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Various ways of calculating the multiplet structure from a local-density theory are discussed. They are based on a
second-order expansion of the total energy in the changes of the occupation numbers from a given reference state.
The method is first applied to single determinantal states whose energies are considered as averages over the true
multiplet states. In this case, the problem is reduced to the evaluation of a few fundamental parameters which, in

general, must be calculated self-consistently. For states which are degenerate by symmetry it is shown that internal
consistency imposes relationships between these parameters. These relationships have a unique solution for the 3 T,'
configuration in T~ symmetry. This example includes the neutral vacancy in silicon and, as a limiting case, the s'-p"-

configurations of column-IV atoms. An extension of the method is then proposed to treat directly linear
combinations of Slater determinants. This leads to a formalism which closely parallels term-dependent Hartree-Fock
theory. Finally, the method is extended to include configuration interaction. A unique solution is again possible for
the free carbon atom yielding improved term values.

I. INTRODUCTION

In recent theoretical work, Ziegler, Bauk, and
Baerends, ' as well as von Barth, ' pointed out that
local-density theory should be applicable with
some care to the calculation of the multiple struc-
ture of free atoms. In principle, the origin 1

Hohenberg-Kohn-Sham theory3'4 can be applied to
obtain the energy of the lowest state of any given
symmetry. However, this remains a formal state-
ment since the state-dependent form of the ex-
change correlation functional is not known. One is
thus led to use approximate forms for this func-
tional, the most popular being the local-density
approximation derived from the free-electron gas.
The problem is then to know to what extent local-
density theory can be used for an accurate calcula-
tion of the multiplet structures. This problem is
important since it occurs not only in free atoms
but also for deep levels in insulators and semi-
conductors. Two important examples are the
vacancy in diamond or silicon5 ' and transition-
metal ions in silicon or gallium arsenide. '~

The multiplet-splitting problem arises when a
localized and degenerate one-electron energy
level is only partially filled with electrons. There
exist different ways of distributing the electrons
on the different spin orbitals of the degenerate
level. In other. words, one can build different
Slater determinants between which there will be
matrix elements of the many-electron Hamiltonian.
These many-electron effects will lift the degen-
eracy of the ground state and lead to what is called
the multiplet structure. For free atoms this has
been usually treated using Hartree-Pock theory"
which in general leads to a good semiquantitative

understanding. However, this method is diff icult
to extend to larger systems in view of the com-
plexity of the exchange terms. For this reason the
much simpler local-density theory is of interest.

In this work we want to make a systematic anal-
ysis of the applicability of a local-density theory
to the multiplet-splitting problem. We base our
work on the statement made by Ziegler, Bauk, and
Baerends' and by von Barth' that local density, in
its simple usual form, can only be used to cal-
culate the average energy of states corresponding
to single Slater determinants. This is because the
conventional free-electron. form of the exchange-
correlation potential does not contain the state de-
pendence necessary to simulate the interaction be-
tween different Slater determinants. As shown in
Hefs. 1 and 2 this can lead to inconsistencies when
calculating the energy of degenerate levels from
their different basis states. Here we intend to
analytically formulate the constraints which should
be imposed on a local-density treatment in order
to ensure the internal consistency of the model.
Throughout this paper we shall illustrate our
findings by considering the case of the A&T2 con-
figuration in T„symmetry.

We begin in Sec. II by discussing the Hartree-
Fock treatment of this system, and its possible
extensions. In Sec. III we apply local-density
theory to the calculation of the total energy of
single determinant states. We do this by using a
second-order expansion of the energy in powers
of the changes in occupation numbers with respect
to a reference situation (which we take to be the
symmetrically averaged state). This procedure
has the advantage of reducing the problem to the
calculation of the self-consistent change in energy
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of the incompletely filled one-electron level (i.e. ,
the localized state for defects in semiconductors).
This change is expressed in terms of a few pa-
rameters. Considering the single determinantal
energies as averages over the true multiplet
states, we are able to express the multiplet
splitting in terms of these parameters (Sec. IV).
For degenerate multiplet states we finally obtain
relations between these basic parameters by im-
posing the invariance of their energy with respect
to any change in basis set. This reduces the num-

ber of parameters to two in the general A, T2
problem and to one in the atomic li~it, as is also
the case in conventional Hartree-Fock theory.

In Sec. V we show that it is possible to extend the
previous treatment to the direct calculation of the
energy of states which correspond to linear com-
binations of single Slater determinants. We devise
a general method for expressing this energy as a
linear combination of single determinantal ener-
gies. We then apply our self-consistent expansion
of the energy to this situation and obtain modified
energies for the multiplet states. We use this
theory for the A, T2 case and show that it is the
local-density analog of state-dependent Hartree-
Fock theory.

In Sec. VI we write the wave functions as com-
binations of states belonging to different configura-
tions. We extend the method derived in Sec. 7 and
obtain in this way the local-density analog of a
configuration- interaction treatment. Application
is made to the free carbon atom.

II. THE HARTREE-POCK TREATMENT OF THE
Ai T2 CASE IN T„SYMMETRY

In this section we introduce the case of the
A&T2 configuration in T~ symmetry which will il-
lustrate the different steps of our analysis. This
case represents, e.g. , the neutral vacancy in sili-
con, but in a limiting situation it leads to the
s P configuration of the free carbon or silicon
atom which was treated by von Barth' and repre-
sents a useful element for discussion.

