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The linearized-augmented-plane-wave (LAPW) method for thin films is generalized by
removing the remaining shape approximation to the potential inside the atomic spheres. A
new technique for solving Poisson’s equation for a general charge density and potential is
described and implemented in the film LAPW method. In the resulting full-potential
LAPW method (FLAPW), all contributions to the potential are completely taken into ac-
count in the Hamiltonian matrix elements. The accuracy of the method—already well
known for clean metal surfaces—is demonstrated for the case of a nearly free (noninteract-
ing) O, molecule which is a severe test case of the method because of its large anisotropic
charge distribution. Detailed comparisons show that the accuracy of the FLAPW results
for O, exceeds that of existing state-of-the-art local-density linear-combination-of-atomic-
orbitals (LCAO)-type calculations, and that taking the full potential LAPW results as a
reference, the LCAO basis can be improved by adding off-site functions. Thus the full-
potential LAPW is a unified method which is ideally suited to test not only molecular ad-
sorption on surfaces, but also the components of the same system separately, i.e., the ex-

treme limits of the molecule and the clean surface.

I. INTRODUCTION

It is now generally accepted that in-depth
knowledge of the electronic structure and properties
of adsorbates (atoms and molecules) on transition-
metal surfaces is of great scientific and technological
importance. In the last decade, intense experimen-
tal efforts using advanced techniques for sample
preparation and characterization have provided a
vast quantity of data. These developments have
challenged present theoretical understanding and
have encouraged the development of theoretical
methods of interpreting the phenomena observed.
Thus, in recent years, first-principles energy-band
studies of thin films have demonstrated a fair degree
of sophistication in tackling a number of complex
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problems involving the electronic structure of free
surfaces (including surface reconstruction and relax-
ation), chemisorption bonding of atomic adsorbates,
and interface phenomena. A principal aim has been
to achieve “self-consistency,” whose effect on the
results is known to be very important for systems
which demonstrate a fair degree of charge transfer
between atom species. Still, this is but only one
part of the challenge, since the two most important
characteristics of a first-principles band calculation
are the degree of self-consistency and the approxi-
mations to the potential.

The effect of approximations to the potential,
however, depend far more on the systems con-
sidered. There are two main approximations made:
(1) the (local-density) exchange-correlation approxi-
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mation' and (2) the shape approximations to the po-
tential. The local-density approximation is the best
available today and appears to give fairly good
results. On the other hand, the validity of different
shape approximations depends strongly on the sys-
tems considered. The muffin-tin (MT) and the over-
lapping spherical atomic charge densities approxi-
mations are quite good for close-packed metals, but
are suspect for open structures such as semiconduc-
tors and reduced symmetry solids, e.g., films and in-
terfaces, and the localization inherent in molecules
on solid surfaces.

One of the most successful bulk-slab methods, the
self-consistent linearized-augmented-plane-wave
(LAPW) method,” has been used to treat nearly
free-electron and transition-metal surfaces®~® and
also atomic chemisorption.”® In these LAPW cal-
culations, the full potential and charge density were
treated everywhere in space except inside the
muffin-tin spheres, where a spherical-shape approxi-
mation was used. While these calculations yield ac-
curate results for close-packed metal systems and
saturated atomic chemisorption [e.g., p(1 X 1) over-
layers], a spherical-shape approximation cannot be
justified for open semiconductor surfaces or molecu-
lar chemisorption when highly accurate solutions to
the local- (spin-) density — functional equations are
required.

In this paper the remaining MT shape approxi-
mation is removed using a new method we have
developed for obtaining the Coulomb potential for a
general periodic charge distribution without shape
approximation. The method is based on the con-
cept of multipole potentials and the Dirichlet prob-
lem for a sphere. This is not an Ewald-type
method, but rather a new alternative. The basic
idea is that the potential outside a localized charge
distribution depends on the charge only through the
multipole moments.”!® In order to obtain the po-
tential in the interstitial region of a crystal, we need
to know only the (rapidly convergent) Fourier
representation of the smooth interstitial charge den-
sity and the multipole moments of the charge in the
different spheres. Since multipole moments do not
define a unique charge density, we replace the true
charge inside the spheres with a pseudo-charge-
density of the same multipole moments, but which
has a rapidly convergent Fourier representation.
This pseudocharge is used to obtain the correct
Coulomb potential everywhere in the interstitial and
on the spheres. We then obtain the potential inside
the spheres by solving the boundary-value problem
using the true charge density in this region.

