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Mnltiplet splittings and Jahn-Teller energies for the vacancy in silicon
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The question of the relative importance of multiplet-splitting effects and Jahn-Teller distortion energies is discussed
in detail for the vacancy in silicon. The calculations are done within the self-consistent local-density approximation.
It is demonstrated that the dominant contribution comes from the magnetic or exchange splitting, which for the free
atom is the origin of the Hund's-rule ground state. The calculated value of this splitting is an appreciable 0.35 eV for
the neutral-vacancy case. However, if multiplet and Jahn-Teller splittings are combined, the ground state is
dominated by Jahn-Teller distortions while multiplet effects are practically quenched. The general results of the
negative-U system formed by the three charge states V'+, V+, and V' remain thus basically unaltered.

I. INTRODUCTION

There has been a long controversy concerning
the relative importance of correlation effects and
Jahn-Teller (JT) distortions for vacancy centers
in silicon. The first theoretical models, ' all
based on the defect-molecule approximation,
pointed out that many-electron effects were es-
sential for a correct description of the electronic
properties of these defects. On the other hand,
Watkins was able to show that very simple one-
electron models combined with local Jahn-Teller
distortions can account quite successfully for the
results of EPR experiments. This was inter-
preted to imply that the Jahn-Teller distortion is
the dominant effect and that the defect-molecule
grossly overestimates correlation effects. A
plausible explanation for this is that the bound
states of the vacancy (which have a, dangling-bond
character) are in fact quite delocalized, and that
this delocalization is likely to reduce consider-
ably the relevant Coulomb interactions. How-
ever, the magnitude of this effect is still subject
to uncertainty. Coulson and Larkins' increasing
the size of the defect molecule, concluded that
this reduction was weak, while Messmer and
Watkins, using the scattered wave Xol. method, '
arrived at the opposite conclusion, namely, that
the Coulomb terms almost tend to zero as the
size of the cluster is increased.

Two other papers have dealt in some detail with
this subject. The first one by Surratt and God-
dard is based on the generalized valence-bond
model for clusters C4H» or Si,H]p The straight
application of their method leads to results es-
sentially similar to those of the defect-molecule
model, i.e. , an overestimate of the electron-
electron interactions. These authors then, used
modified values corresponding to reduced inter-
actions, which improved their numerical results.
The second paper by Lannoo' reviewed these
calculations on the basis of a two-parameter

model, one for the hopping between dangling bonds
and the other for the Coulomb interaction. He
found that plausible values for the Coulomb in-
teractions should be much smaller than in the
defect-molecule model, but by no means small
enough that the resulting multiplet splitting could
be neglected.

It is thus of interest to obtain the best possible
estimate of the multiplet-structure parameters
and to make a systematic study in which these
effects are combined with Jahn-Teller distor-
tions. To do this we shall use the local-density
formalism which, when used with some care, '

has been shown to predict correct multiplet struc-
ture for free atoms. We use here an extension
of this formulation, whose details are published
elsewhere, and in which the total energy of the
system is expressed to second order in the changes
in occupation numbers of the orbitals, in terms

, of a minimal number of independent parameters.
These correspond to the self-energies of fluc-
tuations of either charge densities or spin den-
sities. They can readily be obtained from the re-
sults of one-electron self-consistent calculations.
These energies are characteristic of the multiplet
splitting occurring at the ground-state configura-
tion, and will then be compared to Jahn-Teller
energies.

In Sec. II we give a brief account of Watkins's
one-electron linear combination of atomic orbitals
(LCAO) picture, discussing its relation with the
results of more sophisticated recent calculations
by Baraff and Schlater and Bernholc, Lipari, and
Pantelides. We also recall characteristic fea-
tures of tetragonal and trigonal distortion modes
which can occur in the neighborhood of the vac-
ancy site and the splitting of the vacancy states
they induce. Section III is devoted to a brief ac-
count of the general method used to handle the
multiplet-structure problem and gives a detailed
application to the neutral-vacancy case. The
question of the relative importance of multiplet
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FIG. 1. The vacancy defect molecule with its four
dangling bonds.