We can define the problem as follows. We con-
sider a defect whose one-electron Hamiltonian has
full T~ symmetry and whose two highest-filled en-
ergy levels are the following: the lower one, cor-
responding to the irreducible representation A&,
is nondegenerate with a wave function denoted v

which is completely symmetric and we assume it
to be filled with two electrons of opposite spin;
the higher level corresponding to T2 is triply de-
generate with wave functions which are denoted
x, y, z according to their symmetry properties,
and we take this state to be incompletely filled
with two electrons. In the case of the neutral

vacancy in silicon the A& state is found as a reso-
nance in the valence band and the T, state as a
deep level in the forbidden gap. " '4 This case
also corresponds to the s P configuration of an
atom in a tetrahedral crystal field while in zero
field one recovers the free-atom situation.

To work out the many-electron problem for this
A&T2 configuration in a Hartree-Fock treatment,
we consider the completely filled valence-band
states and the A& state itself as closed shells. We
thus have only to determine the occupancy of the
six spin orbitals x, x, y, y, z, and z of the T&

state (x has spin up, x has spin down), and then
to consider all possible Slater determinants, such
as ~xx), for instance, where there is one electron
in x and one in x. The usual technique is first to
obtain the spin orbitals as the self-consistent solu-
tions of a symmetrized one-electron Hamiltonian.
One then computes the matrix elements of the
full many-electron Hamiltonian in the basis of the
Slater determinants built from the available spin
orbitals of the incompletely filled shell. For-
tunately this complex problem can often be re-
duced by symmetry. This is because the full
Hamiltonian is invariant under the symmetry op-
erations of the point group (here T~) and in our
case does not depend on spin. Its eigenstates can
be classified by the irreducible representations to
which they belong and by their total spin. This
completely defines the eigenstates which are given
for our A2&T2 case in Table I.'5 We work out their
relative energies by using rules derived in text-
books' and obtain the multiplet structure of Fig.
1(a), which represents the most general result for
this case. In this figure the difference in energies
are written in terms of the Coulomb integrals
(ij Ill) defined as

In Fig. 1(b) we give the free-atom limit of the
model. There, the 'A& level becomes 'S and 'T,
becomes 3P. On the other hand, 'E and 'T, be-
come degenerate to give 'B. This degeneracy im-
poses a relation between the Coulomb parameters,
due to spherical symmetry, which is given by

(xx ixx) —(xx iyy) =2(xy ixy) . (2)

This allows us to express the free-atom multiplet
structure in terms of one parameter only as given
in Fig. 1(b). In particular, one obtains the general
relation

The experimental ratio for carbon is found to be
smaller, ' i.e., 2.13. This is a measure of the
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TABLE I. Eigenstates of the A iT2 configuration in Tz symmetry.

1
T2

lxx& + lyy& + I«&
~3

2lxx& —Iyy& —lzz&
~6

lyy& —I«&
~2

lyz& —Iyz&

~2

lzx& —Izx&

~2

Ixy& —lxy&

~2

M~= 1 lyz)

lzx&

Ixy&

M =0
S

lyz&+ lyz&
~2

Izx) +

Ized)

~2

lxy& + Ixy&

~2

M=-1 Iy )

Izx&

strength of correlation effects and the interaction
with states derived from higher configurations
(such as A, T,' or T„ for instance) lowering pre-
ferentially the 'S state.

III. LOCAL-DENSITY CALCULATION FOR SINGLE
DETERMINANTS

The basic result of the Hohenberg, Kohn, and
Sham theory3'4 is that the ground-state energy is a
functional of the electron density. A variational
procedure can then be applied leading to one-par-
ticle equations whose eigenfunctions can be used
to build the electron density in the usual manner.
The procedure can be extended to the lowest-en-
ergy state of any different symmetry'z and could
thus be used to calculate the multiplet structure.
However, thi. s is not useful here since one does
not know the exact form of the exchange-correla-
tion part of the energy and, in particular, not its
symmetry dependence. In actual calculations one
has to use approximations to this functional which
could, e.g. , be derived from the free-electron gas
leading to the local-density treatment. The local-
density calculation of the multiplet structure of
free atoms has been shown to lead to inconsisten-
cies and different authors' have argued that local
density is only valuable for calculating the total
energy of states whose charge density corresponds
to single Slater determinants. However, this is
often not the case (in Table I only the 3T, state can
be calculated that way). Ziegler, Hauk, and
Baerends, ' as well as von Barth, 2 have therefore

proposed that the energies of single determinants
be considered as weighted averages over the true
multiplet states. In this way, von Barth obtained
an overdetermined set of numerical equations for
the multiplet states of the s P free atom. An ap-
proximate numerical solution gave the Hartree-
Fock value of —,

' for the ratio of Eq. (3) and nu-

& xxlxx&+p&xylxy&

«xxlxx&- —(
&xx lxx&-&xyxy)

(a)

