
PHYSICAL REVIEW 8 VOLUME 24, NUMBER 2

Calculation of optical spectra of aluminum

15 JULY 1981

Frank Szmulowicz* and Benjamin Segall~
Case 8'estern Reserue Uniuersity, Cleueland, Ohio 44106

(Received 2 September 1980)

The electronic structure and optical properties of aluminum were studied using the augmented-plane-wave (APW)
method. To improve the agreement between the calculated electronic structure and experiment a semiempirical
scheme of Chen and Segall was used to adjust the band structure, This parametrization was implemented by
employing a few pieces of experimental data on de Haas —van Alphen cross sections, the position of a major optical
peak and the bandwidth of Al. The parametrized bands and wave functions were used in a calculation of the
dielectric constant of Al in which the dipole matrix elements were included. The spectrum was analyzed with regard
to the origin of structure in k space, with major structures treated analytically using the pseudopotential model. A
novel aspect of this work is the elucidation of small-frequency behavior of the imaginary part of the dielectric
constant which was shown to be nonzero at low frequencies due to an accidental degeneracy (in the absence of spin-
orbit splitting) of the bands on the IK8'X plane. The calculated spectrum is in very good agreement with optical
data with respect to the location, strength, and width of major structures. A comparison between momentum matrix
elements calculated by the pseudopotential and APW method is presented.

I. INTRODUCTION

In this work we study the electronic structure
and the associated optical properties of Al by the
augmented-plane-wave (APW) method. It has
been frequently found that the one-electron ex-
citation spectra calculated using conventional
potentials, e.g. , the so-called Xg potentials, are
not too accurate; indeed, we will find that to be
the case here. Because of this we resort to a
semiempirical approach. The approach used, a
variant of the one introduced by Chen and Segall
(CS)' in a study of Cu and Ag, involves a conve-
nient adjustment of the logarithmic derivatives
obtained in a previous a Priori calculation. The

adjustments are made to fit a small number of
empirical data. Since the relevant data for Al,
and other polyvalent metals with nearly-free
electronlike bands, are different from those
involved in the noble metals, this work can in
part be considered a test of the feasibility of
applying the parametrization scheme to this other
class of band structures.

There have been an appreciable number of band
calculations of Al [Refs. 2-6(b)], the results of
which differ only by relatively small amounts
for the occupied and low-lying excited states and
which lead to Fermi surfaces in reasonably good
accord with experiments. ' ' ' It is thus clear
that the band structure of Al is generally well
known. The optical response of this metal has
also been studied a few times. ' " The first study,
which was by Ehrenreich et a/. ' in 1963 was, in
fact, one of the first detailed investigations of
the optical properties of a metal. There the 1.6-
eV peak of c,(w) was shown to arise from the

large region of k space associated with the ap-
proximately parallel bands in the neighborhood
of the Z axis —the first example of what was later
termed the "parallel" band effect. A full calcu-
lation of the interband contribution to &, was not
undertaken; only a rough estimate of the con-
tributions in the region of the peak was made. "
Subsequently Dresselhaus et al."and Brust' made
complete computations of a,'(&u) [i.e. , involving
sums over the complete Brillouin zone (BZ)] using
the pseudopotential method with potential coef-
ficients V(1, 1, 1) and V(2, 0, 0) found by Ashcroft'~"'
to produce a Fermi surface in close agreement
with that deduced from de Haas-van Alphen mea-
surements. These calculations were successful
in producing another strong peak in the interband
part of &,(&u) [e,(~)] at 0.5 eV which had been
found in the measured spectrum and which was
attributed to another pair of parallel bands. The
&, obtained in these works were in general agree-
ment with the measured spectrum. Ashcroft and
Sturm, " in a study of the parallel-band effect,
obtained analytic expressions for &y~(~) using a
two-plane-wave model which included momentum
matrix elements and a relaxation time and showed
that the appropriately weighted sum of such terms
for the V(1, 1, 1) and V(2, 0, 0) interactions re-
produce the principal features in the spectrum
of Al.