FIG. 2. Splitting of the molecular levels under the
Jahn-Teller distortion for V', Vo, and V .

and Jahn-Teller splittings is analyzed in Sec. IV
for arbitrary strength of their relative para-
meters. Finally these results are discussed in
terms of the negative- U centers formed by V ',
V, and V.

II. WATKINS'S LCAO ONE-ELECTRON PICTURE
(REF. 3)

and their overlap interaction

-y=(I(I; ~h~((~) for i' . (2)

The 4x4 Hamiltonian matrix can be easily diag-
onalized and gives the one-electron level splitting
of Fig. 2(a), with a nondegenerate A& state at -3y
and a threefold-degenerate T'2 state at +y. The
corresponding eigenfunctions (which will be needed
later) are

Ag. v = 2 (ItI4 + $2 + Il)3 + ItI4) ~

This picture is based on the simplest possible
version of molecular-orbital theory. The atomic
orbitals are taken to be one s and three t) orbitals
per atom. As usual in tetrahedral covalent struc-
tures one builds sp orbitals which, in the perfect
crystal, pair to form strong covalent bonds. Upon,
forming a. vacancy by removal of one atom (Fig. 1)
four such bonds are broken, leaving four dangling
bonds III;, i=1 to 4. From symmetry, one has
only two independent parameters, the self-energy
of these orbitals:

to be in the T2 state. This one being degenerate
is subject to a Jahn-Teller distortion which by
removing the degeneracy lowers the energy. The
general theory of the Jahn-Teller effect on a T2
state ' predicts two possibilities' . either a tet-
ragonal distortion [lowering the symmetry to Dq,
with three equivalent possibilities, the (100) being
pictured in Fig. 3(a)] or a trigonal distortion [low-
ering the symmetry to C3„with four equivalent
possibilities, the (111)being pictured in Fig. 3(b)].
On these figures we also give the coordinates of
the atomic displacements in terms of the normal-
ized symmetry mode amplitudes Qs and Qr. The
experimental results for V' are consistent with a
tetragonal distortion, as shown on Fig. 2(b). Go-
ing to V one adds another electron to the lowered
level, thereby increasing the Jahn-Teller dis-
tortion. Finally, for V, the fifth electron must
be added to the twofold-degenerate state. Again
the Jahn-Teller theorem applies, but now the split-
ting can only occur through a trigonal distortion
superimposed on the tetragonal one [Fig. 2(d)].
This situation is in agreement with the experimen-
tal observation' of a mixed tetragonal and trigonal
distortion for V .

We may ask how such a simple model compares
with the results of more elaborate calculations p

Let us first compare one-electron energies. In
the I CAO picture, the defect molecule formed by
the four dangling bonds must be embedded in the

-;3

X( = XZ= X3= Xy= QE/ JS

y(
= y2= y3 = y~ = QZ»~

Z( = 12 — Z3" 24 = QE /2 J6

XI) =
yy = Zq =-QT/JQ

y) =ZZ=X3=QT/j6

Let us begin with the V ' charge state. There are
two available electrons which will fill the lower
level Aq. In the V+ case, one extra electron has

(b)

FIG. 3. t'a) Tetragonal distortion along the x axis and
Q) trigonal distortion along the Qll) direction.
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crystal, i.e. , the four-dangling-bond states are
coupled with neighboring bonding and antibonding
states of the valence and conduction bands. The
molecular states Aq and Tq of Eq. (3) can be found
either as localized states in the forbidden gap or
resonant states within the bands. With the Aq

state being lower self-consistency requires that
the T2 level be localized within the forbidden gap.
Thus the Aq level is likely to be found as a reson-
ance in the valence band. This picture is con-
firmed by the local-density calculations of Baraff
and Schluter ' and Bernholc, Lipari, and Pan-
telides (where the AqTq splitting is of the order
of 1.7 eV in silicon). The picture is also con-
firmed by empirical tight-binding treatments. "
The important point is that the A~ and T2 states
are now somewhat delocalized. However, it is
instructive to still consider them as being built
from the four equivalent wave functions g, (with
= 1 to 4) which can now be considered as de-
localized dangling bonds. The Jahn-Teller co-
efficients have been calculated by Baraff, Kane,
and Schluter'" and found to give good agreement
with experimental results for the charge states
V ', V+, and V'which form from a negative-U
system. We shall discuss these numerical values
later.