The resulting full-potential LAPW method
(FLAPW) may be used, in principle, to treat all
surfaces and chemisorption system, limited only by
available computer resources. Therefore, the
FLAPW method is a unified method capable of
treating not only molecular absorption on surfaces,
but also the extreme limits of the isolated molecule
and the clean surface.

II. METHOD OF CALCULATION

The present method is a generalization of the pre-
viously described film LAPW method.® The gen-
eralization is achieved by relaxing the remaining
muffin-tin approximation in the potential, i.e., by
solving Poisson’s equation for the general potential
and by including the Hamiltonian matrix elements
due to nonspherical terms of the potential inside the
muffin-tin spheres. This section describes the im-
plementation of the newly developed method®!° of
solving Poisson’s equation for periodic structures for
the case of the film LAPW method, and the in-
clusion of the matrix elements due to the nonspheri-
cal terms in the potential operator. Although there
are no special symmetry requirements, the formula-
tion here is given for a film with inversion and z re-
flection, as in Ref. 3.

A. Solution of Poisson’s equation

The charge density is given by

N — 2Z ,8(7,) inside sphere a
P a
(1a)
() = S pry cos(k,z)®,(T) in the interstitial
"8 (1b)
> ps(2)®(T) in the vacuum (1c)
s
where
r)_zcm VY] (7 7) ().

is a lattice harmonic, Ty, = T — Ty, T4 is the posi-
tion of the atomic sphere a, and ®,(T) is a two-
dimensional (2D) plane-wave star function

D ( —“Zexp[z o (T— tg)] , (3)

where G is a 2D star representative reciprocal-
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lattice vector, R is the point-group part of the 2D
space group operation R, t p is a nonprimitive 2D
translation vector, and n is the number of 2D
space-group operations, e.g., 12 for the hexagonal
lattice.

Poisson’s equation can be solved in a straightfor-

ward manner''* once the charge density is ex-
pressed as
p(T) = p(2)Py(T) . 4)
s

However, because of the rapid variation of the
charge density near the nuclei, a Fourier expansion
of the form (4) for the charge density in the MT
sphere would be extremely slowly convergent. The
representation of the charge density in the interstitial
and vacuum region [see Eq. (1)] already has the
desired form given by Eq. (4).

In order to treat the region inside the muffin-tin
spheres correctly, we follow a variant of the scheme
used by Hamann’ as discussed by Weinert.!” This
scheme is based on the fact that the potential out-
side the muffin-tin spheres does not depend on the
actual shape of the charge density inside the spheres
but only on the multipole moments of this charge.
Hence, we can replace the true rapidly varying
charge inside the MT spheres by another, smoother
charge (referred to as the full pseudo-charge-density)
without changing the potential outside the spheres if
the full pseudo-charge-density is required to have
the correct multipole moments. A rapidly conver-
gent Fourier expansion of this smooth pseudocharge
can be obtained and the charge density can therefore
be expressed in the desired form [Eq. (4)]. Now
Poisson’s equation can be solved giving the correct
value of the potential everywhere outside
the spheres, and in particular on the sphere boun-
daries. We then find the expansion in lattice har-
monics of this potential on the sphere boundaries.
In a final step the lattice harmonics expansion of the
potential inside the spheres is found by a Green’s-
function method from the original charge density
using the now known potential on the sphere as a
boundary condition.