Qne of the principal motivations for this work
is to provide the first complete and systematic
calculation of the optical properties of Al with
a method which employs the full potentia, l (in
contrast to a. pseudopotential). In addition to its
value Per se, this work could provide a useful
compar ison with the pseudopotential results" '""
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on this important material which is a prototype
of the polyvalent nearly-free-electron metals.
For while the pseudopotential was chosen to ac-
curately fit the E„(k) at the Fermi energy (E~),
there is less certainty about the accuracy of states
with energies reasonably far from E~, and also
there is some uncertainty about the accuracy of
the momentum matrix e1ements computed by the
simple scheme. Finally, subsequent to those
calculations, new experimental data have appeared
on the optical properties" " and the Fermi sur-
face. '

The paper is organized as follows. The compu-
tation procedures and their tests are presented
in Sec. II. Section III contains a description of
the parametrization of Al's bands and a presenta-
tion of the resulting band structure. Section IV
deals with the calculated optical response func-
tions, its comparison with measurements, and
the analytical treatment of the low-frequency
behavior of e2'(&u). Conclusions are presented in
Sec. V.

II. COMPUTATIONAL PROCEDURES

The augmented-plane-wave (APW) method,
introduced by Slater, "was employed to obtain
the energy eigenvalues and wave functions. In the
conventional application of the APW method, the
potential is taken to have the muffin-tin form.
This form provides a good approximation for the
potential for a cubic-close-packed structure. The
muffin-tin potential was obtained by suitable
averaging of the potential given by the Mattheiss
prescription, '""that is, by the sum of spherical-
ly symmetric atomic potentials centered at the
lattice sites and a local density exchange-cor-
relation contribution (i.e. , the so-called Xo.
contribution) with n =1.

The wave-function expansion in plane waves
in the region ry r~ (the muffin-tin radius) was
carried out using reciprocal-lattice vectors K,
satisfying

Ik; I'= Ik+K; I' 11.0(2v/a)',

where a is the lattice constant, while the expan-
sion in harmonics, for rex„, included terms up
to l =10. According to Switendick's empirical
rules" this should produce bands converged to
within 10 ' By. The eigenvalue problem was car-
ried out at 89 k points in the irreducible wedge
of the fcc BZ. Gaussian elimination with pivoting
was used to solve the secular equation, and the
coefficients of the wave function were obtained
by back substitution. Group-theoretical techniques
were employed to reduce the size of the secular
equation and to improve the accuracy for all k

having symmetry. The results of our APW pro-
gram were checked against the calculations of
Cu by Segall" and Burdick" and against the cal-
culation of Al by Segall. ' These comparisons
indicated that the present results are accurate
to within 0.001 By.

A complete calculation of the optical spectrum
[e.g. , e,(~) and e, (~)j requires the computation
of matrix elements of the momentum operator
(MEM). Probably the simplest way to obtain the
APW MEM is in terms of the matrix elements of
VV (which follows from -ihP« =(f I[H, P] Ii)), for
then the contribution from z&r~ vanishes. How-
ever, we decided against its use for several
reasons. First, the values become relatively
inaccurate for close-lying states because of the
occurrence of the energy difference in the denom-
inator. More important is the fact that we
ultimately employ a nonlocal /-dependent potential
(associated with a parametrization) and this leads
to a commutator which is too cumbersome.
Instead we evaluated the MEM directly in terms
of the APW wave functions throughout the cell.
This approach also permits us to evaluate
diagonal MEM which we need for the interpolation
scheme to be discussed below and which cannot
be obtained from the VV approach. Our MEM.
computations were checked against the MEM for
Cu obtained by Janak et pl. and Chez 3 and were
found to be in very close agreement. The (MEM)'
were found to be converged to within 0.001 By
using at most l =5 components.

Since we were able to compute the APW MEM
quite accurately and since there have appeared
widely conflicting reports about the accuracy of
MEM ".omputed with pseudopotential wave func-
tions, ' "we decided to investigate this question
for the low-lying bands in Al. In brief, we found
that for the larger matrix elements the pseudo-
potential values were typically in error only by
about 5%, although a few errors as large'as 20/o
were also found. That these MEM's are relative-
ly satisfactory is probably connected with the
fact that the core is rather small in Al. It seems
probable that the results would be less satisfac-
tory in materials with larger cores (e.g. , Zn).
For the smaller MEM larger relative errors
appeared. Details of how these computations were
carried out and specific results appear in Ap-
pendix A.

The Gilat-Raubenheimer (GR) method was used
to carry out the k-space sums which occur in the
evaluation of the density of states, the imaginary
part of the dielectric constant, e, (~), and the
volume integral used to determine the Fermi
energy. " The irreducible wedge in the BZ was
subdivided into 10100 small cubes. The energies
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of L&(E) which would yield correct energies.
These operations could be affected simply by
introducing v, (E) such that

I,(E) =L,@'(E+v,(E)) .