A way to go beyond the simple one-electron
picture is to include many-electron effects. This
has been done first in the spirit of the molecular
treatment. There one only considers the defect
molecule of Fig. 1 and builds determinants from
the individual spin orbitals which are v, v, g, x,
y, y, z, and g (here the bar denotes spin down).
For the neutral vacancy, for instance, one has
three possible configurations: A~~Tq (two electrons
each in the A~ and T2 state), A, T, (one and

three), and T2 (zero and four). One builds all
possible Slater determinants belonging to each
configuration [for instance, the determinant

~

vvxxg

belongs to A, T2j and finally diagonalizes the many-
electron Hamiltonian in the corresponding basis,
allowing for the interaction between configura-
tions. It is this procedure which led to the con-
clusion that many-electron effects were impor-
tant enough that they could not be neglected. From
this point of view however, it is still hard to
understand why these effects seem to disappear
so completely in experiment so that, in fact,
the simple one-electron picture works well. As
we shall see, the argument that the delocali @ation
of the dangling-bond states leads to vanishingly
small many-electron effects is not valid. It is
the aim of this paper to analyze simultaneously
the many-electron and Jahn-Teller effects and to
show why only the second effect seems to be im-
portant.

III. LOCAL-DENSITY TREATMENT
OF MULTIPLET STRUCTURE

We follow here a method which has similarities
with the procedure used, for free atoms, by
Ziegler, Rauk, and Baerends' and von Barth. '
The similarity lies in the fact that we use local-
density theory to calculate the total energy of a
state only when its charge density can be simu-
lated by one single Slater determinant. This is
because a state corresponding to a combination
of Slater determinants must give rise to a state-
dependent exchange-correlation potential and can
thus not be simulated by the simple local-density
functionals which are in current use. A. new
feature, not present in atomic problems, is that
we are dealing with an extended system (composed
of delocalized plus localized states).

In this case, it is considerably more difficult to
calculate the total energy for various determin-
ants. For this reason we have developed a theory
in which the total energy is expanded to second
order in changes in the occupation number of the
one-electron spin orbitals. The advantages of
this formulation are the following: (i) it reduces
the problem to the calculation of the localized-
electron states only, (ii) it allows one to express
the multiplet splittings (i.e. , the difference in
energy between various determinantal states) in
terms of the self-energy of self-consistently
screened change- or spin-density fluctuations,
and (iii) because each determinant is a given av-
erage over true multiplet states, a comparative
study of different possibilities reduces the prob-
lem to the evaluation of a few independent para-
meters (e.g. , two for the neutral vacancy).

A detailed account of this theory is given
elsewhere. " Here we shall simply outline the
essential steps, taking as an example the neutral-
vacancy case (extensions to other charge states
can be made trivially). We consider a configura-
tion in which all the valence states are completely
filled, in which the Aq state (a resonance within
the valence band) is filled with two electrons of
opposite spin, and in which the two remaining
electrons are localized in the T2 state. This sit-
uation is the equivalent to the A.&7.'2 configuration
of the defect-molecule model. The problem here
arises from the many different possibilities of
distributing these two electrons on the orbitally
triply degenerate level T& (the situation is in some
respects analogous to the two equivalent'p elec-
trons of a free carbon or silicon atom). ' This
leads to a splitting into different levels forming
the multiplet structure for that configuration.
This effect is important for localized states in
semiconductors, as has been known for a long
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time for transition-metal ions in more or less
ionic systems. "

To derive the second-order expansion of the
energy, we have to start from a reference state,
for which a complete self-consistent calculation
has been performed. For the neutral vacancy V'

in silicon, this was done for an average state in
which the two electrons were distributed equally
between the six T2 spin orbitals. Then, the cor-
responding contributions po~ and po& to the elec-
tron density were