Actually, the replacement of the original charge
density by a smooth pseudocharge inside the spheres
is done in two steps: (1) The expansion (1b) of the
charge density in the interstitial region, pP YD), is
extended into the muffin-tin spheres. This charge
density already has, of course, the desired Fourier
representation. (2) The difference charge density

Ap(T) = p(T) — p"™(T) (5)

for T inside sphere a is replaced by a smooth charge
density Ap(T) (the difference pseudo-charge-density),
which has the same multipole moments as Ap(T).
The form of the 2D star-function expansion coef-
ficients of the difference pseudo-charge-density
Ap(T) is found by using Eq. (28) of Ref. 10 for the
2D star representation of a plane-wave charge densi-
ty (1b) as used in the present.calculation. We then
have the desired form of the charge density [Eq.
@],

pT) =3 ps(2)Py(T) (6)
with

ps(z) = 3 puscostk,z) | (7

ﬁn.s = Pf‘sy + A,Bn,s s (8)

where the coefficients Ap, ; depend on the mul-
tipole moments of the original charge g5, and the
multipole moments of the plane-wave charge inside
the spheres, g;5" %:

Apus = flam — am’®) . 9)

The explicit form of Ap, ; is given in the Appendix.
Following Posternak et a/ Y we finally obtain for
the Coulomb potential in the interstitial the expres-
sion
Vet =3 ¥, ; coslk,z)Py(T)

n,s

+ 3, d; cosh(G2)P(T) . (10)
s£0

Using the expansion of a plane wave with complex
k in spherical harmonics,'® we can find the analytic
form of the lattice harmonics expansion of the
Coulomb potential on a sphere boundary. The
Coulomb potential inside the spheres is found from
the Coulomb potential on the sphere boundary and
the original charge density by using a standard
Green’s-function method.'?

B. The total potential

In the interstitial region, a 3D star-function ex-
pansion of the exchange-correlation potential is
found by a least-squares fit of this potential together
with the cosh terms in the Coulomb potential [Eq.
(10)]. In the vacuum region and in the region inside
the MT spheres, a least-squares fit of the exchange-
correlation potential is performed to obtain a 2D
star-function expansion and a lattice harmonics ex-
pansion, respectively.
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Finally, we have a representation of the total po-
tential analogous to the total charge density as fol-
lows:

S Vra)K (F,) inside spherea  (1la)
v

Vi) = 12 ViY cos(k,z)®,(T) in the interstitial
n.s (11b)

> V(2)®,(T) in the vacuum. (11c)

C. The matrix element AH \g

Using the wave function inside a sphere as given
by Krakauer et al.* and taking the nonspherical
(I £ 0) terms of the expansion of the total potential
[Eq. (11a)], the matrix element AH yg is given by

AH s

=2 <¢p, w (K,T) ¢,,,,(K’,?)> :
a
(12)
This matrix element involves one-dimensional nu-
merical radial integrals of the form

Ra
fo up(r ENV (r)uy(r E)ridr (13)

D Vra)K (7y)
V540

and angle-dependent integrals of the form
[ Y Y YimdQ (14)

i.e., Gaunt coefficients. In the present calculation
we have used /', < 4 and /,, < 8 in evaluating [Eq.
(12)]. Although the calculation of the matrix ele-
ments [Eq. (12)] is straightforward, particular atten-
tion has to be paid to efficient programming because
of the many summations involved—

> (a,l’;m',l,,ml,m) for each matrix element. Ac-
tually, the time for calculating the matrix elements
[Eq. (12)] was less than 25% of the total time for
setting up the Hamiltonian matrix.

III. APPLICATION TO THE O, MOLECULE

The effect of the nonspherical contributions to the
potential obviously plays an important role in the
electronic structure of diatomic molecules. There-
fore the application of the FLAPW method to such
a molecule provides a severe test case. In order to
assess the accuracy of the results obtained we will
compare it with sophisticated linear-combination-of-

atomic-orbitals (LCAO)-type calculations!>! using
the discrete variational method for free molecules.

A. Computation details

The O, molecules are placed in an infinite 2D
hexagonal lattice. A spacing of three bondlengths
(6.846 a.u.) between molecules was found to be a
sufficiently large separation for the limit of nonin-
teracting molecules. The direction of the bonding is
normal to the film.