It was also shown that starting with any reason-
able potential V"'(r) the required v, (E) would be
weakly dependent on E over a large range and
thus be readily parametrized, e.g. , by low-order
polynomials. Thus by adjusting the parameters
in the v, (E), and hence the L,(E), to yield agree-
ment with only a few pieces of empirical data one
obtains the correct L,(E) over a relatively large
energy range. We note that only the L, for / =0,
1, and 2 are to be altered in this work.

It is clear that there is not a unique effective
potential V, (r, E) = V"'(t) +AV, (r, E) (or correction
&V, ) corresponding to a L, (E) specified over a
finite range of E. Thus, it appears that in
principle one cannot obtain radial functions cor-
responding to the empirically corrected L, (E).
We should note, however, that among the infinite
number of possible b, V,(r, E) there is a particular-
ly simple one, namely, the square-well potential
of depth v, (E). The corresponding radial function
is just R~+'(r, Ev+, ( E)), where R,"'(x, E) is the
radial solution for V"'(x) at energy E GS argu. ed
that for the weak and smooth v, (E) involved,
these functions must be reasonably good approxi-
mations to the correct functions and demonstrated
the point with a number of examples including the
computation of MEM." In this work we require
wave functions to evaluate the MEM and thus use

these solutions.
In the parametrization for a metal it is clearly

advantageous to utilize the Fermi-surface data
to accurately correct the L, at E~ which is es-
sentially the middle of the energy range of
interest. For this purpose we use calipers of
the second- and third-zone surfaces taken from
the Anderson and Lane four-OPW (orthogonalized-
plane-wave) fit of their high-frequency' and the
Larson and Gordon low-frequency" dHvA mea-
surements. Details of how this was carried out
are given in Appendix B. We only note here that
six separate calipers were accurately fitted in
the determination of the three v, (E~) which have
an estimated uncertainty of about 1 mRy.

Two other inputs were made. The first was
the occupied band width which relates to v, since
the bottom of the band is an s state (I',). For
the experimental value we used the 11.5 eV ob-
tained by Neddermeyer and Wiech from their
L23 emission spectrum, "which, of course, is
sensitive to the s component. The v, is adjusted
to locate the I", level at E~ -11.5 eV. The last
input, which is very important to this work, is
the 1.60-eV position of the &, peak determined
by the Bos and Lynch" 4.3-K absorption mea-
surements. As already noted, it was found in
the early work' that this peak arose from regions
in k space in the I.'ENX plane around the Z axis
where the two bands are quite parallel. The 1.60
eV then is equal to the Z, -Z, gap for k such that
E(Z, ) =E~. Now, the question is which of the
three v, should be adjusted (Z, contains all l). It
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FIG. 2. Density of states and integrated density of states for Al. The symbols indicate the symmetry states giving
rise to the critical points in the density of states.
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TABLE I. Energies {in Hy) at selected high-symmetry points in the Brillouin zone for the
parametrized bands of Al.

-0.222 X4

1.555 Xg

1.620

1.879

X5

Xg

Energy X Energy

0.390

0.505

0.987

1.089

1.382

0.554

0.626

0.713

1.749

1.810

K3

Kg

Kg

K4

Kg

W Energy K

0.473

0.513

0.598

1.064

1.301

1.777

L'2

Energy L

0.260

0.294

1.382

1.729

seemed most reasonable to adjust the v, [so that
E(Z, ) =Ez+1.60 eV] as we then could fit the v, (E)
by a quadratic function over the relatively large
range of 15 eV or so. The v, (E) for l =1 and 2

are given by constants.
The bands obtained from the parametrization

are displayed in Fig. 1 as the solid curves. Val-
ues of the energies of symmetry states up to
about 1.9 By are given in Table I. In Fig. 2 we
show the density of states D(E) and the integrated
density of states. Each structure appearing in
D(E) is labeled with the state producing it. We
find that D(E&) =5.300 (atom Ry) '. When combined
with the experimentally determined linear co-
efficient of the specific heat, "y =1.35+0.01
m J/mole K', this yields a mass enhancement
factor of 1.47. This value is comparable to (but
slightly smaller than) the enhancements of the
cyclotron masses' and to the calculated enhance-
ments due to the electron-phonon interaction. "

As checks on the parametrization we calculated
the areas for the $,(1,1, 0) and $(1,0, 0) orbits
(notation' of Anderson and Lane) and obtained,
respectively, 1.707 and 0.351 in units of (2zz/a)'
The corresponding experimental areas are 1.709
and 0.347. The agreement is very good consider-
ing the sensitivity of the $(100), which is on the
%VX face, to small changes in the potential which
can alter the connectivity of the third zone around
S". %e also recalculated the E» finding a new
value of 0.6226 By which is only slightly below
the unparametrized value of 0.6234 By. The
degree to which other aspects of the calculated
optical properties agree with experiment will
provide additional checks on the parametrization.
These will be considered below.

divide e into contributions from the intraband (f)
and interband (5) transitions"

&(~) =&'(~) +e'(~) =~'(~) +~,'(~) +z&z(~)

The former is usually given in terms of the ex-
pression for the Drude model

(3)

(4)

where &u,', =4zzn, e'/nz„n, is the conduction-elec-
tron density, m, the so-called optical mass, and
v' the relaxation time.