'+ '+ "
V

po) = =Poi ~ (4)

Starting from this reference state, we expand the
total energy to second order in the changes &n, ,
in occupation numbers of the one-electron spin
orbitals |t)„. This expansion can be expressed as

E„,(~„)=E...(~'„)+g ~„n,n, ,
+ —, &,,An, ,+ ~ (5)

where i stands for the orbital part and 0 stands for
the spin part. The first-order coefficient e,.„
being the partial derivative of E„,with respect
to n,.„ is the corresponding one-electron eigen-
value. The coefficient 4&,, is the first-order
change in e,, induced by 4n;, . It can be calculated
by first-order self-consistent perturbation theory.
One can show (for details see Ref. 10) that this
second-order term can be split into two different
contributions. the first one comes from pure
charge fluctuations 4g defined by

&p=Z ""
i

where ()),. is the orbital part of the wave function.
The associated energy is

E =—-', [2rrp(r)(v (r, r ) (vir', r") ——* (r')2, , I (2rrp(r")(dr dr'dr",
b, p 2 2

(7)

where e (r, r ) is the inverse dielectric matrix,
v(r', r") is the Coulomb potential ~r'- r"

~

', and
v'„ the density derivative of the exchange potential
in its local-density form (we use Slater's Xn ex-
change with o(=0.7). Expression (7) can be ex-
tended to include more complex exchange-cor-
relation functionals.

The second term comes from pure spin fluc-
tuations 5bp(r) given by

f &p(r) = Z (8)

and has a second-order energy —E',~, given by

-E~&,——— &&p r &~ r, r' v'„r' 5~p r' dT dT', 9

where now E describes magnetic first-order
screening of the system.

For the application of this theory to the natural-
vacancy case, we consider the AqT2 configuration
discussed above. This means that we include in
our treatment all the possibilities of distributing
the two T'2 electrons over the six T2 spin orbitals
x, x, y, y, z, and Z, i.e. , only the occupation
numbers of these spin orbitals will be varied.
As they all belong to the same degenerate T2
level, the first-order term in Eq. (5) will vanish,
since the sum of the 4n,-, has to be zero.

As we have seen, the second-order terms re-
quire a first-order self-consistent calculation.
The need for self-consistency can be understood
simply. In our example we consider Slater
determinants such as ~xx), ~xy), etc. , where

x, x, etc. , are the localized T2 states. In this
condensed notation we do not specify the other
filled extended states which form a closed shell.
However, these states influence the result, since
they become polarized by the perturbation which
is induced by the change in occupation number
of the localized states. This means that they
tend to screen that perturbation. The result is
that the energy of the system, instead of being
simply the self-energy of the bare perturbation,
is now the corresponding screened quantity given
by Eqs. (7) and (9). It turns out here, however,
that terms involving E„will be negligible because
of small wave function overlap. Moreover we
shall take e =1, so that we avoid the calculation
of the self-consistent response. However, this
is not valid in general and self-consistency can
certainly play an important role in some cases.

Once the electrostatic and magnetic contribu-
tions to the energy [given by Eqs. (7) and (9)] are
known the question arises of how to obtain the
complete multiplet structure from these results.
This can be done in many cases by using the fact
that the many-electron eigenstates have a definite
space symmetry and a given total spin (ignoring
spin-orbit-coupling effects). This allows one to
know a priori the correct combinations of Slater
determinants defining one given eigenstate. These
combinations are given for V' in Table I, with
their symmetry label and their spin multiplicity.
One can see that, except for the M, =~1 com-
ponents of the triplet state Tq, all other states
are combinations of Slater determinants.
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TABLE I. Eigenstates of V in terms of single Slater
determinants.