&xx lyy&+&xylxy&

«xxl yy& —-(
&xxlyy&-&xylxy&

3&xylxy&

'o—
)I

3p

(b)

2&xyl xy&

FIG. 1. (a) Hartree-Fock energy-level scheme of the
A fT 2 system in Tz symmetry and (b) Hartree-Fock ener-2 2

gy-level scheme of the g p free atom.
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The corresponding one-electron Hamiltonian H0
has the complete symmetry of the system. This
defines our reference situation where the occupa-
tion number of the spin orbital g,, (with orbital
part (t),. and spin a) will be denoted n', , For A, T2,
for instance, we have

n'=n-=n'=n-=n =n-'=-0 0
X X P P 8

We want to calculate the total energy E(n;, ) of
single Slater determinants belonging to the same
configuration as a function of their occupation num-
bers n;, and the value n';, of the reference situation

E(n, ) =E(n, )0++ &n;
i 0 ~n~0 0

p2g

7 sd ~ 0s0 &0 jf0 0
(6)

The quantity BE/Bn, , can be partitioned as follows:

aE aE es
Bn,. Bn,. „„,Bq,. Bn,.50

As shown by Janak, " if E(n;, ) is obtained by a
variational procedure, then the BE/Bg... are zero
and Eq. (7) reduces to its first term which is
nothing else but the eigenvalue &;, of the one-elec-
tron equation giving (i),, The coefficient of the
second-order term in (6) can thus be expressed as
(Be,. /Bn~, )0. This allows one to express Eq. (6) in
the form

merical term values somewhat improved. over
Hartr ee- Fock.

Here we work in the same spirit, i.e., by ap-
plying local density only to single Slater deter-
minants. However, we want to extend the theory
to the more general case of localized states in
extended sxstems (for instance, deep tevels in
semiconductors) which represents a more difficult
problem. For this we derive a formalism relating
the total energy to the calculation of the localized
one- electron states only. This self- consistent
treatment will allow us to write in analytical form
the overdetermined set of equations and will thus
lead to a reduction of the number of independent
parameters. In this way we shall obtain the local-
density analog of the Hartree- Fock treatment of
Sec. II.

Let us assume that the one-electron local-den-
sity equations have been solved self-consistently
for a symmetrically averaged electron density.
In the A&T2 situation this corresponds for the two
electrons of the T, state to identical up and down

spin densities p„and p0, given by

2+g2+z2
Pof =Po~ =

3

E(n,,) =E(n', ,)+g e', ,~n,.
+ -' Ae, ,hn, ,

$0
(8)

where we have used the fact that Q~, .(Be,/Bn„. ),&n~, .
is equal to 4~;„ the first-order change in the one-
electron level &;,. In Eq. (8), for a given configura-
tion (A2&T22, for instance) we consider changes n, n, ,
only for the partly filled degenerate state (T, in
our example). The energy e';, is the same then in
all states whose occupancy changes. It can then be
factorized out. Because the total number of par-
ticles is conserved, the sum Z;,hn, , vanishes,
and therefore there is no first-order contribution.
In the second-order term the quantity 4e;, is the
first-order change in the eigenvalue. That eigen-
value appears in the equation

where T+ v„ is the sum of the kinetic and nuclear
potential energies; the third term is the Hartree
potential and v', , is the exchange-correlation poten-
tial which is in general spin dependent. Expressing
(9) in terms of the reference Hamiltonian H„we

- can write to first order:

(H, + w')(t;, =c;,(t);, , (10)

where the first-order perturbative potential is de-
fined by

)("(r')=I r(r, r')kp(r')dr'

bp„(r) = g n0, 6~(,, (

$0
(14)

+ v'„", (r}bp, (r) + v',.", (r) b,p, (r) . (11)

Here 4p(r) is the first-order change in electron
density, &p, and &p, are its up and down spin com-
ponents. The quantities v'„", and v,",' are the den-
sity derivatives of v', , with respect to p, and p„
respectively. The first-order change in 4~;, can
be computed by conventional first-order perturba-
tion theory and expressed in the form

«;.=&0';. I If 'l 0';.), (12)

the P';, being the eigenstates of the reference
Hamiltonian I10. Before proceeding to calculate
II)' it is important to notice that 6p(r) is the sum
of a bare part &p~(r} given by

Lp~(r) = g b,n, , jg',, ~2

$0
I

due to the changes in occupation numbers alone,
and of a self-consistent part 4p„(r):
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which is due to the changes in spin orbitals at
fixed occupation numbers.