In the limit of vanishing linewidth, q, is given
by

4m'e'
~.'(~) =

3
(m'~') '

xg, d'~ IPi I 5(Ez(k) —E„(k)-)z~),
t, n "BZ

(5)

0.5 l.O l.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 55 6.0 6.5

8-

7-

where the sum and integral are restricted so that
the state k in band n (l) is unoccupied (occupied). "
As is well known, e, (&u), which can also be ex-

IV. RESULTS

The response of an electronic system to an
electromagnetic wave of frequency can be
described by complex dielectric constant e(q, ~)
with q= 0 in the "optical" range. It is useful to

0
004 008 QI2 Qle Q20 Q24 Q28 Q32 Q36 040 044 048

PHOTON ENERGY (RY)

FIG. 3. JDOS for Al. The arrows point to the locations
of structure in the curve.



CALCU L ATION OF OPTICAL SPPECTRA OF ALU MINUM 897

l70-

0.5 I.O I.5 2.0 2.5 . . . . .5
(eV)

3.0 5.5 4.0 4.5 5.0 5.5~~ ~~ ~~.5 6.0 6.5
I I

I60-

l50-

l40-

l30-

I20-

I IO-
1O

IOO-
I2

90-

80-

70-

60-

50-

40-

30-

20-

IO

pressed in terms of a BZ
b d f " 'll t

inte ra
ci a or"-like terms c

in q. 5 is taken to b

ened joint densit
i y is proportional to the unbroad-

function for Al d

nsI. y of states [JDOS , g((g)]. This
is displayed in Fi

ong with its decomposition into

004 008 QI2 QI6 Q20 024 . . 044 0480 Q24 Q28 032 Q36 040 044 048
PHOTON ENERGY (Ry)

FIG. 4. Real part of the interband co d y

m.terband transitions
i ion y contributioions from various

the various interband (i-r an i-j) contributions is shown

We have studied the ori insg

A and I3 arise f
p p p p Ep and Ee It is seen that

e rom 2 - 3 transitio
it is found that the

i ions and, further

of the BZ. A. re lt
ey come from the se same region

results from the F
cutoff which produ

ermi-energy
pro uces the decrease '

o i i ofth kB t
in 1

ea at 0.5 eV can be

~ ~

imp e two-plane-
e at the two free-

g
ne given by

k, —k„-k,=g/a,

which is shown th~ ~

(6

The degenerac is
n as he shaded re '

egion in Fig. 5.
racy is lifted by the ot
own hat the interband s

any point on the plane is ~ kId( )= (, , )=oo

d' 't'nt"1 I thn the realisti
s are not exactl ar

interband surface
y parallel. Also, the

contact the symmetr
sur ace must bend aroundn in order to

ymmetry planes US'X I EWX
p

to a point on the Z
an hird bands is mmoved from S'

A similar anal ' ar e
e axis (see Fi s. 1

na ysis can be car '

a .6 eV. The lan
and (1,1 1 ar

th' h'1'rENX 1plane. The potent'
00 ng=1.6 eV wi

ise o small radig ents in the inte

y an a singularit
on i ion is satisfied onl in

s no ed in Sec. I it
'd t' f th

t"""t"n' th t
o e contribution

a the so-calleled parallel-band effect

X
Kz

FIG. 5. Plot of two adjoining irredu3 g g
g

y e stripes. The x,... .. h. ...,d . e y
' a e system for
() fM

, Ky K
'

FIG. 6. Fer mz-surface contours f
hird zones, and th l'

s or the second and

and third band
e ine of de en

s, on the I'KWX l
g cracy of the se d

p ane.
con



898 FRANK SZMULOWICZ ANIjl BEN JAM IN SEGALL

E.&, =n (X'+~')+[V(A)+n" '~']

and &(k) =E, -E =2V+(n~" +n~ ')z'. The quad-
ratic forms in Eq. (7a) results from fcc symme-
try and the symmetry of the simple two-band
model. Using cylindrical coordinates with p'
=y +g the JDOS takes the form

p

g((u) dx
~ 2' dp 8((g —[2V+(n~+nj)x']) (7b)

(7a)

p 1

with

nii pi&2i
= E, -(+)(V+n' '+),

where the limits represent the Fermi cutoff
condition. The integral is easily carried out to
show that for w not too far from the edge (the
range to which the above approximation is
limited)

was in fact first noted. ' We will return to the
contributions of fl and (, to g((g)) after discussing
the structures D, E, and F.