The 1s core electrons are treated in the nonrela-
tivistic limit in order to compare with the LCAO-
DVM (discrete variational method) results. For the
same reason the exchange-correlation potential is ap-
proximated by the simple form of the X a potential
using @ = 0.7, a standard value in many DVM cal-
culations.* The expansion of the wave functions in-
cludes terms with |k | < 5.3 (a.u.”!) giving 329
and 275 basis functions for the symmetric and an-
tisymmetric wave functions, respectively. 507 3D
stars are used for the expansion of the interstitial
charge, the pseudocharge, and the potential in the
interstitial. A convergence factor (cf. the Appendix)
of n =9 — [ is employed for the 3D star expansion
of the difference pseudo-charge-density.!® The self-
consistency cycle was ended when the “distance”
between the input and output potentials was less
than 2 mRy. By distance we mean the root-mean-
square difference

172
1

4= 6_ funit cell [ Vi“P“t(?) - Voutput(_f)]zd 2 ,

(15)

where () is the volume of the unit cell between the
vacuum boundaries at +D /2. A potential mixing
scheme suggested by Hamann’ is employed where
the input and output potentials of two previous
iterations are used to construct the potential for the
next iteration.

B. Total densities and the full potential

The total density, which is of fundamental impor-
tance in local- (spin-) density theory, is shown in
Fig. 1 as obtained by the FLAPW method for the
O, molecule. This figure also shows the total
valence density and a “plane-wave” density which is
obtained when the expansion [Eq. (1b)] is used not
only in the interstitial region but also inside the
spheres and in the vacuum region. It is interesting
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FIG. 1. Valence charge density, extension of the
plane-wave charge density into the muffin-tin spheres and
into the vacuum, and total FLAPW charge density for
the O, molecule. All densities are plotted to the same
scale. The lowest contour value and the contour spacings
are 0.06 electrons/(a.u.)>.

to note that the continuation of the plane-wave
charge into the muffin-tin spheres gives a charge
density which is qualitatively similar to the original
valence charge density. A quantitative comparison
of the difference between the original charge density
and the plane-wave continuation is provided by
comparing the multipole moments of each density.
These moments are tabulated in Table I. (The
monopole terms are of opposite sign because the nu-

clear charge is included in only the original density.)
The multipole moments for both densities have the
same general trend, but there are substantial differ-
ences even for the important small / moments, e.g.,
the quadropole moments differ by 40%. The effect
of these differences when iterating to self-consistency
using the plane-wave extension only is not clear and
may strongly depend on the system considered.

In this context it should be restated that in the
solution of Poisson’s equation employed in the
FLAPW method, the differences between the mul-
tipole moments of the original charge density and
those of the plane-wave continuation determine the
Fourier coefficients of the difference-pseudo-charge.
Then the Fourier representation of the charge densi-
ty and the boundary-value problem finally lead to
the total potential which has no shape approxima-
tion. This total potential consisting of the Coulomb
potential and the exchange-correlation potential is
presented in Fig. 2. From this figure it can be seen
that the different representations of this potential as
given by Egs. (11a)— (11c) are converged, since
there are no discontinuities across the boundaries in
real space between the spheres, the interstitial, and
the vacuum regions.

C. One-electron charge densities

Figure 3 presents the single-state densities
P;(7) = ¢} (T);(T). The real-space functions P;(T)
have the rotational symmetry of the molecule and
therefore a cut in a plane containing the two nuclei
gives a complete picture of the functions. The den-
sities P;(T) are normalized to unity within the two-
dimensional unit cell containing just one molecule.
For the contour plots (given to the right of each pic-
ture) we have chosen an equidistant spacing of the
contour lines. Comparison with the Hartree-Fock
results of Wahl'? is difficult to make because he
used a quasilogarithmic scale which overemphasizes
the low-density regions and suppresses the impor-
tant structures in the bond region.

As can be seen from Fig. 3, the continuity across
the boundaries of the different regions in real space
is excellent even for the charge densities of the indi-
vidual states. Inside the spheres we used lattice har-
monics up to / = 8 constructed from wave func-
tions of up to / = 6, since the contributions from
the additional functions with / = 7 and / = 8 are
small for the nonspherical parts of the charge densi-
ty.