When performing a first-order treatment it is
possible to separate completely pure electrostatic
and pure spin-density fluctuations, defined by

W(r) 2f=v(r, r')Pp(r')dr'+ (v",,.'+v", ,, ')Pp(r),
(16}

6 W(r) = (t!"' —. v"')66p(r)

On the other hand, the part Ap, , (r) is fixed by the
perturbation potential and one can write

and

Ap r= b,p, (r) + Ap, (r)
2 Pp„.(r)= f (rK, r')W(r')dr',

pdp, , (r) =fK(rr')5 ,W(r')dr',

respectively. We can do the same for the per-
turbative potential 8"' in terms of 8' and 6R', the
electrostatic and magnetic part. Equation (11) can
thus be split into two parts:

where K(r, r') is the linear response function,
which is identical for up and down spins and thus
also for electrostatic and magnetic response.
From (16) and (17) it is then nossible to obtain
W(r) and 6W(r), using the decomposition of hp
and 6&p into bare and self-consistent components.
This allows us to write

W(r) =f dr'[2v(r, r'\+ [v',. ',.'(r) +v', .", (r)] 5(r —r')}(pp, (r') v fK(r , r")W(r'")dr ),
IIW(r) = [v',.',.(r) —v',.', (r)] [5ppv (r) +fK(r, r')ll W(r')dr']

(18)

These relations can be formally inverted to give

W(r) ff dr'dr"r, ='(r-, r')[2v(r', ) 5(rr—r"l[v„'„'.(r—''
) v',.',.(r')]}pp,(r"),

5W(r)=fdr r '(r, r')[v'', ',.„(r')—v",!(r]]ppp, (r),
(19)

where e~ (r, r') and c '(r, r') are the dielectric and magnetic screening matrices respectively which, in
principle, can be calculated from the knowledge of K(r, r') and the exchange correlation potential. We can
now use result (19}, combining it with (12) and (13) to show that the second term of equation (8} can be ex-
pressed as the difference of two contributions; the pure electrostatic

E~» ——~ 4p& r 8'r dr (20}

and the pure magnetic

E6~» ——
~ Gap& r 6 g r dr,

which can be rewritten as

(21}

E~~ = —,
' drdr'dr"&pl, r e~ r, r' 2v r'r" —6 r' —r" v",,, r' +v,"„. r' &pa, r" (22)

and

drdr'Gap~ r 6 r, r' v',.',. r' —v",,. r' Gap~ r' . (23)

These are the self-consistently screened self-energies of the pure charge- and spin-density fluctuations
induced by the changes in occupation numbers.

IV. THE MULTIPLET STRUCTURE FROM SINGLE
DETERMINANTAL ENERGIES

Having obtained the energies of single deter-
minants, the question remains of how to obtain in-

I

formation about the multiplet structure. Again we
follow the proposal of Ziegler, sauk, and
Baerends, ' and von Barth, 2 to consider each single
determinant as a weighted average over multiplet
states. Considering enough different single deter-
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minants it should be possible, in most cases, to
obtain enough equations between the multiplet en-
ergies to determine each of them separately and

uniquely. However, as we shall see, one can also
obtain an overdetermined set of equations, in
which case incompatibilities may occur. This was
already noticed by von Barth who found small nu-
merical differences between states which, by sym-
metry, should have been strictly degenerate. Here
we shall consider the constraints analytically and
study their simultaneous solutions. We find a
unique solution for the system A&T2 which we treat
here. However, unique solutions may not exist in
more general cases. An investigation of such oc-
currences shall be discussed in a forthcoming
paper.

We return to the system A, T2 and consider, e.g. ,
the single determinant ~xx) which is not an eigen-
state of the problem (these are given in Table I).
We notice that it can be expressed as a linear
combination of the 'A& and 'E states. The assump-
tion is then to write its energy as the correspon-
ding weighted average of the 'A& and 'E energies,
i.e., as

E(~xx)) =-', (E( +2Eg„). (24)

On the other hand, we can evaluate its energy in
terms of the integrals E~-,, and E,'~„defined in
Sec. III. For the determinant ~xx) both the up and

down spin densities are equal to x', which gives
for bp~ and 54p~ defined by Eqs. (13) and (15):

X +g +82 2 2

4p~ ——x—

and

2x —
Y —82 2 2

3
(25)

Gap~ —O, (26)

respectively.
If we denote as 2v, the function defined by (25),

the energy of the determinant ~xx) then becomes
equal to 4E„since it is a quadratic function of
~p,. One can do a similar calculation for all
possible single Slater determinants, the results
of interest being given in Table II. In this table
the density fluctuations are expressed in terms of
symmetry functions which allows us to reduce the
number of independent integrals E and E' to only.
five parameters E„, E~, E„', E~, and E,'. The cal-
culation of these is detailed in Ref. 18 for the neu-
tral vacancy in silicon. Here we would like to
stress the basic properties of the model which can
be generalized to other systems.

One can see from Table II that, for the A', T,'
case, we have more equations (six) than there are
multiplet levels (four, i.e. , 'A~, 'E, 'T„and 'T,).

TABLE II. Table of single Slater determinants for V'. The charge and spin fluctuations
(columns 2 and 3) are expressed in terms of the following symmetry components:

2~2 g2+ 2) 2 2 ~2+~2 2pp=, 8, =yz, 82=zx, 83=my.

There are no cross terms in E&~ and E~&z~ between these elementary fluctuations. Owing to
symmetry, one has E„i——E»-—E„Eg ——E82—-E83-—Ee, and the same relations for E .