Structure D, which was also identified by
Ehrenreich et a/. ,

' is due to the onset of tran-
sitions from band 2 to 4 in the vicinity of point
W(i. e. , W, -W, ). The next structure, E, arises
from the cutoff by Fermi factors of band 2 to 4
transitions involving general points in the vicinity
of the ~& plane. Finally, I" results from band
2 to 4 transitions at X (X,-X,'). Since this occurs
at high , the structure in &, will be very weak be-
cause e,ng(~)/~ ' and also because the broadening
increases with ~.

The contribution to JDOS from the approximate
"parallel" band structures associated with B and
C considered above are easily evaluated. We
take the y. and z components of k to lie in the plane
and the x component normal to it as is indicated
in Fig. 5 for B. For C we take the z axis along
Z, the y axis normal to it in the I"ET' plane
through the point X (which is thus the origin) on
the extension of Z in the next zone, and again the
g axis perpendicular to the plane. For small x
(which is measured from the plane in both cases)
the bands are given by

a larger energy range than is Eq. (8). In the
7 -~ limit their result exhibits the same singu-
larity as given above.

A. Comparison with experiment

l60-

0.5 I.O
I

(eV)

l.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5& 6.0 6.5
I I I I I I I I I I I----- Benbow and Lynch

=H.J Hagemann et al.

The comparison between the calculated and
experimentally obtained p, is presented in Fig.
'7. The theoretical curve was obtained by broad-
ening the result shown in Fig. 4 by a Lorentzian
having a full width at half maximum I'(~) =(a
+b&u)' ' with a =1.852 x 10 ' Ry' and 5 =2.314 && 10 '
By chosen so as to yield the magnitudes of the
experimental peaks. The form of I' was chosen,
admittedly somewhat arbitrarily, as it increases
slowly with w. The o&~(~) up to 3 eV was obtained
by Benbow and Lynch" (BL) from their 4.2-K
absorptance measurements by Kramers-Kronig
analysis and subtraction of the intraband (Drude)
component. " The higher ~ values are from
Hagemann et al." The difference between the
two empirical curves in their region of overlap
could, in part, be due to the fact that the low-
energy measurements were made at 4.2 K while
the other was at room temperature.

It can be seen that the agreement with the
empirical result is generally good both in mag-
nitude and shape. We start the more detailed
comparison with the more featureless part of the
spectrum, the part above the second peak. Above
3.0 eV the agreement is very good, but below
that the data do not exhibit the undulations in the
calculated O„which are the vestiges of the D and

E structures. This suggests that our I'(&u) is
perhaps too small in this region. It should be
noted, however, that a decided break in slope is
evident in the o,' obtained by Bos and Lynch at
1.9-2.0 eV and is also seen somewhat more
weakly in the Benbow and Lynch results and in
other data. ' This corresponds almost precisely

8((u) ~ (u(u) —2V) '~' (8) l40- Theory

and, of course, vanishes for ~&2V. The singular
structure, which results from the relatively
large part of the zone involved, is moderated
in the real band structure by the fact that the
bands are not exactly parallel. Harrison" was
the first to obtain Eq. (8). A much more complete
analytic description of the optical response around
the peak in the single-plane approximation was
carried out by Ashcroft and Sturm" (AS). They
included matrix elements (in the pseudopotential
approximation) and a phenomenological relaxa-
tion time, and their expressions are valid over

l20-

CP

~!00

o 80
Cl

b 60

20

0 I I ~

0.04 0.08 O.I2 O.I8 020 0.24 Q28 0.32 0.36 040 044 048
PHOTON ENERGY (Ry)