The contour plots given by Kerker et al.,'° as
obtained from their self-consistent 3D-supercell
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TABLE I. Multipole moments originating from the
original charge density p and the extended plane-wave
charge density p*V inside the muffin-tin sphere with ra-
dius R = 1.141 a.u.

Multipole moment P it A (%)
g 07326  —0.8068
q10 —0.0128 —0.0110 14
4 0.0100 0.0140 40
g3 —0.0285 —0.0269 6
ao 0.0123 00120 -3

pseudopotential calculation for O,, differ from the
results shown in Fig. 3 in the following features:
Near the nuclei the 20, and 20, densities have a
nodal structure which is not described in the pseu-
dopotential (PP) approach. In the PP result, the
30, density has two peaks, in the bonding between
the atoms, which are much closer and broader than
those in our calculation; furthermore, the kidney-
shaped outer maxima that we find is not present in
the PP result. The maxima of 17, and 17, densi-
ties are closer to the nuclei in our calculation com-
pared with the PP densities.

D. Accuracy of the FLAPW eigenvalues

Here we discuss and assess the accuracy of our
new FLAPW method by comparing the energy
eigenvalues of the one-particle local-density equa-
tions with those obtained!>'* by state-of-the-art
LCAO-type calculations using the discrete variation-
al method'” and by a pseudopotential calculation.'®
In comparing results, the type and convergence of
the basis used must be considered. ‘For an LCAO-
type basis, it is difficult to show that it is sufficiently
converged.'® Increasing the number of atomic orbi-
tals included in the LCAO basis may not change
the result markedly and one may still be far from
describing the given molecular orbital adequately.
In contrast, the FLAPW basis allows one to easily
monitor the convergence in the number of basis
functions used. Therefore special attention is paid
to this point when comparing the FLAPW and
DVM eigenvalues.

The first LCAO-DVM calculation for the O,
molecule within local-density functional theory was
performed by Baerends and Ros'* using double-zeta
Slater-type atomic orbitals to construct the molecu-

s
ISR
i
‘\‘\\‘Q’Q’QO iz
Wz

R,
W

FIG. 2. The total FLAPW potential for the O,
molecule, including the Coulomb potential and the
exchange-correlation potential. The outermost contour is
at —0.8 Ry, which is also the contour spacing. The cut-
off in the figure is at —13.6 Ry.

lar wave functions. The resulting eigenvalues (la-
beled DVM-1 in Table II and Fig. 4) are in good
overall agreement with the FLAPW results. It
should be noted that our eigenvalues are given with
respect to the vacuum potential, i.e., they are not
shifted in any way. The most significant difference
between the DVM-1 and FLAPW eigenvalues is
that the FLAPW splitting between the bonding 20,
and antibonding 20, states originating from the
atomic 2s functions is smaller by 0.108 Ry. The
positions of the 17, and 1, in the two calculations
differ by less than 0.006 Ry.

In 1979, Kerker et al.'® published results of a
self-consistent pseudopotential calculation for O, us-
ing a solid-state approach in the form of a three-
dimensional supercell. Comparison of the PP and
the FLAPW eigenvalues (see Table II and Fig. 4)
shows a similar splitting of the 20, and 20, states.
The PP 17, state, however, is too high in energy by
0.107 Ry which is almost 30% of the energy eigen-
value itself.

This discrepancy in the highest occupied valence
states may be due to the truncation of the basis used
in the PP calculation. The convergence of the
FLAPW eigenvalues obtained with the self-
consistent potential by truncating the number of
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basis functions per symmetry from about 350 to
about 100 is displayed in Fig. 5. The left-hand side
of Fig. 5 shows the PP eigenvalues'® shifted so that
the converged 20, eigenvalues coincide. [For pur-
poses of comparison with the DVM-1 (Ref. 14)
results, it appears that the PP eigenvalues'® were
shifted so as to align the 20, levels. Such a shift
seems to be necessary since the 3D-supercell
method,being a bulk method, does not define a
strict zero of energy.] The agreement between the
PP and FLAPW results for the splitting of the rap-
idly converging 20, and 20, states is excellent, in
fact, better than the agreement with the DVM