Determinant

Energy in terms
of fundamental

parameters
Energy as an average

over multiplets

3 (Eb i+ 2Eiz)

$+ZZ g+$Z
W2

'
W2

y X

—Vi

Vi

2
3

Vi
2

E„—3E~p

———ElEv
4 v

—(E +E )T2 ~i

q(Ei~+Ei~)

2 («Z2+ E3Z, )

Pp-Vi V Pp V

Vi 8i.
+

2 2

Vf
Pp+ 2

Vi 8i
Pp+ —+—

2 2

v EI
4 ~Q

E„EO ~E' ~E

4 4 ~p 4 4

E3z
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This means that, for the model to be coherent, re-
lations should exist between the parameters E and
E'. For instance, the three expressions for the
3T& state are compatible only if we have

(27)

Since the same conditions hold for the other multi-
plet states of Table II a unique soLution is possible.
If these constraints are fulfilled, the number of in-
dependent parameters is reduced to two which we
may choose to be E„' and Epp We thus obtain from
Table II, the following expression for the multiplet
states:

EP
~p'

6EP EP
(28)

4EP
Pp

In this case the model is completely equivalent to
the Hartree-Fock model, which leads to the multi-
plet structure of Fig. 1(a}. The correspondence
between the parameters is that (xy xy) becomes
equal to E,' —2E„' and (xx Ixx) —(xx, yy) to 6E„'. It
is easy to show by integration over angles that in
the atomic limit the parameter E,', is equal to 5E„'
which gives the scheme of Fig. 1(b).

We now investigate the questions of the nature
of the constraints imposed by Eqs. (27) and of how

they are fulfilled in actual systems. The first
problem arises from the fact that a self-consistent
local-density treatment in general leads to broken
symmetry, for instance, the state Ixz) leads to
nonspherically symmetric density and Hamiltonian,
the same being true for the equivalent states Izx)
and Ixy). Any linear combination of them which is
still a single determinant (for instance, a com-
bination of

I yz) and Ixy )) would then lead to a
different energy in the same local-density Hamil-
tonian. The process of imposing the constraints is
thus equivalent in the present case to performing a
symmetrical average over the Hamiltonian in
Hartree- Fock theory, leading to the central-field
approximation. It ensures the invariance of the
energy of a degenerate multiplet level under any
linear combination of its basis states.

To what extent are the constraints expressed by
(27) obeyed in an actual LDF calculation'? For the
neutral vacancy it was shown that all parameters
E„, E„', E„and E,' were small compared to E,', ,
so that Eqs. (27} are trivially satisfied. Additional
information comes from the numerical calculation
made by von Barth for the s P configuration of
the free carbon and silicon atoms. In the atomic
case it turns out that self-consistency is not an

important effect, so that the integrals E and E'
were evaluated with &~ and & equal to unity. For
carbon, the difference between the two 'P calcula-
tions corresponding to z'(E„—E„') is found to be
—0.01 erat. This shows that (27) is satisfied prac-
tically within numerical accuracy using self-con-
sistent I DF results.

V. DIRECT EXPRESSION OF THE MULTIPLET
STATES IN TERMS OF SINGLE DETERMINANTS

~('"~)=, (lxx&+ lyy&+ lzz&} (29)

lf we evaluate its energy from the full many-elec-
tron Hamiltonian, taking symmetry into account,
we have

E('&~) =&» lff I«) +2&» lff
I yy &. (30)

The first term is& the average energy of a single
determinant and we know that it can be calculated
from local-density theory. The second term is a
matrix element between different Slater deter-
minants for which we shall be trying to find rules
to calculate using local-density theory. For this
purpose we rewrite the matrix element" as

(xx IH I yy) =(xy lxy),

i.e. , in terms of the Coulomb integrals defined by
(1). However, that particular Coulomb integral
can also be written as

&.y lxy&=(xyl&lxy&-&xy IHlxy&

which is the difference between the energies of two
single Slater determinants. This means that we

There is an implicit assumption underlying the
method used in Sec. IV, where the energy of single
determinants was considered to be a weighted av-
erage over the true multiplet levels. This assump-
tion is that the single determinantal energies of
local-density theory are related to the true multi-
plet states exactly as they are for the full many-
electron Hamiltonian. In other words, the knowl-
edge of the diagonal terms in the determinantal
basis automatically should give the nondiagonal
terms by the same relations which exist for the
full many-electron Hamiltonian. This suggests that
we could directly write the energy of each multi-
plet level as a given combination of single deter-
minantal energies, and then minimize this energy
with respect to the spin orbitals.

I et us introduce the method considering the sim-
ple example of the 'A& state of the A', T2 configura-
tion. From Table I, the multiplet state is the fol-
lowing combination of single Slater determinants:
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can exactly write

E('A, ) =&xx lHlxx)

+2((xy lH lxy) —(xy lH lxy)) . (33)

TABLE III Table of energies of the multiplet states
in terms of single determinantal energies, according to
Eq. (34).