I--&+ lyy)+ lzz)
v3

2I xx) —
I yy) —

I zz)
~6

lyy) —lzz)
~2

energy parameters of the type E&; t Eg. ( t) I
and

Ezz, [Eq. (9)];
(iii) the average over multiplets which the single

determinant represents.
To illustrate the method let us work out the deter-
minant ~xx). Its spin densities are

= 2P)=X 7
(1O)

= 2
X 7

i
T2

lyz) —lyz)
~2

leading to

lzx) - Izx)
~2

Ixy) —Iyx)
~2

lyz)

Izx)

lxy)

1~ [Izx)+ Izx)]

1
~2 (lxy)+ lxy)) lxy)

Let us now examine in more detail the case of
V'. In Table II we give for different determinants
the following characteristic quantities:

(i) Its pure charge- (&p) and pure spin- (5&p)
density fluctuations, '

(ii) its energy in terms of a few independent-

X +p +g
&P =X—

3 7
= 2Pf (1 la)

(11b)

Using (11a) in (7) gives an energy which is four
times the energy due to the function vf. There is
no magnetic contribution from (9) because 5&p
is zero, and so the total second-order change
in energy is found to be 4E„. In Table II this is
written as 4E„because of the symmetry relations
given in this table. Finally, as indicated in Table
I, ~xx) represents an average over A& and E
given by the expression in column five of Table
II.

Clearly, in Table II the number of relations
between the multiplet levels is greater than the
number of levels itself. This implies that there
exist relations between the fundamental param-
eters. These are found to be

TABLE II. Energies of single Slater determinants for the neutral vacancy V . The charge and spin fluctuations (col-
umns 2 and 3) are expressed in terms of the following symmetry components:

2x —(y+z) y -z x +P2 2 2 2 2 2 2 2

Vi=
6 ' 243

v2- — PP , gf ——yz, 82=zx, 83=my.

There are no cross terms in E~~ and E~pp between these elementary fluctuations. Owing to symmetry, one has E»
Ep2 E Egf Eg2 Eg3 Eg, and the same re lations for E ~

Determinant

Energy in terms
of fundamental

parameters
Energy as an average

over multiplets

Ixx& 2vf 3 (E fA + 2E fE)

lyz&

Vf

v3v,

3
V i

Ev 3E~v

4

2«f T +E'Tf)

—'(Ei +Ei )
2

—,'(Eiz +E3 )T2 Ti

ly. z& Pp-Vi E E& E&

Vi
2

vi «8

2 2

Vf
Pp+

2

Pp+ +
2 2

EP PEp E'„

Eu Eg EE
+ —E~

4 4 'p 4 4
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(13)

We have calculated E', for the neutral vacancy
by assuming the magnetic-screening effect to be
negligible [i.e. , taking e,=1in Eq. (9)]. In this
case we only have to integrate the square of the
density oo ——(x +y'+z')/3 multiplied by the den-
sity derivative of the exchange potential which we
take to the Slater Xn form, with n equal to 0.7.
Using the wave-functions results of Ref. 11 we
find for E', a value of 0.33 +0.03 eV. In principle

Pp

one should correct this value for magnetic screen-
ing which, opposite to dielectric screening, should
increase the value of E', . We thus give here a'o
lower bound for this quantity. However, we
believe the correction to be small, for reasons
which are detailed in Ref. 10, and thus neglect it
in what follows.

The other term E„(which should be equal to E„')
can be determined by two methods. Comparing
E„' to E', , we find a considerable difference. The

Ppl

fluctuation v integrates to zero, while pp inte-
grates to one. Viewing x, y, z as combinations of
delocalized dangling bonds, v is only an overlap
charge density which allows us to estimate that
E„'=~pp E', , i.e. , completely negligible. The
same reasoning applies to E„ leading to a similar
conclusion.

We are then left with only one significant para-
meter E', . With this our predicted multiplet
structure is given in Fig. 4, with splittings which
are by no means negligible. It is interesting to
notice that our present result for 'E, 'T, a,nd

'T, is extremely close to the one estimated

These relations tell us that some asymmetrical
density fluctuations do not change the total energy
to second order. This comes from the condition
which we have imposed, namely, that any single
determinant which can be expressed as a linear
combination of other determinants, members of
a degenerate set, must have the same energy as
these basis determinants. The degree to which
relations (12) are obeyed is a measure of the val-
idity of this statement.