\\\
u\\\\\\

results. A comparison of the more extended (and
slower converging) 30, 17,, and 17, states, howev-
er, suggests that the PP basis was too truncated for
sufficient variational freedom. Although both
FLAPW and the mixed-basis PP used in Ref. 16
are plane-wave — based methods, a direct compar-
ison of the number of basis functions is difficult
since FLAPW is an all-electron method while the
PP method is not. An added difficulty faced in a
a 3D-supercell method is that more k vectors, i.e.,
basis functions, are needed to fill up K space to a
given maximum k compared to the slab geometry
used here.
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FIG. 3. Densities for the occupied valence states in the O, molecule for a cut in a plane containing the two nuclei.
Each single-state density is normalized to unity. The values of the lowest contour lines and also the contour spacings are

0.016 electrons/(a.u.)’.
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FIG. 4. Local-density energy eigenvalues for O, ob-
tained by self-consistent calculations. DVM-1 denotes
the discrete variational method results by Baerends and
Ros (Ref. 14), PP refers to a pseudopotential calculation
given by Kerker et al. (Ref. 16), and DVM-2 and
DVM-3 label the Delley et al. results (Ref. 13) obtained
with the discrete variational method using a small two-
center basis (DVM-2) and a two-center basis extended by
48 off-site functions. The last column gives the full-
potential linearized-augmented-plane-wave eigenvalues.

E. Comparison with recent LCAO-DVM calculations

Figure 4 also presents the results of two new
DVM calculations'? denoted by DVM-2 and

0.0

N
(]

T
w
Q

=
e |
w | — = 20,
4.5}
L pp FLAPW
- (shifted)
2.0}
20,
| P U U RN SR N
100 200 300

Number of FLAPW basis functions

FIG. 5. FLAPW eigenvalues obtained with the self-
consistent potential and various basis sets. The pseudo-
potential results of Kerker et al. (Ref. 16) are shifted
such that the 20, states line up with the FLAPW values.

DVM-3. The basis used in the DVM-2 calculation
consists of a linear combination of atomic functions
with / < 2 obtained for the free oxygen atom using
the same form of the local exchange correlation, i.e.,
Xa, with a = 0.7, as in the molecular calculation.
The large discrepancy between the DVM-2 eigen-
values and the FLAPW results clearly provokes fur-
ther investigation. '

TABLE II. Local-density energy eigenvalues for the O, molecule. DVM-1 refers to the
results of Baerends and Ros (Ref. 14), PP labels the pseudopotential results given bv Kerker
et al. (Ref. 16), DVM-2 are the results of a DVM calculation (Ref. 13) using a small two-
center basis with / < 2, and DVM-3 refers to a DVM calculation (Ref. 13) with a two-center
basis with / < 2 extended by 48 off-site functions. The FLAPW eigenvalues are given in the

last column.
O, Eigenvalues (Ry)