Multiplet state c c c 6 p&

Each of the three terms in (33) can be evaluated by
local-density theory. We shall thus calculate the
energy of the 'A. , state in local-density theory from
the expression

E('&,) =E(lxx))+2[E(lxy)) —E(lxy))]. (34)

1E
'T2
Tf

j.
1
0
0

2 -2
-1 1

2 -1
0 1

2v&

2vi
—P)
~eaev )

2 (&3v2 —p0+ vi)
—&~»2- Po+ v~)

2~v2- po+ v&

po —vg

Similar arguments can be applied to the other
multiplet levels and if we use the determinantal
energies given in Table II, with the constraints
(27), we immediately obtain the results of Sec. IP.
One obvious advantage of the present formulation
is that it directly eliminates certain inconsisten-
cies already pointed out by von Barth. ' This is
particularly clear for the T& state. Calculating
its local-density energy from the single deter-
minant lxy) of S,=l, gives E(lxy)). Had we made
a direct application of local-density theory to the
S =0 state I/~2)(lxy) + xy)) we would have ob-
tained [E( xy)) +E(lxy))] which, using Table II,
gives a completely different value. The method
discussed above, however, gives for this S, =O
state

E =xygxy +xyIJxy . 35

The second term of (35) can be expressed as the
difference between (xy lH lxy) and (xy lH lxy),
yielding a local-density expression:

E =E xy + E xy —E xy

=E(lxy)).
Having obtained individual expressions for the

multiplet states we are in a position to apply a
variational procedure to each of them separately.
For this we write the total energy of each multiplet
state as a linear combination of single determinan-
tal energies E(l n)), analogous to the case of the
'A, state (34),

peg
ncÃ 2 (39')

If we now expand E to second order in powers of
the quantities &n;, =n;, —n, , where, as before, n, ,
defines some reference state, we obtain an ex-
pression similar to (6), except that there is one
more index a in the expansion. Each first-order
derivative BE/Bn;, can be written as in (7). Again
the term BE/Bp;„vanishes and BE/Bn;, can be
evaluated as the following quantity:

~ I =~a~~e &

nz

with e&, given by

(40)

(41)

We can now write the second order expansion in a
manner analogous to Eq. (8)

(37) can be viewed as some function E(I,,) of the
occupation numbers n, , of the spin orbitals P,,
The total energy is then some function of these
n, „which has to be a minimum for any variation
of the (,, This condition can be written as usual
in the form of a one-electron-like equation for any
A a~

T+, +&. c[~~(P )+~:.(P")]
ze ze za &~a a ze

where v„and v'„., are the Hartree and exchange-
correlation potential for the determinant

l &)
leading to the electron density

E= cE (37) =E(nE';, ) g+c,g eo,an, ,
The corresponding coefficients e are given in
Table III for each multiplet state. An important
property is that

+ ~ c 4e,,4n, , (42)

c =1. (38)

We now apply a variational procedure to calcu-
lating each of the multiplet states. Again we shall
do this by second-order self-consistent perturba-
tion theory. Each energy E(lu)) occurring in Eq.

Here ~,, is the common zeroth-order value of all
t='„ in the reference situation, where the average
density is p'. It is also equal to the eigenvalue of
Eq. (39) for that reference situation, since in that
case all n,-, are equal to n,.„p is equal to p, the
sum of c being unity.

In situations derived from a single configuration,
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c g'. (44)

Thus, the self-consistent part of the electron den-
sity is given by the average perturbation potential
defined by (44). The calculation of the energy now

proceeds along the same lines as in Sec. III. We
split all quantities into pure electrostatic and pure
spin components and obtain Eqs. (16) and (17) for
the average potential defined by (44) and b.p, „..
Equations (18) and (19) remain valid if we define
&p, (r) and 54p, (r) as the corresponding averages

the first-order term disappears and we have only
to evaluate the first-order changes in the &;,. It is
easy to show that

(43)

where W' is given by expression (11) in terms of
' &p, &p, , and 4p, , which are the differences be-

tween the corresponding densities in the deter-
minantal state

~
o) and in the reference state.

Each &p can be split into a bare component &p~
given by (13) using d n;, and into a self-consistent
part bp„which, as defined in (14), does not depend
on o since the g„are the eigenfunctions of the av-
erage equation (39). The calculation of the self-
consistent part of the density &p„, i.e., of 5.~(;, ~i,
requires the resolution of Eq. (39) to first order.
This equation is, to that order, equivalent to Eq.
(10) with W' given in the form

where the E~-, and E5~, are the self- consistently
screened self-energies given by (22) and (23) while
the quantities E and E' are the corresponding un-

screened quantities, i.e., with &~
' and ~ ' equal to

unity.
The energies given by Eqs. (47) correspond to the

case in which asymmetrical as weQ as symmetri-
cal density fluctuations are screened. However,
the model as it stands, is unnecessarily complex.
For instance, the terms E Eo-ccurring in (47)
depend upon the choice of the basis state through
4p, and 64p, . If we want results corresponding to
a fully symmetric Hamiltonian it is clear that we
have only to retain the screening of symmetrical
fluctuations in E- E. This simplifies the form of
E- E and ensures the invariance of this term to
changes in basis set.

