-
fore in the following we will concentrate on the
"polarization matrix" X. We also switch to a real-
space representation, which is more appropriate
to this discussion. The matrix X(r, r ) is given in

the RPA by"

X(r, r') = 2+Z' Z 4,(r)g,*(r)4,.(r')(,(r'), (»)
fJ

where the sums run over all the states i in the
crystal and the f, 's are . Fermi occupation num-
bers.

We expand the wave functions g,(r) in terms of
localized Wannier functions P„,(r),

g,.(r) = Q e'"'"C„,(k)qr„,(r -R). (B4
&~,a

Here g is a band index, k is the reduced momen-
tum, X is a site in the cell R, and N is the num-
ber of cells. Substituting (B4) into (B3)

)((r, r') =g —, ' ~ g exp[ik (K, -R,)+ik& (R~-'R,)]C„~(k,.)C*„, (k,.)C„*,(k,.)C„&(k~)
jj j j RyR2R3Ry

Xgk2XSX4

r —R )~„(r-R )~„(r R (B5)

If we now restrict to a two-band modeL, with
tightly bound flat bands, the product of two Wan-
nier functions is different from zero only if both
belong to the same unit cell and the same site.
We obtain, like Ortuno and Inkson, "

X(r, r') =—Q A,(r ~ R)A,*(r' —R), (B6)

xx' RR' 'pcond, x r %cong, g r oval, x 9 val, x

(B8)

This means that the matrix (B6) is a real-space
representation of the operator

+ X, R

(B9)

where

A~(r —R) = p„,~ ~(r -R)p„*„„(r—R). (BV)

One recovers Sinha's model (Bl) from (86) if the
sites X are the atomic sites s and the conduction
and valence Wannier functions are p- and s-like,
respectively. " On the other hand, if the sites A,

are the bond sites and y„„y„,~ are bonding and
antibonding combinations of sp' hybrids, one ob-
tains another popular form of the extreme-tight-
binding model, namely, the model used by Ortuno
and Inkson, ' Turner and Inkson, "and Arya and
Jha." From (B7) and the assumption of two flat
bands, it follows that

I

i.e. , a sum of projection operators over the states
~A~-„). The eigenvectors of (B9) having Bloch
character are, for q =0,

(B10)

The number of different sites in the unit cell times
the possible degeneracy of state A, gives, there-
fore, the total number of eigenvalues of the op-
erator (B9). Of course, some of these eigenval-
ues can be degenerate.

In the case of Sinha's model we have two atomic
sites in the unit cell and the localized functions
A» have p character. The corresponding sym-
metrized combinations of Bloch sums can have
I y5 and I",, symmetries; hence Sinha's DM model
can have only two eigenvalues different from 1,
corresponding to these two symmetries, I'» and
I",,. The addition of the DM wings in the case q-0 introduces the L-7." splitting of the I'» eigen-
value into g, and g, as can be seen in Fig. 2. In
the same figure there are also other eigenvalues
close to 1 but not exactly 1 due to the artificial
addition of the homogeneous screening term e,(Q).

The same symmetry analysis can be applied to
the extreme tight-binding model based on Wannier
functions localized at the bonds. "'" One obtains
for this model only eigenvalues of symmetry I",
and I"» at q = 0, which become I", and g, + g, in
the limit q - 0. This model has been extensively
applied to phonons, ""giving rise to reasonable
dispersion curves. However, since it does not
contain the symmetry I"'„, which is the symmetry
of the optical phonon ai I' in covalent semieon-
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ductors with the diamond structure, the induced
electronic charge due to a I",, lattice distortion
is exactly zero in this model. %e conclude,
therefore, that even if the phonon frequencies ob-

tained at I' with this model are numerically good,
the microscopic field behind them is certainly
misrepresented by this type of DM.
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