DVM-1 PP DVM-2 DVM-3 FLAPW
1y —0.345 —0.243 —0.476 —0.361 —0.350
1m, —0.853 —0.794 —0.984 —0.881 —0.859
3o, —0.882 —0.875 —0.935 —0.891 —0.923
20, —1.323 —1.441 —1.435 —1.359 —1.381
20, —2.359 —2.359 -—2.501 —2.323 —2.309
1s —37.773 —37.565 —37.578
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To understand the origin of this difference, we
synthesized the self-consistent FLAPW potential
onto the DVM point mesh (3000 points) and calcu-
lated the DVM eigenvalues and wave functions for
this potential (without iterating in the DVM). The
resulting eigenvalues are plotted in Fig. 6 together
with the FLAPW eigenvalues as a reference. In
other words, all eigenvalues given in Fig. 6 are ob-
tained with a common potential but using two radi-
cally different methods for representing the molecu-
lar wave functions. From Fig. 6 it is obvious that
the greatest deviations between DVM-2 and
FLAPW eigenvalues are found for the 20, and 30,
orbitals, i.e., just those orbitals which have their
greatest density in the bonding region (see Fig. 3).
The fact that the 20, —DVM-2’ eigenvalues are
higher in energy than the corresponding FLAPW
eigenvalues indicates that there may not be enough
variational freedom in the DVM-2 wave functions
which are standard two-center expansions in atomic
orbitals. Moreover, the inclusion of d functions in
the two-center expansion does not change the eigen-
values significantly. Let us focus on the 20, states.
A clue to understanding the difference between the
DVM-2 and FLAPW results is certainly given by
the charge density. Therefore we have depicted for
the 20, state the difference between the FLAPW
and the DVM-2' charge densities [Fig. 7(a)], where
both the DVM-2’' and FLAPW eigenfunctions have
been constructed with the common potential under-
lying Fig. 6, i.e., we have isolated effects which are
exclusively due to the different way of constructing
the molecular wave function. Figure 7(a) shows
now that the DVM-2’'—20, wave function is less lo-
calized in the bonding region than is the corre-
sponding FLAPW function and points out how to
extend the LCAO basis in order to get a significant
gain in variational freedom. We can improve the
LCAO basis by adding functions centered at points
where the difference density has relative maxima,
e.g., at the two bumps of the 20, density between
the two nuclei [cf. Figs. 3 and 7(a)]. If this pro-
cedure is done for each orbital and the eigenvalues
are recalculated for the common FLAPW potential
using 48 additional off-center functions, we obtain
the results labeled DVM-3' [Fig. 7(b)]. From Fig. 6
it can be seen that now the DVM-3’ and FLAPW
20, states line up excellently and that the agreement
in the 30, states is improved significantly. It should
be noted that additional DVM functions centered at
the middle of the bond do not lead to this agree-
ment, i.e., those functions do not really increase the
variational freedom in the present case. The

0.0
— T T ——7,
-0.5 +
[ |
1.0 F 30,
> I
1t
w I 20,
-1.5 |
L DVM-2/ FLAPW
2.0 - DVM-3 LAPW-MT
[ — 20,

FIG. 6. One-electron energy eigenvalues obtained with
a common potential (the full self-consistent FLAPW po-
tential). DVM-2' and DVM-3’ refer to DVM calcula-
tions using small and extended basis sets and LAPW-MT
to the FLAPW method when the Hamiltonian matrix
elements due to the nonspherical terms in the potential
are neglected (warped muffin-tin approximation).

DVM-3’ eigenvalues for the 17 states are slightly
lower than the FLAPW values. This may be partly
due to residual small interactions between the O,
molecules in the film geometry and partly due to
the somewhat arbitrary way in which the FLAPW
potential is continued in the plane of the film to
construct a DVM potential which approaches strict-
ly zero also in these directions. In the direction per-
pendicular to the film, the FLAPW potential al-
ready approaches zero in the form required.

Although the energy differences between DVM-2'
and DVM-3' eigenvalues obtained for the common
potential underlying Fig. 6 are small, the real im-
provement of the DVM basis shows its importance
when performing the self-consistent calculation with
the extended basis (DVM-3 in Fig. 4). Amazingly,
all DVM-3 eigenvalues are shifted to higher energies
compared with the DVM-2 results and the DVM-3
eigenvalues are now very close to the FLAPW
eigenvalues. The main difference between the origi-
nal DVM calculation by Baerends and Ros'*
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(a)

FIG. 7. Difference charge densities for the 20, states: (a) p(FLAPW)-p(DVM-2'), and (b) p(FLAPW)-p(DVM-3') plot-

ted to the same scale. The cutoff in (a) is at 0.2 electrons/(a.u.)’.

the full self-consistent FLAPW potential).

(DVM-1) and the new DVM-3 results consists in
the splitting of the 20, and 20, orbitals; the splitting
of these states in DVM-3 is much closer to the
FLAPW result than that in the original DVM cal-
culation by Baerends and Ros.

Finally, the influence of the nonspherical terms in
the LAPW Hamiltonian matrix elements is demon-
strated in Fig. 6. The column labeled “LAPW-
MT?” refers to eigenvalues obtained using the full
self-consistent FLAPW potential but neglecting the
nonspherical terms in the Hamiltonian matrix. As
expected, the difference are substantial for the 2o
states but small for the 17 states.