We can now work out the results for the A&T22

configuration. For this we simply evaluate the
first term on the right of (47), using the c given
in- Table III and the determinantal energies given
in Table II. We replace the expressions E, E' of
Table II by E', E' and we use the fact that the de-
terminants xy), ~xy) have the same energies as

yz), yz). For the second and third terms on
the right-hand side of (47) we give the 'expression
of &p~ and Gap, in Table III, but only retain the
symmetrical contribution due to po for E —E, for
the reasons we have discussed above. We also im-
pose symmetry constraints analogous to (27) on E
and E', i.e.,

5b.p~(r) = g c 5bpg(r).
(45)

EP P N

Ee= Ee
(48)

Similarly, from (42) and (43), the second-order
term in the energy can be written as the difference
of two contributions

aZ=-,' Q r f Lpr'(r))(' (r)dr,
a

(46)

AE = c E~-a+ E~- —E~-,
a

(47)

which are the analog of Eqs. (20) and (21). In these
expressions Q" and 5K are given by expressions
(18) where on the right-hand side, b p~ and 54p~
are replaced by 4p~ and Gap~, while the term in-
volving TV and DR'is kept unchanged. Multiplying
these equations by c and summing over shields
expression (19) for the average potential W and

From this equation one can now calculate the
energies given by (46) and write them in the form

Taking into account these parameter symmetriza-
tions, we get the following results for the multi-
plet levels:

E(iAi) =2' —4(E,' —Fp ),
E(iE) =GE' —E' —(E' —E' ),

(49)
E(iT ) = —4E'+ E' —(E' —E' )

E(3T ) = E' —(E' —F' ).
This is formally a similar result as was obtained
in expression (28) of Sec. IV but where the quanti-
ties E are replaced by E. In addition the ~A& level
has been lowered by 3(E,' —E,' ) with respect to the
other levels. In the free-atom limit this gives rise
to the structure of Fig. 2. The ratio [E('S)
—E(&)]/[E( &) —E( P)] is no more given by the
Hartree- Fock value -', but is replaced by -', (1
—[ (Et,/F,' ) —I]]. We can evaluate the corrected
value from the numerical values given by von
Barth, noting that E,' —E,', is the energy differ-
ence between self- consistent and non- self- con-
sistent spin-unrestricted calculations which he
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6
pO

5p
FIG. 2. Local-density {LDF) analog of the term-depen-

dent Hartree-Fock result for the s p free atom.

finds to be 0.04 eV. This reduces the ratio to 2.4
for carbon, still significantly different from the
experimental value of 2.13.

The results we have obtained here parallel term-
dependent Hartree-Fock theory for free atoms,
where the radial part of the spin orbitals is varied
for each multiplet state separately. In that case
too [see (2)] the multiplet ratio is decreased to
about 2.4. However, the absolute values of the
splittings are in much better agreement with ex-
periment using local-density theory rather than
Hartree- Fock.

VI. THE LOCAI DENSITY-THEORY ANALOG
OF CONFIGURATION INTERACTION

We have seen in Sec. V how local density can be
used directly to calculate the energy of states
which are linear combinations of single Slater de-
terminants. However, we had restricted these
combinations to the ground-state configuration
which in our example, was the A&T22 configuration.
We shall now extend the treatment to states which
are combinations of single determinants not only
of the ground-state configuration but aLso of ex-
cited-state configurations. This leads to a more
flexible wave function and through the variational
principle, to an improved description of the multi-
plet structure of the ground-state configuration.
The procedure is then completely analogous to
configuration interaction, except that we are
working with effective electron-electron interac-
tions given by local-density theory. Let us then
recall the procedure to be followed.

(i) The diagonal energies in a Slater determinan-
tal basis are directly expressed in the local-den-
sity formulation.

(ii) The nondiagonal matrix elements are taken
to be related to the diagonal elements by the same
relations as given for the full many-electron Ham-
iltonian.
This completely defines the Hamiltonian matrix

and allows its complete calculation by local-den-
sity theory. Again, symmetry constraints anal-
ogous to those expressed by Eq. (27) have to be
imposed in order for the effective Hamiltonian
matrix to have the full symmetry of the system.

The total energy of a multiplet state is now given
by

(vvxx& + ~vvyy& + ~vvzz)
1 (51)

where we have now specified that the spin orbitals
v and v are occupied. We look for ~A& states be-
longing to higher-excited configurations. For
A, T23 there is no 'A& state, but there is one for the
T2 configuration, whose wave function is given by
(see Ref. 10)

)xxyy& +
~ yyzz) + )zzxx&

(52)

For the diagonal energy of $2('A, ) the most im-

E= g C,E(~ni. )), (50)
Sp Q

where E(~ m)) is the energy of a single determinan-
tal state

~
oi), while the sum over i is performed

over different possible configurations. As in Sec.
V this energy has to be minimized with respect to
the spin orbitals g;,. A new feature is that it must
also be varied with respect to the coefficients of
the total wave function, since it is now expanded
in terms of components belonging to different con-
figurations. This part is equivalent to performing
a diagonalization ot the corresponding Hamiltonian
matrix. Self-consistency could in principle be in-
corporated into the formulation in a way similar to
what was done in Sec. V. However, the equations
become much more involved and we shall not go
through the whole procedure here. In fact, we ex-
pect that in most cases configuration interaction
will have a small effect which can be described by
second-order perturbation theory. This correction
will be evaluated with the self-consistent spin orbi-
tals obtained from a calculation using the reference
Hamiltonian for the ground-state configuration.
The error in the configuration-interaction correc-
tion due to the neglect of the self-consistent change
in the spin orbitals is a higher-order effect which
we shall not take into account.