The use of relations (12) allows us to express all
the multiplet levels, in terms of only two funda-
mental parameters, i.e. , E„and E', . One finds

Pp

3+ p

E

FIG. 4. Multiplet splitting for the neutral vacancy.

in Ref. 7, while our conclusion about the rel-
atively important value taken by the singlet-
triplet splitting parameter E~ seems at var-
iance with the conclusion of Messmer and Wat-
kins' for diamond. We shall come back to an
explanation of this difference later.

IV. THE RELATIVE IMPORTANCE OF MULTIPLET
AND JAHN-TELLER SPLITTINGS

We have shown in the previous section that the
singlet-triplet splitting of the undistorted vac-
ancy state t/" is of order 0.33 eV. It is thus not
obvious that this energy can be neglected com-
pared to Jahn-Teller energies of the order of
0.2 eV (see Ref. 16). It is thus important to study
the two effects combined in order to obtain
a correct answer to that problem. We shall con-
sider here the problem of the multiplet structure
for the tetxagonally distorted neutral vacancy
U' (we simply drop the trigonal mode which is not
observed experimentally for V').

In principle, the problem has to be treated by
the same methods as used in Sec. III. One starts
from a reference one-electron calculation per-
formed for one given amplitude of the distortion
mode QE. The one-electron levels are now split,
so that one has the X level

'x 'T2 VERE& (14)

where VE has a value of -1.12eV/Awhile the
twofold-degenerate state is shifted by --,PE@~.
One then considers all possible determinants as
was discussed before and expresses their ener-
gies in terms of the self-energy of fluctuations
like pp& vg& v2& ~g etc. Some of the equalities
which were valid by symmetry (e.g. , E„,=E„)
will now break down leading to a much more
complicated problem. However, the main dif-
ference resides in the energy of small asymmetri-
cal charge fluctuations which, as was the case
before, are likely to be negligible compared to
the dominant term E', . We ean thus consider
that the many-electron effects are still described,
in the distorted situation, by the same parameter
E', as in the undistorted one. In other words we

'p
write the total perturbation due to many electron
effects plus the Jahn-Teller distortions, as the
sum of two Hamiltonians & and BJT ~ The para-
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-6+E 0
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—+E'5
POT2m

-g —E'

(15)

meters of each perturbation are taken to be in-
dependent of the other one (i.e. , H is calculated
at zero distortion and H» in the one-electron
model).

To go further one has to express & and II JT in
the same many-electron basis. This is obvious
for H which is diagonal in the many-electron
basis of Table I, with diagonal terms equal to
2E', , E', , —E', , for the A~, T2 and E, T&PO' PO'

states, respectively. This is not so trivial for
If» whose effect is given by Eq. (14) in a one-
electron calculation. However, this can be read-
ily extended to the many-electron basis. One
first notices that the determinant ~xx) corres-
ponding to two electrons in the E„state will have
a Jahn-Teller energy of 25, if 5 stands for Vsgs.
Any determinant like ~xv), ~xz), etc. , corres-
ponding to only one electron in &„ will have an
energy 5/2 and, finally, any determinant with no
electron in E„will have an energy —5. This de-
fines H» in the single determinant s basis, from
which it is simple to express it in the basis of
Table I. In this basis, we obtain for H +H»,
the corresponding matrix, which is built from the
following three independent blocks:

- x=lSIIE'
0

FIG. 5. Energy (in units of E& ) versus the relativePo
strength x =

~
5~ /&t of the Jahn-Teller tetragonal cou-

pling, for the neutral vacancy V .0
0

ponds to ~e„~ =F.', (i.e. , the intersection of the
dashed lines which represent the limiting be-
havior) .

I et us now investigate the actual situation for
U' in silicon. The total energy is obtained by
adding to the energy given in Fig. 5 an elastic
term —,'ks@s and by minimizing with respect to
Qs to find the stable configuration. This was
done in Ref. 16 for the limit of vanishing multiplet
effects, i.e. , for

5

O O -+E

This matrix can easily be diagonalized for any
value of the Jahn-Teller parameter |I and of the
multiplet-splitting parameter E', . The corres-
ponding energy E in units of E, is plotted in Fig.