IV. CONCLUSIONS

The validity of shape approximations to the po-
tential in solving the one-particle local-density equa-
tions depends strongly on the system considered. In
particular, the approximation of spherically sym-
metric potentials inside the muffin-tin spheres may
be justified for close-packed systems, but becomes
suspect for open structures.

We have shown in the present work how the
linearized-augmented-plane-wave method for thin
films can be generalized to treat self-consistently the
case of a full potential, i.e., one with no shape ap-
proximations. The new scheme used for solving
Poisson’s equation'® turns out to be not only elegant
in its formulation but also numerically efficient as
implemented in the full-potential LAPW method."®

The accuracy of the new FLAPW method was
demonstrated for the severe test case of the nearly
free O, molecule which exhibits important non-
spherical contributions to the potential inside the

(b)

All densities are obtained using the same potential (i.e.,

muffin-tin spheres. It was found that the accuracy
of the FLAPW energy eigenvalues and charge den-
sities exceeds that of state-of-the-art LCAO-type cal-
culations within the local-density — functional ap-
proach. The FLAPW results can therefore be used
as a reference to improve the standard LCAO basis
by adding off-site variational functions in those re-
gions of space found appropriate by comparing the
two sets of results.

Thus the FLAPW method is ideally suited to
treat the electronic structure of reduced symmetry
systems such as semiconductor surfaces, interfaces,
or molecules chemisorbed on metal surfaces.
FLAPW is a unified method in the sense that it can
describe not only chemisorbed systems but also the
isolated components of such a system, namely the
clean surface and the nearly free molecule, to the
same precision.
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APPENDIX: THE STAR-FUNCTION EXPANSION OF THE DIFFERENCE
PSEUDO-CHARGE-DENSITY

The pseudo-charge-density is expressed as

ﬁn,s =p5,‘sw + Aﬁn,s ’ (A1)

where pf}v are the star-function expansion coefficients of the interstitial charge [Eq. (1b)]. The coefficients of
the difference pseudo-charge-density, Ap, ;, depend on the multipole moments of the original charge density
and the plane-wave charge density as follows:

Aprs = %’1 11))' my(2 — 8o 2 ER,,” S exp(iRG,- T)QXRG,.K,) | (A2)
o "R
with
N
R = [ (2, + 3 + 2R o (KR o)~ N+, v+ 1(KgR ) (A3)
p=0
and
Ao — 1 A—> — A—> — A—> —
VIRGKy) = S 1(—1)""FHRG, ~ X,) + FARG, + K g% Y1 m(RG, + K,) (A4)
m
Y (-1 cos[(R _>S T l?,,)-?a] for I, even (ASa)
(RG x )E A—> —
Tk (=D Sin[(RG, 5 K,) 7] for I, odd (ASb)
Tom = 4% — Ao (A6)

Q is the volume of the unit cell between the vacuum boundaries at +D /2. D' > D is used to define E,,,
reciprocal-lattice vector in the z direction [Posternak et al., * Eq. (2)]. m; denotes the number of members in
the star of Gs, a 2D star representative. a denotes an atom in the unit cell at position 7,. v is a label of a lat-
tice harmonic with the / value /,. { R | T g } forms the 2D space group of order n,. N, the “convergence
parameter,” is an arbitrary integer greater than O chosen such that for a maximum K,;R , the Fourier series
for Ap converges most rapidly.”® In our case KR = (|G;| + | K, |)Rq < 15, so we usedV =9—1. R,
is the muffin-tin radius of sphere a.

The multipole moments of the original charge density [given by Eq. 1(a)] are

R
a 1.+2
am = cn(ly) [ “prr dr (A7)
and the multipole moments of the plane-wave density inside sphere « are found to be

atm @ _ o’ EprR ot (K,,SRa)“jIVH(K,,SR Eexp[lRG (T — tg Y5 (A8)

n,s
with

,yli;:,s . [eiknraz (= 1)IV-I-me lk"Taz]YIJn as + E ) . (A9)
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