With this simplification the problem becomes
very easy to solve. We have simply to write the
Hamiltonian matrix for a multiplet state of given
symmetry in the basis formed by the wave func-
tions of different configurations. Let us discuss
this procedure in detail in the example of the 'A&

state. We know that the wave function for the
ground-state configuration A&T2 is g, ('A, ) given by
(Table I)
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portant part comes from the difference in one-
electron energies e(T, ) —~(A,) between the one-
electron states of the reference Hamiltonian [this
corresponds to the first-order term in Eq. (6)].

The nondiagonal matrix elements of the full
many-electron Hamiltonian H between (,('A, ) and

$2(A&) have the form

(i/) $ ( A g) I
H

I $2 ( A g}) = 2(vvxx
I
H

I yyxx)

2(vy
I vy) (53)

in terms of Coulomb integrals defined by Eq. (I).
As was done in Sec. V [Eq. (32)], we can express
Eq. (53) as the difference between the energies
of two Slater determinants, i.e.,

(gi('Ai) IHIP2('Ai)) =2[E(Ixxvy)) —E(Ixxvy))] .
(54)

This quantity can now be evaluated by local-den-
sity theory. For this we simply use the second-
order expansion, developed previously in its non-
self-consistent version which leads to parameters
E~- and Eq~p.

We now consider the remaining '&, 'T2, and 'T&
states, using t.he configurations A. (T ), A )T 2, and

T2, respectively. The corresponding combina-
tions of Slater determinants are given in Ref. j.5
and we here only give the 3 ~ 3 matrices corre-
sponding to the three configurations under study.
For second-order perturbation theory only the
matrix elements H&, and H&3 between the ground-
state configuration and the excited-state configura-
tions are needed. These are for the full many-
electron Hamiltonian

iE~
H&2

——v 6 (vx I yz), H&8 ——(vy Ivy),

T2~ H~2 = ~2(vx
I y~) ~ H&s = (vy lvy) ~

~T, ~ H„=M2(vx
I yz), H„=(vy Ivy) .

(55)

(vy Ivy) —+(o2+8) g2 +(~ -8)/c ~ (56)

Applying second-order perturbation theory to all
cases we obtain for the 'A.

&
state a downwards en-

In all three cases the diagonal energies H» and

H33 of the excited configurations are 4 and 24,
respectively, where 4 is the excitation energy
e(T2) —e(A&). Following our procedure we have to
reduce (55) to linear combinations of single de-
terminantal energies. For (vy

Ivy�)

the procedure
was given for the 'A, state in (53) and (54). For
the term (vx I yz) this can also be done but in a
more complicated manner. However, in'the
atomic limit this term exactly vanishes by sym-
metry which is also true for its local-density ex-
pression. We are then left with the only parameter
(vy Ivy). Evaluating it from (54) and the second-
order non-self-consistent expansion, we obtain

TABLE 1V. Comparison of experiment and calculated
multiplet splittings using configuration interaction and
different local-density approximations (LDX, LD). For
explanation of quantities see text. Energies in eV.

1.325

LD

1.108

Experiment

-0.329
1.59
3.52

-0.230
1.33
2.95

1.26
2.68

ergy shift given by

2 ("y lvy) I

and for the 'E, 'T&, and 'T, states shifts given by

bE(~A)} = AE('T2}

(vy Ivy) I'
1
=- 2' 0 (56)

This means that the 'A& state is lowered with re-
spect to the group of the three other multiplet
levels by an amount equal to (3/2b, ) (vy Ivy) I'. To
estimate this amount we assume. that for carbon
(or silicon) the states v and y have similar radial
parts, in which case (56) simply reduced to E,',.
This is known numerically for carbon from the
work of von Barth and calculated in two cases,
pure exchange local density (LDX) and exchange-
correlation local density (LD). The results for
+pc are given in Table IV for the two cases . %'e

have taken in both cases & = 8 eV, which results
from the calculations of Ref. 10. Table IV shows
the shift 4[E('S) —E('&)] calculated as (- 3/
2h) F,' both in the LDX and LD approximations.
It also shows the corrected splitting E('S) —E( &}
where the correction obtained here (i.e., —0.12
eV) is added to tha. t obtained in Sec. V. We see
that there is good improvement, especially with
LD where most of the discrepancy with experiment
has been removed.

VI. CONCLUSION

We have systematically analyzed how certain
multiplet structures can be obtained from local-
density theory by simply evaluating the energy of
single Slater determinants. We have first con-
sidered such determinants as weighted averages
over multiplet states and evaluated their energies
by a second-order expansion in the occupation num-
bers. This leads to a set of equations for the
multiplet-term values which may or may not be
overdetermined. For certain cases like the A, T2
system a unique solution can be found which estab-
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lishes relationships between fundamental energy
parameters. These relationships are found to be
well satisfied for numerical'results for the lattice
vacancy in silicon and for the free carbon atom.
We have then extended the method to the direct
calculation of multiplet states within a given con-
figuration. Finally, we have generalized this pro-

cedure to include configuration interaction and
have obtained substantial improvement of cal-
culated term splittings when applying the procedure
to the free carbon atom. Work is in progress to
see if the techniques developed here can be ex-
tended to the description of d electrons associated
with transition- metal atoms,
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