PO

5 versus the dimensionless parameter x= ~5 ~/
E', (we consider here only negative values of 5).Po

For high values of x the Jahn-Teller effect clearly
dominates and all curves reduce to their straight-
line asymptotes. For x tending to zero, one re-
covers the multiplet splitting at zero distortion.
In this limit we give on Fig. 5, the straight lines
which are tangent at x= 0 to the exact curve. The
'E level becomes the most stable over the whole
range of values and Fig. 5 shows that the line
between the two different regimes where either
multiplet or Jahn- Teller effects dominate, corres-

=2V Q +pl Q (16)

After minimization, the energy change was found
to be —0.68 eV. At the minimum, the term
2V Q is equal to twice this value, and thus, 5&m
is equal to Vs@, i.e., -0.68 eV. As Z,' was
found to be 0.33 eV, we are in a case where

~ x~ is
equal to two, i.e. , in a region where the Jahn-
Teller effect dominates. In fact, for ~xl =2, the
relative error introduced by the neglect of E' is

PO
only 6% compared to the Jahn-Teller stabilization
of the level, which is 25, i.e., -1.36 eV. Inclu-
sion of the many-electron effects only introduces
a small further stabilization amounting to 0.25
E', i.e. , about 0.08 eV.

The important conclusion of this section is that,
a,lthough the multiplet-splitting parameter E,' is
not small, its importance is very minimal for the
ground state 'E of V', which it tends to further
stabilize by an amount of 0.08 eV. The multiplet
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splitting is, however, much more important for
the structure of excited levels. Figure 5 shows,
for instance, that the first allowed optical transi-
tion would be 'E —'T, . The zero-phonon line for
this transition is the difference in energy between
the two absolute minima. For the ground state
'E, the minimum energy is at -0.76 eV. For the
nondegendrate component of the 'T, state, the
minimum will occur at positive values of 5. The
linear term is -5. Thus minimization with re-
spect to Q gives a Jahn-Tell r energy of -0. 17
eV, which has to be added to ' yielding 0.16 eV.
The first excited state should t en occur at 0.92
eV above the ground state at &0'. 05 eV. This puts
the optical transition energy close enough to the
band gap to make the detection difficult. Experi-
mentally no absorption line is observed for the
neutral vacancy.

V. DISCUSSION

One of the main results of this study is that only
o~e parameter is important in determining the
multiplet splitting associated with the vacancy in
silicon. For the neutral case V, this parameter
corresponds exactly to the singlet-triplet splitting
calculated by Messmer and Watkins' (in Fig. 4,
the average energy of zero-spin states is zero,
compared to -0.33 eV for the 'T, state). However,
Messmer and Watkins arrived at the conclusion
that this splitting was decreasing rapidly with the
size of the cluster they used, such that this para-
meter would in fact be negligible for a vacancy in

an infinite crystal. However, our finding shows
that this is not true and that the value of the split-
ting we find for silicon, i.e., 0.33 eV, is larger
than what they have obtained for a C„cluster in

diamond, i.e., about 0.25 eV.
To study this discrepancy we have made an es-

timate of the result we would obtain for diamond,
using our technique. When we apply a simple
scaling argument to E' it is easy to show that this

Pp

quantity scales as 1/R, resulting in a value of 0.5

eV for diamond. This result also depends on the
delocalization of the wave function varying roughly
as the square of this quantity. The fact that the
T, bound state is more localized in diamond will
then still increase this value, perhaps up to 0.7
or 0.8 eV, which is in agreement with other esti-
mates. ' How can one then explain the discrepancy
with Messmer and Watkins's result? The point is
that they have plotted a curve going from the free
carbon atom to the clusters C4, C4H», and C„ for
which the singlet-triplet splitting parameters was
decreasing dramatically. The comparison be-
tween the clusters C4, C4H», and Cy6 gives re-
spective splittings which are 0.8, 0; 6, and 0.25

eV. We believe that the problem arises from the
clusters C4 and C„where the T, state interacts
with dangling-bond surface states falling in the
same energy range. This leads to an artificial
delocalization factor of about 50%. This is not too
serious for C4 where this represents the only
cause of delocalization, but becomes worse when

going from C4H» to C„where the effect is clearly
seen. We thus think that C„represents an under-
estimate of the limiting value and that it should be
at least in the 0.5-eV range in agreement with our
estimate.