FIG. 7. Comparison between the theoretical broadened
and experimentally obtained 0~~ {u) for Al.
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to the broadened B structure.
The position of the calculated second peak is

displaced from the empirical one by about 0.04
eV. The reason for this small discrepancy is
that our parametrization was performed using
the data of Bos and Lynch, "which place the peak
at 1.60 eV. A larger discrepancy of 0.13 eV
occurs in the location of the lower peak. It is not
clear how significant this discrepancy is. In a
region of such low w it is very difficult to sep-
arate accurately the interband from the Drude
contribution, which is quite large, and different
separations lead to shifts in the peak position.
To make such a separation it is, in effect, neces-
sary to assume a form for o,'(~) in order to
determine the parameters for the Drude contribu-
tion. For this purpose BL used the AS expression
and this has a different form below the peak than
we find. The AS spectrum falls rapidly to zero
with nonvanishing values below the edge arising
solely from the phenomenological broadening
(finite r) As w. e will show, the behavior of o,'
below the peak is dominated by real interband
transitions which persist down to ~ =0. An
indication of the difficulties in the low ~ region
due to the above-mentioned problems is the fact
that the empirically determined o, goes negative
for ~ below 0.25 eV.

Since the magnitude of the broadened curve
between the peaks depends on the separation of
as well as strengths of the peaks, the discrepancy
in that region is attributable in good part to the
uncertainties in peak positions. C onsidering the
above-mentioned experimental uncertainties, the
overaQ agreement is quite satisfactory.

B. Form of e~(~) for ~~0
For ~ well below the 0.5-eV peak there is a very

weak contribution to e2 from the broadening of the
peak; there are, however, also contributions
which come from an accidental degeneracy (cros-
sing) of two bands on the I'EWX plane around E~.
That transitions from these bands would occur
down to co =0 was first noted by Brust. ' However,
he did not specifically investigate the magnitude
of these contributions to e2b and his numerical cal-
culations, which were on a relatively coarse grid,
did not exhibit such contributions. Here we study
them analytically. From Fig. 1 it can be seen
that the degeneracies start at the & axis where 4,
and &, cross above E~ and continue across the
plane to the & axis where the Z& and &4 bands in-
tersect near W and below E~. Figure 6 shows the
~EN'X plane with its intersection of the second-
and third-zone Fermi surfaces. The line of acci-
dental degeneracies, which is dashed, runs
through the point at which the two surfaces make

contact.
To obtain the contributions to v~2(w) from this re-

gion, we perform a k p analysis. We let q be the
wave vector measured from the degeneracy point
at E~, which is taken to be the zero of energy.
The secular determinant associated with the 2 &&2

k p Hamiltonian with matrix elements H»&») ——q
+2q ~ P»&2 ) and Hy2 H2y' 2q P» yieldS tO lOWeSt

order in q the two energies

Z„-„=q (P„+P„)
+/[q ~ (P„—P, )j'+ 4(q P„)'}'", (9)

where P, &
are the MEM's between the bands i and

j. At the contact point, and all other points in the
plane, the two bands are odd and even under re-
flection and, as a result, P» and P» lie in the
plane while P» is orthogonal to it. Making the
(generally nonorthogonal) transformation q ~ (P,~

+P») =u, q (P» —P») =v, and q P» ——~/2, we
see that the interband energy is 2(v'+ m')' ~' and
the JDOS is

&„2+ 2)l j2
8((u) ~ dv du) 5((u —2(v'+ uP)'i')du.

( 2~2)1 /2

(10)

The limits on the integral over u result from the
requirement that the upper level lie above E~ and
the lower level below it. The integral is readily
evaluated using cylindrical coordinates and one
finds

y((u)~(u', et(u))~, ~const.4(~)

Thus we find the somewhat unexpected result
that e, (&g) is constant and o~ ~ &o for small &e. This
predicted behavior, which is not evident in the re-
sults of the previous calculations, is borne out in
our numerical results for the unbroadened cr~ (see
Fig. 4). It is seen that the constant e', (co) approa-
ches is not small; it has a value of about 18.

When the spin-orbit interaction is turned on, the
accidental degeneracy is split by an amount 4 and,
as a result, et(&o) must vanish for ur & 4. In Ap-
pendix C we study the threshold behavior of e,'(ur)
with the spin-orbit interaction included, and we
find that just above the threshold b, e2~(co) is con-
stant. Equation (11) shouM be viewed as the limit
of this result for vanishingly small ~. Vanishing
of e, (e) at &u =0 is in accord with the requirement
that e', (+) be an odd function of v. 4' For Al & -10 s

Ry, which for the optical experiments is essen-
tially zero.

It should be noted that accidental degeneracies
at B„also occur in other polyvalent metals, e.g. ,
in the hcp group-II metals. In those elements in
which the magnitude of the spin-orbit interaction
is small compared to the position of the lowest-
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FIG. 8. Comparison between the e~ (u) obtained in the present calculations and that obtained by fitting the Ashcroft-
Sturm expression for e2 (u) to the data.

energy peak in et (e.g. , in Be, Mg, and possibly
Zn), contributions similar to those described
above will occur.

The transitions discussed here will, of course,
also contribute to e,'(&u). Figure 8 shows the e,"

curves obtained by the Kramers-Kronig relations
using the e,' obtained here and the one obtained by
fitting the AS expressions to the data. s' The large
differences between the curves below approxi-
mately 0.04 Ry can readily be understood in terms
of the differences in e', in the low-~ region. In
this region, of course, e~(&u) is very large so that
the relative error in e, (v) due to neglect of the
transitions considered here is not so dramatic.
We estimate that at 0.3 eV the relative error is
roughly 10% in Al. Larger errors would occur,
and thus be appreciable, in materials in which the
first peak falls at higher energies.

V. CONCLUSIONS

The band structure of Al obtained in a first-
principles APW calculation was empirically ad-
justed by the input of a few firmly established pie-
ces of empirical data relating to the Fermi sur-
face and band spacings. The approach used,
which is a variant of the one used by Chen and
Segall for the noble metals, involves the adjust-
ment of the first-principles logarithmic deriva-
tives. The fact that it was found to be accurate
(yielding the correct Fermi surface and optical

response) and to be fa, irly easily applied, suggests
that it could be employed successfully for other
nearly-free-electron metals as well as transition
metals.

The interband contribution to the optical re-
sponse function, v~(ur), was calculated with the in-
clusion of matrix elements. The origin of all
structure has been elucidated. In particular, the
region of the BZ contributing to the 0.5-eV peak,
which involves general k, was described more
clearly than before.

A novel feature of the calculations is the study
of the contributions of interband transitions be-
tween two bands which cross (in the absence of
spin-orbit interaction) at the Fermi energy. An

analytic k .p calculation shows that e,"(~) is a non-
vanishing constant as v —0, a result that is seen
in our numerical results which level off below the
0.5-eV peak. This behavior is quite different than
that given by the "parallel-band" model which has
been used recently in analyzing measured spectra
Similar behavior is expected to occur in other light
polyvalent metals.

Our broadened calculated a'~(a) is in good agree-
ment with the corresponding spectrum determined
from measurements with respect to the location
and magnitude of the structure and magnitude and
shape of the featureless parts. It was suggested
that-the small discrepancies between the position
of the low-energy peak may be due to difficulties
associated with separating the interband contri-
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TABLE ii. Matrix elements of momentum (in Ry ~ )
for aluminum using the pseudo-wave-functions and APW
wave functions.

that this paper was written. This work was sup-
ported in part by the National Science Foundation
under Grant No. DMR76-21550 A01.

044
055
066

018

028

038

048

007
118
008
444

Transition

2 —3
2~ 3
1 2

1 3
2 3
1 2
3 —4
1 2
3 4
1 2
3 4
1 ~3
1 4
2 3
2 4
3 —4
1 2
1 2
1 2
1 2

APW

0.7280
0.7522
0.1779
0.7422
0.2040
0.7749
0.6559
0.7703
0.7115
0.7595
0.7338
0.5298
0.5352
0.5298
0.5352
0.3792
0.1716
0.7739
0.7762
0.3814

Pseudopotential

0.7778
0.7775
0.2127
0.7483
0.2014
0.7776
0.7776
0.7768
0.7768
0.7729
0.7729
0.5502
0.5502
0.5502
0.5502
0.3891
0.1809
0.7772
0.7778
0.3884

APPENDIX A: COMPARISON OF PSEUDO-
POTENTIAL AND APW MATRIX

ELEMENTS OF MOMENTUM

Our calculations for this study used Snow's po-
tential and obtained for the pseudopotential fit
of the i nds the parameters o.' =0.9478 (inverse
mass), V(1, 1,1)=0.00943 Ry, and V(2, 0, 0)
=0.03849 Ry (lattice consta, nt a=7. 6529 a.u. ).
The pseudo-wave-function for band n at k is given
by

y„(k) = Qv„;(K;)exp[i(k+K, ) r], (Al)

where (a/2w)K; = (0,0, 0), (0,0,2), (1,1,1), and

(1,1,1). The above set of plane waves yields
properly symmetrized pseudo-wave-functions only
at the point W.

It can be shown using Ehrenfest's theorem with
plane-wave expansions [as in (Al)] that the MEM's
are given by

butions from the very large Drude component in
that region. We also note that the use of the
parallel-band result (in the process of determining
the Drude parameters), which does not have the
correct behavior at low (d, could also lead to er-
rors in this region.