We shall now discuss the effect of the multiplet
splitting on the parameters of the negative-U sys-
tem formed by V", V' and V'. Baraff, Kane,
and Schluter" calculated the ionization energies
by the transition-state argument, for states with
a symmetrical charge distribution and equal up
and down spin densities. The difference in energy
between V' and V' (plus one electron at the Fer-
mi energy) was denoted e~ —p, while the differ-
ence between V' and V' (plus one electron at the
Fermi energy) was written as e~ + U —p, where U

is the electron-electron interaction parameter.
To these values were added the distortion and re-
laxation energies of each state. For V' there is
obviously no contribution. For V' there is a con-
tribution due to the fact that the unpaired electron
has a definite spin, while in the self-consistent
calculation of Ref. 16 the spin density was half-
spin up, half-spin down. The corresponding
change in energy can be calculated using the
method discussed above to be equal to —Z~ /4,
where in principle E

&
has to be determined for

PpV'. This value should, however, be only slightly
larger than for V', in view of the reduced charge
density. Finally, for V, we have found that the
extrastabilization energy amounted to -0.08 eV.
From this we can infer that the difference in en-
ergy between V' and V" has to be reduced by
E' /4, i.e. , about 0.08 eV, corresponding to a
reduction of 0.08 eV of e~ and e~ in Ref. 16. The
difference between V' and V' is not affected.
However, since it is equal to e~ + U, and since 6~
is reduced by 0.08 eV, U has to be increased by
the same amount.

All other parameters are unchanged, so that it
is easy to work out the modifications of the rele-
vant energies derived in Ref. 16. This is done in
Table III where we have modified the two sets of
values given in Ref. 16 and compared them to ex-
periments. Clearly the numbers of calculation 1
(including a breathing-mode component) are im-
proved by our corrections, while those of calcula-
tion 2 become too small on the average. The best
agreement can be obtained with a breathing relax-
ation halfway between the two sets of values. It
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TABLE III. Comparison between theoretical values from Ref. 16, our modified values and
experiment {see Ref. 16).

Quantity
Calc 1

unmodified
Calc 1

modified
Calc 2

unmodified
Calc 2

modifi:ed Expt

Ac tivation
energy (eV)
V' V

Ac tivation
energy (eV)
V2+ V+

E(0/2+ )

V' excitation

0.13

0.25

0.18

0.21

0.44

0.13

0.13

0.17

0.14

0.13

0.05

0.05

0.13

0.06

0.09

0.13

0.05

0.07

0.02

0.01

0.24

0.05

0.057

0.13

&0.065

0.006

&0.35

V'
not

stable

q &0 implies that V' is always metastable

is also important to notice that the parameter g,
which measures the degree to which the system is
a negative-U center, is decreased to 0.05 eV
compared to the previous value 0.13 eV. How-
ever, as there is no change in sign, the qualita-
tive conclusion that V' is always metastable re-
mains unaltered.

VI. CONCLUSION

We have shown that many-electron effects Per
se are not negligible for the vacancy in silicon.
We have calculated the multiplet structure for V'

and shown that it could be described in terms of
one single parameter, equal to the. singlet-triplet
splitting, with a value of 0.33 eV. We have then
worked out in detail the case of V', treating mul-
tiplet effects and tetragonal Jahn-Teller splitting
on an equal footing. The results show that the
Jahn-Teller effect dominates the behavior for the
ground state. Excited states, on the other hand,
can be strongly affected by multiplet effects. We
have finally included these effects to calculate the
parameters of the negative-U system formed by
V", V', and V', obtaining only small overall
changes over previous estimates.
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