An extensive comparison of pseudopotential mo-
mentum matrix elements with accurate APW val-
ues show differences for the larger matrix ele-
ments which are generally about 5% with maxi-
mum errors reaching about 20%. Part of the
errors can be attributed to the limited four-plane-
wave set.
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2P „(k)= Qv„„(K() —"v„k(K,),ak

where H(k)&& is the matrix element of the Hamil-
tonian between the plane waves with reciprocal-
lattice vectors K& and K&. In the local pseudo-
potential approach

B(k)() ——o. (k + K;) 5;~ + V(K~ —K()

(A2)

(A3)

APPENDIX B: FERMI-SURFACE PARAMETRIZATION

Anderson and Lane made a least-squares fit to
the measured cross-sectional areas of the Fermi

in a restricted basis set of the type employed here.
It is apparent that in this approach the momentum
operator assumes the form -i~V in place of —i&
reflecting the fact that the overall band curvature
is given by n and not 1.

We have calculated the MEM's given by Eqs.
(A2) and (A3) at a number of k's. The comparison
of the "larger" of these (i.e., greater than 0.1) and
the corresponding APW MEM's is given in Table
II.

TABLE III. Second- and third-zone "calipers" in units of (27t./8a }(x,y, z}.

Level 2nd-zone calipers Level 3rd-zone calipers

Z3

Ag

I'KWX-
I'L UX+

0.0, 0.0, 7.0488
0.0, 4.6202, 4.6202
2.7908,2.7908, 2.7908
0.0, 4.0, 5.3834
2.1659,2.1659,4.3317

Z4
Zf
Sg

(1,1,1}face

0.0, 5.6540, 5.6540
0.0, 3.2202, 8.0
0.0, 3.5453, 8.0
1.6383, 1.6383, 8.0
0.2958, 5.7042, 6.0
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surface using a 4-OPW model. ' Their best fit was
obtained with U(1, 1,1)=0.018 Ry, 1 (2, 0, 0)
=0.062 Ry, and an effective mass of 1.0. We
have used their model to compute the calipers
shown in Table III. The states Z3 Zg and
~KWX —have no 1=0 component. With the k set
to the values of the calipers for each of the states,
we varied v, with v, fixed until the APW secular deter-
minant vanished at &&. This was done for a range of v,
giving curves of v, vs v, for each state. It turned
out that these curves were essentially identical and
thus gave a functional relation between v, and v, .
A similar procedure mas followed with the &„g„
and (1,1,1) face calipers except that v, was varied
with fixed v, . The resulting plots of v, vs v, mere
found to intersect in a very small region. The
uncertainty in determining the intersection point
and hence the v, 's is approximately 1 mBy.

and

(2mc) 'g y, ~
(V t'&& P),

~ y ) = G; (~ =y, ~) .

The secular equation has two doubly degenerate
roots which to lowest order in q are

E(k+ q)„=q ~ (P„+P„)

~(q (p„-p„)+4[(q.p„)'+~ &~']P".
(C1)

In terms of the u, v, and gg of Sec. IV, we find
that the interband energy is

APPENDIX C: THRESHOLD BEHAVIOR OF e2 (m)
IN THE PRESENCE OF SPIN-ORBIT

INTERACTION
co(u, v, u)) =2(v~+ uP+4~ F~ )' ' (C2)

11 22 q ll &

H33 =H4~ ——2q ~ P22,

H~2 =H~4 ——0, H~3 =H24 =2q .Pg2

Here the k p Hamiltonian is augmented by the
spin-orbit interaction (2mc) h&x ~ (&Vxp). As the
four eigenfunctions of the unperturbed problem we
take )C), &» ——Q,c))(P) and iC), «) ——Q (oP), where Q„) is
even (odd) under reflection and o. (P) is the spin-up
(-down) function. Using the same notation as in
Sec. IV and taking the x axis to be normal to the
plane, we find using reflection symmetry that the
Hamiltonian matrix is given by

and the Fermi cutoff conditions are u ~ -&s/2 and
u & &e/2. Aside from the presence of the spin-or-
bit splitting term 4~ F~', Eqs. (Cl) and (C2) are
the same as the previous ones. By converting to
cylindrical coordinates with the axis along u the
JDOS integral

(~)))fufddv =J(dna v)-v( Mv, w) ) (C8)

is easily shown to be proportional to &' for ~
~ 4~ E~ and to vanish for lower &o. Thus, immed-
iately above threshold we again find that e," is con-
stant.
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